Comparison of Propofol or Isoflurane Anesthesia Maintenance, Combined with a Fentanyl–Lidocaine–Ketamine Constant-Rate Infusion in Goats Undergoing Abomasotomy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Anesthetic Procedure and Study Design
2.3. Cardiopulmonary Variables Measurement
2.4. Evaluation of Anesthetic Depth
2.5. Determinants of Isoflurane Vaporizer Setting and Propofol CRI
2.6. Surgical Procedure
2.7. Postanaesthetic Sedation and Recovery
2.8. Statistical Analysis
3. Results
3.1. Preanesthetic Sedation and Induction Dose of Propofol
3.2. Anesthesia Time and the Surgery Time
3.3. Cardiopulmonary Variables
3.4. Anesthetic Requirements to Achieve an Acceptable Anesthetic Depth
3.5. Anesthesia Recovery
3.6. Postoperative Sedation and Analgesia Scores
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Flaherty, D.C.; Hoxha, B.; Nelson, S.; Sun, J.; Gurji, H.; Simecka, J.W.; Mallet, R.T.; Olivencia-Yurvati, A.H.; Daniels, E.Q. Peri- and intra-operative management of the goat during acute surgical experimentation. Lab. Anim. 2010, 39, 80–85. [Google Scholar] [CrossRef]
- Clarke, K.W.; Trim, C.M.; Hall, L.W. (Eds.) An introduction to anaesthesia and general considerations. In Veterinary Anaesthesia, 11th ed.; Elsevier: Edinburgh, UK, 2014; pp. 3–4. [Google Scholar]
- Lin, H. Preanesthetic considerations. In Farm Animal Anaesthesia; Lin, H., Walz, P., Eds.; John Wiley & Sons: Ames, IA, USA, 2014; pp. 1–13. [Google Scholar]
- Lin, H. Injectable anesthetics and field anesthesia. In Farm Animal Anaesthesia; Lin, H., Walz, P., Eds.; John Wiley & Sons: Ames, IA, USA, 2014; pp. 60–94. [Google Scholar]
- Steffey, E.P.; Mama, K.R. Inhalation Anesthetics. In Lumb & Jones Veterinary Anesthesia and Analgesia, 4th ed.; Tranquili, W.J., Thurmon, J.C., Grimm, K.A., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2007; pp. 297–331. [Google Scholar]
- Yasny, J.S.; White, J. Environmental implications of anesthetic gases. Anesth. Prog. 2012, 59, 154–158. [Google Scholar] [CrossRef]
- Özelsel, T.J.; Sondekoppam, R.V.; Ip, V.H.Y.; Tsui, B.C.H. Re-defining the 3R’s (reduce, refine, and replace) of sustainability to minimize the environmental impact of inhalational anesthetic agents. Can. J. Anaesth. 2019, 66, 249–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tranquili, W.J.; Grimm, K.A. Introduction: Use, Definitions, History, Concepts, Classification, and Considerations for Anesthesia and Analgesia. In Lumb & Jones Veterinary Anesthesia and Analgesia, 4th ed.; Tranquili, W.J., Thurmon, J.C., Grimm, K.A., Eds.; Blackwell Publishing: Hoboken, NJ, USA, 2007; pp. 3–10. [Google Scholar]
