Relationships between the Rider’s Pelvic Mobility and Balance on a Gymnastic Ball with Equestrian Skills and Effects on Horse Welfare
Abstract
:Simple Summary
Abstract
1. Introduction
- (1)
- Greater rider proficiency in pelvic roll, pelvic circling and balance on a gymnastic ball are associated with a higher score for quality and harmony when riding, together with lower values for the horse’s cortisol and HR, and fewer conflict behaviors in the horse.
- (2)
- Rider weight distribution between the left and right feet when standing predicts rider weight distribution on the left and right sides of the horse’s back when riding at sitting trot.
2. Materials and Methods
2.1. Experimental Design
2.2. Horses and Riders
2.3. Ridden Tests
2.4. Rider’s Weight Distribution off and on the Horse
2.5. Rider Mobility and Balance (On-Ground)
2.5.1. Pelvic Roll
2.5.2. Pelvic Circles
2.5.3. Balance on the Ball
2.6. Quality and Harmony
2.7. Salivary Cortisol
2.8. Heart Rate
2.9. Conflict Behaviors
2.10. Statistical Analysis
3. Results
3.1. Inter-Observer Agreement on Pelvic Roll, Pelvic Circle, Balance on the Ball, Quality and Harmony
3.2. Rider Scores
3.3. Horse Scores
3.4. Correlations between Variables
4. Discussion
4.1. The Riders’ Ability to Coordinate Pelvic Movement in Relation to Riding Skills
4.2. The Importance of Rider Balance
4.3. The Effect of Rider Weight Distribution on and off the Horse
4.4. Is Rider Body Control on the Horse Correlated to Horse Welfare?
4.5. Repeatability of Subjective Scorings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Galloux, P.; Barrey, E. Components of the total kinetic moment in jumping horses. Equine Vet. J. 2010, 29, 41–44. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, S.J.; George, L.S.; Reed, J.; Stockley, R.; Thetford, C.; Sinclair, J.; Williams, J.; Nankervis, K.; Clayton, H.M. A scoping review of determinants of performance in dressage. PeerJ 2020, 8, e9022. [Google Scholar] [CrossRef]
- Terada, K.; Mullineaux, D.R.; Kiyotada, K.; Clayton, H.M. Electromyographic activity of the rider’s muscles at trot. Equine Compar. Exerc. Physiol. 2004, 1, 193–198. [Google Scholar]
- Clayton, H.M.; Hobbs, S.-J. The role of biomechanical analysis of horse and rider in equitation science. Appl. Anim. Behav. Sci. 2017, 190, 123–132. [Google Scholar] [CrossRef]
- Münz, A.; Eckardt, F.; Witte, K. Horse–rider interaction in dressage riding. Hum. Mov. Sci. 2014, 33, 227–237. [Google Scholar] [CrossRef]
- Engell, M.; Clayton, H.; Egenvall, A.; Weishaupt, M.; Roepstorff, L. Postural changes and their effects in elite riders when actively influencing the horse versus sitting passively at trot. Comp. Exerc. Physiol. 2016, 12, 27–33. [Google Scholar] [CrossRef] [Green Version]
- Hampson, A.; Randle, H. The influence of an 8-week rider core fitness program on the equine back at sitting trot. Int. J. Perform. Anal. Sport 2015, 15, 1145–1159. [Google Scholar] [CrossRef]
- Engell, M.; Byström, A.; Hernlund, E.; Bergh, A.; Clayton, H.M.; Roepstorff, L.; Egenvall, A. Intersegmental strategies in frontal plane in moderately-skilled riders analyzed in ridden and un-mounted situations. Hum. Mov. Sci. 2019, 66, 511–520. [Google Scholar] [CrossRef] [PubMed]
- Persson-Sjodin, E.; Hernlund, E.; Pfau, T.; Andersen, P.H.; Rhodin, M. Influence of seating styles on head and pelvic vertical movement symmetry in horses ridden at trot. PLoS ONE 2018, 13, e0195341. [Google Scholar] [CrossRef] [Green Version]