- Doherty, T.J.; Will, W.A.; Rohrbach, B.W.; Geiser, D.R. Effect of morphine and flunixin meglumine on isoflurane minimum alveolar concentration in goats. Vet. Anaesth. Analg. 2004, 31, 97–101. [Google Scholar] [CrossRef]
- Doherty, T.; Redua, M.A.; Queiroz-Castro, P.; Egger, C.; Cox, S.K.; Rohrbach, B.W. Effect of intravenous lidocaine and ketamine on the minimum alveolar concentration of isoflurane in goats. Vet. Anaesth. Analg. 2007, 34, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Yamasaki, T.; Takaori, M.; Sekioka, K. Sevoflurane anesthesia for one-lung ventilation with PEEP to the dependent lung in sheep: Effects on right ventricular function and oxygenation. Can. J. Anaesth. 1993, 40, 1195–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aida, H.; Mizuno, Y.; Hobo, S.; Yoshida, K.; Fujinaga, T. Cardiovascular and pulmonary effects of sevoflurane anesthesia in horses. Vet. Surg. 1996, 25, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Galloway, D.S.; Ko, J.C.; Reaugh, H.F.; Mandsager, R.E.; Payton, M.E.; Inoue, T.; Portillo, E. Anesthetic indices of sevoflurane and isoflurane in unpremeditated dogs. J. Am. Vet. Med. Assoc. 2004, 225, 700–704. [Google Scholar] [CrossRef]
- Beths, T. TIVA/CI in Veterinary Practice. In Total Intravenous Anaesthesia and Target Controlled Infusions: A Comprehensive Global Anthology; Absalom, A.R., Mason, K.P., Eds.; Springer: Cham, Switzerland, USA, 2017; pp. 589–618. [Google Scholar] [CrossRef]
- Bettschart-Wolfensberger, R.; Semder, A.; Alibhai, H.; Demuth, D.; Aliabadi, F.S.; Clarke, K.W. Cardiopulmonary side-effects and pharmacokinetics of an emulsion of propofol (Disoprivan) in comparison to propofol solved in polysorbate 80 in goats. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2000, 47, 341–350. [Google Scholar] [CrossRef]
- Smith, I.; White, P.F.; Nathanson, M.; Gouldson, R. Propofol: An update on its clinical use. Anesthesiology 1994, 81, 1005–1043. [Google Scholar]
- Langley, M.S.; Heel, R.C. Propofol. A Review of its Pharmacodynamic and Pharmacokinetic Properties and Use as an Intravenous Anaesthetic. Drugs 1988, 35, 334–372. [Google Scholar] [CrossRef] [PubMed]
- Carroll, G.L.; Hooper, R.N.; Slater, M.R.; Hartsfield, S.M.; Matthews, N.S. Detomidine-butorphanol-propofol for carotid artery translocation and castration or ovariohysterectomy in goats. Vet. Surg. 1998, 27, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Kinjavdekar, P.; Amarpal Aithal, H.P.; Pawde, A.M.; Kumar, A.; Singh, J.; Khattri, S.; Madhu, D.N. Clinic physiological, hematobiochemical and hemodynamic effect of propofol and ketamine with dexmedetomidine in urolithic goats. Vet. World 2014, 7, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Vieitez, V.; Álvarez Gómez de Segura, I.; López Rámis, V.; Santella, M.; Ezquerra, L.J. Total intravenous anesthesia in a goat undergoing craniectomy. BMC Vet. Res. 2017, 13, 287. [Google Scholar] [CrossRef] [Green Version]
- Dzikiti, T.B.; Stegmann, G.F.; Dzikiti, L.N.; Hellebrekers, L.J. Effects of fentanyl on isoflurane minimum alveolar concentration and cardiovascular function in mechanically ventilated goats. Vet. Rec. 2011, 168, 429. [Google Scholar] [CrossRef] [Green Version]
- Steagall, P.V.; Teixeira Neto, F.J.; Minto, B.W.; Campagnol, D.; Corrêa, M.A. Evaluation of the isoflurane-sparing effects of lidocaine and fentanyl during surgery in dogs. J. Am. Vet. Med. Assoc. 2006, 229, 522–527. [Google Scholar] [CrossRef]
- Aguado, D.; Benito, J.; Gómez de Segura, I.A. Reduction of the minimum alveolar concentration of isoflurane in dogs using a constant rate of infusion of lidocaine–ketamine in combination with either morphine or fentanyl. Vet. J. 2011, 189, 63–66. [Google Scholar] [CrossRef]
- Lin, H. Pain management for farm animals. In Farm Animal Anaesthesia; Lin, H., Walz, P., Eds.; John Wiley & Sons: Ames, IA, USA, 2014; pp. 174–200. [Google Scholar]
- Baird, N.A. Bovine Gastrointestinal Surgery. In Turner and McIlwraith’s Techniques in Large Animal Surgery, 4th ed.; Hendrickson, D.A., Baird, N.A., Eds.; John Wiley & Sons: Somerset, NJ, USA, 2013; pp. 220–221. [Google Scholar]
- Dzikiti, B.T.; Stegmann, F.G.; Dzikiti, L.N.; Hellebrekers, L.J. Total intravenous anesthesia (TIVA) with propofol-fentanyl and propofol-midazolam combinations in spontaneously breathing goats. Vet. Anaesth. Analg. 2010, 37, 519–525. [Google Scholar] [CrossRef] [Green Version]
- Tallarida, R.J. The interaction index: A measure of drug synergism. Pain 2002, 98, 163–168. [Google Scholar] [CrossRef]
- Hendrickx, J.F.; Eger, E., 2nd; Sonner, J.M.; Shafer, S.L. Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility. Anesth. Analg. 2008, 107, 494–506. [Google Scholar] [CrossRef]
- Branson, K.R.; Gross, M.E.; Booth, N.H. Opioid agonists and antagonists. In Veterinary Pharmacology and Therapeutics; Adams, H.R., Ed.; Iowa State Press: Ames, IA, USA, 2011; pp. 274–310. [Google Scholar]
- Valverde, A.; Doherty, T.J. Anesthesia and analgesia in ruminants. In Anesthesia and Analgesia in Laboratory Animals, 2nd ed.; Fish, R., Danneman, P.J., Brown, M., Karas, A.Z., Eds.; London Academic Press: London, UK, 2008; pp. 385–411. [Google Scholar]
- Upton, R.N.; Ludbrook, G.L.; Martinez, A.M.; Grant, C.; Milne, R.W. Cerebral and lung kinetics of morphine in conscious sheep after short intravenous infusions. Br. J. Anaesth. 2003, 90, 750–758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pablo, L.S.; Bailey, J.E.; Ko, J.C. Median effective dose of propofol required for induction of anesthesia in goats. J. Am. Vet. Med. Assoc. 1997, 211, 86–88. [Google Scholar] [PubMed]
- Prassinos, N.N.; Galatos, A.D.; Raptopoulos, D.A. Comparison of propofol, thiopental or ketamine as induction agents in goats. Vet. Anaesth. Analg. 2005, 32, 289–296. [Google Scholar] [CrossRef]
- Dzikiti, T.B.; Stegmann, G.F.; Hellebrekers, L.J.; Auer, R.E.; Dzikiti, L.N. Sedative and cardiopulmonary effects of acepromazine, midazolam, butorphanol, acepromazine-butorphanol and midazolam-butorphanol on propofol anesthesia in goats. J. S. Afr. Vet. Assoc. 2009, 80, 10–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eger, E.I., 2nd; Johnson, B.H.; Weiskopf, R.B.; Holmes, M.A.; Yasuda, N.; Targ, A.; Rampil, J. Minimum alveolar concentration of I-653 and isoflurane in pigs: Definition of a supramaximal stimulus. Anesth. Analg. 1988, 67, 1174–1176. [Google Scholar] [CrossRef] [PubMed]
- Larenza, M.P.; Bergadano, A.; Iff, I.; Doherr, M.G.; Schatzmann, U. Comparison of the cardiopulmonary effects of anesthesia maintained by continuous infusion of ketamine and propofol with anesthesia maintained by inhalation of sevoflurane in goats undergoing magnetic resonance imaging. Am. J. Vet. Res. 2005, 66, 2135–2141. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.P.; Ndawana, P.S.; Dzikiti, L.N.; Dzikiti, B.T. Determination of the minimum infusion rate of propofol required to prevent purposeful movement of the extremities in response to a standardized noxious stimulus in goats. Vet. Anaesth. Analg. 2016, 43, 519–527. [Google Scholar] [CrossRef]
- Anderson, D.E.; Muir, W.W. Pain management in ruminants. Vet. Clin. N. Am. Food Anim. Pract. 2005, 21, 19–31. [Google Scholar] [CrossRef]
- Gerbershagen, H.J.; Aduckahil, S.; van Wijck, A.J.M.; Peelen, L.M.; Kalkman, C.J.; Meissner, W. Pain intensity on the first day after surgery. A prospective cohort study comparing 179 surgical procedures. Anesthesiology 2013, 118, 934–944. [Google Scholar] [CrossRef] [Green Version]
- Doherty, T.J.; Rohrbach, B.W.; Geiser, D.R. Effect of acepromazine and butorphanol on isoflurane minimum alveolar concentration in goats. J. Vet. Pharmacol. Ther. 2002, 25, 65–67. [Google Scholar] [CrossRef]
- Antognini, J.F.; Eisele, P.H. Anaesthetic potency and cardiopulmonary effects of enflurane, halothane, and isoflurane in goats. Lab. Anim. Sci. 1993, 43, 607–610. [Google Scholar] [PubMed]
- Hikasa, Y.; Hokushin, S.; Takase, K.; Ogasawara, S. Cardiopulmonary, hematological, serum biochemical and behavioral effects of sevoflurane compared to isoflurane or halothane in spontaneously ventilating goats. Small Rumin. Res. 2002, 43, 167–178. [Google Scholar] [CrossRef]
Variables | Treatment | Time Points | ||||||||
Reference Point | T0 (Baseline) | T1 | T2 | T3 | T4 | T5 | T6 | T7 | ||
HR | TIVA | 70 ± 9.4 | 65 ± 19.7 | 69 ± 17.5 | 78 ± 16.1† | 75 ± 18.1 | 77 ± 20.2 † | 80 ± 17.7 † | 79 ± 17.4 † | 76 ± 17.6 † |
PIVA | 66 ± 9.9 | 84 ± 19.3 * | 86 ± 18.9 * | 88 ± 15.6 * | 92 ± 16.1 * | 95 ± 18.6 * † | 89 ± 21 * | 88 ± 18.7 * | 88 ± 17.5 * | |
fR | TIVA | 21 ± 5.0 | 11 ± 4.8 * | 12 ± 5.4 * | 16 ± 6.8 * | 12 ± 4.1 * | 14 ± 4.8 * | 12 ± 4.7 * | 15 ± 6.6 * | 15 ± 5.7 * |
PIVA | 21 ± 5.3 | 10 ± 3.1 * | 9 ± 3.5 * | 12 ± 5.8 * | 11 ± 3.2 * | 11 ± 4.4 * | 10 ± 4.2 * | 11 ± 5.8 * | 14 ± 6 * † | |
SpO2 | TIVA | 98 ± 1.8 | 97 ± 2.6 | 97 ± 2 | 96 ± 2.9 | 97 ± 1.4 | 97 ± 2.1 | 98 ± 0.9 | 98 ± 1 | 98 ± 0.8 |
PIVA | 96 ± 2.3 | 97 ± 1.2 | 97 ± 1.5 | 97 ± 1.5 | 97 ± 1.8 | 97 ± 2.1 | 97 ± 1.8 | 98 ± 0.7 | 98 ± 0.7 | |
ET’CO2 (mmHg) | TIVA | 41.3 ± 2.8 | 40.3 ± 3.5 | 41.3 ± 4.6 | 41 ± 5.8 | 42.3 ± 4.5 | 40.5 ± 5.5 | 40.4 ± 5.1 | 39.7 ± 3.5 | 39.4 ± 4 |
PIVA | 42 ± 2.6 | 40.7 ± 5.2 | 40.7 ± 5.7 | 41.2 ± 8.1 | 40.6 ± 4.2 | 40 ± 7.4 | 41 ± 6.3 | 38.2 ± 47 | 35.8 ± 6.5 | |
SAP (mmHg) | TIVA | 134 ± 24.5 | 98 ± 7.7 * | 109 ± 8.9 *† | 129 ± 15† | 118 ± 14 a*† | 110 ± 10 * † | 119 ± 10 a*† | 114 ± 6 a * † | 110 ± 7.6 * † |
PIVA | 137 ± 26.2 | 97 ± 10.8 * | 104 ± 12 * | 124 ± 21.3† | 105 ± 9.4 b* | 104 ± 12.8 * | 107 ± 12.4 b* | 103 ± 10.2 b* | 107 ± 12.5 * | |
DAP (mmHg) | TIVA | 85 ± 25.3 | 72 ± 12.7 * | 81.5 ± 11.6 † | 99 ± 12.4 * † | 88 ± 12.3 † | 84 ± 12† | 95 ± 9.8 † | 87 ± 8.9† | 85 ± 9.2 † |
PIVA | 94 ± 21.3 | 73 ± 7.8 * | 78 ± 10.6 * | 94 ± 17.5 † | 81 ± 11.3 * | 80 ± 13.9 * | 84 ± 13.2 † | 81 ± 11.7 * | 86 ± 11.1 † | |
MAP (mmHg) | TIVA | 102 ± 22.7 | 80 ± 11.3 * | 90 ± 10.1 † | 108 ± 12.5 † | 96 ± 13.9 † | 92 ± 11.3 † | 101 ± 9.6 † | 97 ± 8.5† | 93 ± 8.4 † |
PIVA | 100 ± 10 | 80 ± 10.7 * | 86 ± 10.1 * | 104 ± 18.6 † | 88 ± 10.6 * | 89 ± 12.6 * | 91 ± 12.3 † | 89 ± 10.2 * | 92 ± 12.1 * † |
Variable | Treatment | Reference Point | 15 | 30 | POST |
---|---|---|---|---|---|
pH | TIVA | 7.529 ± 0.03 | 7.36 ± 0.04 * | 7.38 ± 0.04 * | 7.449 ± 0.05 |
PIVA | 7.498 ± 0.01 | 7.378 ± 0.03 | 7.393 ± 0.08 | 7.466 ± 0.04 | |
Pp-O2 (mmHg) | TIVA | 84.3 ± 4.04 | 493.7 ± 177.8* | 522 ± 129.6 * | 98 ± 4.35 |
PIVA | 88 ± 2.6 | 502.7 ± 12.64* | 582.3 ± 100.1 * | 95.67 ± 7.23 | |
Pp-CO2 (mmHg) | TIVA | 37.6 ± 2.17 | 46.8 ± 1.01* | 44.63 ± 1.38 * | 39.4 ± 1.38 |
PIVA | 37.83 ± 6.9 | 44.27 ± 2.37* | 43.3 ± 2.37 * | 41.5 ± 1.7 | |
Glucose (mg dL) | TIVA | 51 ± 10.58 | 55.33 ± 3.21 | 51 ± 6.92 | 45 ± 6 |
PIVA | 41 ± 7.55 | 46.33 ± 15.5 | 37.33 ± 7.76 | 44.67 ± 8.96 | |
Lactate (mmol L) | TIVA | 0.68 ± 0.61 | 0.3 ± 0 | 0.3 ± 0 | 0.38 ± 0.13 |
PIVA | 0.39 ± 0.10 | 0.3 ± 0 | 0.3 ± 0 | 1.13 ± 1.44 | |
HCO3- (mmol L) | TIVA | 30.77 ± 3.48 | 30.3 ± 3.30 | 30.33 ± 4.13 | 26.57 ± 2.17 |
PIVA | 28.57 ± 4.08 | 31.9 ± 4.38 | 32.5 ± 3.95 | 29.37 ± 3.55 |
Treatment | Variable | Time Points | |||||||
---|---|---|---|---|---|---|---|---|---|
T0 | T1 | T2 | T3 | T4 | T5 | T6 | T7 | ||
PIVA | FE’Iso (%) | 0.76 ± 0.20 | 0.77 ± 0.18 | 0.78 ± 0.16 | 0.87 ± 0.19 | 0.86 ± 0.22 | 0.87 ± 0.24 | 0.79 ± 0.22 | 0.77 ± 0.19 |
TIVA | mg/kg/min | 0.42 ± 0.05 | 0.44 ± 0.06 | 0.45 ± 0.06 | 0.44 ± 0.05 | 0.44 ± 0.08 | 0.44 ± 0.07 | 0.45 ± 0.08 | 0.40 ± 0.08 |
Variable | Treatment | Time | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 min | 15 min | 30 min | 45 min | 60 min | 120 min | 180 min | 240 min | 24 h | 48 h | 72 h | 96 h | ||
Sedation | PIVA | 3 (3–3) | 3 (2–3) | 2 (2–2) | 1 (1–2) | 1 (0–1) | 0 (0–1) | 0 (0–1) | 0 (0–0) | - | - | - | - |
TIVA | 3 (3–3) | 3 (2–3) | 3 (1–3) | 2 (0–2) | 1 (0–1) | 1 (0–1) | 1 (0–1) | 0 (0–1) | - | - | - | - | |
Recovery quality | PIVA | 3 (3–3) | 3 (2–3) | 2 a* (2–3) | 2 a** (1–2) | 1 a*** (1–1) | 1 (1–1) | 1 (1–1) | 1 (1–1) | - | - | - | - |
TIVA | 3 (3–3) | 3 (3–3) | 3 b (3–3) | 2 b (2–3) | 2 b (2–2) | 1 (1–2) | 1 (1–1) | 1 (1–1) | - | - | - | - | |
Analgesia | TIVA | 1 (1–1) | - | - | - | - | - | - | 2 (1–2) | 2 (1–2) | 2 (1–2) | 1 (1–1) | 1 (1–1) |
PIVA | 1 (1–1) | - | - | - | - | - | - | 2 (1–2) | 2 (1–2) | 2 (1–2) | 1 (1–1) | 1 (1–1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velázquez-Delgado, P.I.; Gutierrez-Blanco, E.; Torres-Acosta, F.d.J.; Ortega-Pacheco, A.; Aguilar-Caballero, A.J.; Dzikiti, B.T. Comparison of Propofol or Isoflurane Anesthesia Maintenance, Combined with a Fentanyl–Lidocaine–Ketamine Constant-Rate Infusion in Goats Undergoing Abomasotomy. Animals 2021, 11, 492. https://doi.org/10.3390/ani11020492
Velázquez-Delgado PI, Gutierrez-Blanco E, Torres-Acosta FdJ, Ortega-Pacheco A, Aguilar-Caballero AJ, Dzikiti BT. Comparison of Propofol or Isoflurane Anesthesia Maintenance, Combined with a Fentanyl–Lidocaine–Ketamine Constant-Rate Infusion in Goats Undergoing Abomasotomy. Animals. 2021; 11(2):492. https://doi.org/10.3390/ani11020492
Chicago/Turabian StyleVelázquez-Delgado, Perla I., Eduardo Gutierrez-Blanco, Felipe de J. Torres-Acosta, Antonio Ortega-Pacheco, Armando J. Aguilar-Caballero, and Brighton T. Dzikiti. 2021. "Comparison of Propofol or Isoflurane Anesthesia Maintenance, Combined with a Fentanyl–Lidocaine–Ketamine Constant-Rate Infusion in Goats Undergoing Abomasotomy" Animals 11, no. 2: 492. https://doi.org/10.3390/ani11020492
APA StyleVelázquez-Delgado, P. I., Gutierrez-Blanco, E., Torres-Acosta, F. d. J., Ortega-Pacheco, A., Aguilar-Caballero, A. J., & Dzikiti, B. T. (2021). Comparison of Propofol or Isoflurane Anesthesia Maintenance, Combined with a Fentanyl–Lidocaine–Ketamine Constant-Rate Infusion in Goats Undergoing Abomasotomy. Animals, 11(2), 492. https://doi.org/10.3390/ani11020492