- Byström, A.; Clayton, H.M.; Hernlund, E.; Roepstorff, L.; Rhodin, M.; Braganca, F.S.; Engell, M.-T.; van Weeren, P.R.; Weis-Haupt, M.A.; Egenvall, A. Gait asymmetries of horses walking and trotting on a treadmill with and without a rider. Equine Vet. J. 2020, 52, 1. [Google Scholar]
- Egenvall, A.; Byström, A.; Roepstorff, L.; Rhodin, M.; Weishaupt, M.A.; Van Weeren, R.; Clayton, H.M. Withers vertical movement asymmetry in dressage horses walking in different head-neck positions with and without riders. J. Vet. Behav. 2020, 36, 72–83. [Google Scholar] [CrossRef]
- Guire, R.; Mathie, H.; Fisher, M.; Fisher, D. Riders’ perception of symmetrical pressure on their ischial tuberosities and rein contact tension whilst sitting on a static object. Comp. Exerc. Physiol. 2017, 13, 7–12. [Google Scholar] [CrossRef]
- Christensen, J.W.; Bathellier, S.; Rhodin, M.; Palme, R.; Uldahl, M. Increased Rider Weight Did Not Induce Changes in Behavior and Physiological Parameters in Horses. Animals 2020, 10, 95. [Google Scholar] [CrossRef] [Green Version]
- Palme, R.; Möstl, E. Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Int. J. Mamm. Biol. 1997, 62, 192–197. [Google Scholar]
- Schmidt, A.; Möstl, E.; Aurich, J.; Neuhauser, S.; Aurich, C. Comparison of cortisol and cortisone levels in blood plasma and saliva and cortisol metabolite concentrations in faeces for stress analysis in horses. In Proceedings of the 5th International Conference of the International Society for Equitation Science, Sydney, Australia, 12–14 July 2009; p. 53. [Google Scholar]
- Peham, C.; Licka, T.; Schobesberger, H.; Meschan, E. Influence of the rider on the variability of the equine gait. Hum. Mov. Sci. 2004, 23, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, J.; Peham, C.; Licka, T.; Kelso, J.A.S. Coordination Dynamics of the Horse-Rider System. J. Mot. Behav. 2005, 37, 418–424. [Google Scholar] [CrossRef] [Green Version]
- Byström, A.; Rhodin, M.; Von Peinen, K.; Weishaupt, M.A.; Roepstorff, L. Kinematics of saddle and rider in high-level dressage horses performing collected walk on a treadmill. Equine Vet. J. 2010, 42, 340–345. [Google Scholar] [CrossRef] [PubMed]
- Terada, K. Comparison of Head Movement and EMG Activity of Muscles between Advanced and Novice Horseback Riders at Different Gaits. J. Equine Sci. 2000, 11, 83–90. [Google Scholar] [CrossRef] [Green Version]
- Pantall, A.; Barton, S.; Collins, P. Surface electromyography of abdominal and spinal muscles in adult horse riders during rising trot. In Proceedings of the XXVII International Conference on Biomechanics in Sport, Limerick, Ireland, 17–21 August 2009. [Google Scholar]
- Byström, A.; Roepstroff, L.; Peinen, K.G.-V.; Weishaupt, M.; Rhodin, M. Differences in rider movement pattern between different degrees of collection at the trot in high-level dressage horses ridden on a treadmill. Hum. Mov. Sci. 2015, 41, 1–8. [Google Scholar] [CrossRef]
- Eckardt, F.; Witte, K. Kinematic Analysis of the Rider According to Different Skill Levels in Sitting Trot and Canter. J. Equine Vet. Sci. 2016, 39, 51–57. [Google Scholar] [CrossRef]
- De Cocq, P.; Clayton, H.M.; Terada, K.; Muller, M.; Van Leeuwen, J.L. Usability of normal force distribution measurements to evaluate asymmetrical loading of the back of the horse and different rider positions on a standing horse. Vet. J. 2009, 181, 266–273. [Google Scholar] [CrossRef]
- Gunst, S.; Dittmann, M.T.; Arpagaus, S.; Roepstorff, C.; Latif, S.N.; Klaassen, B.; Pauli, C.A.; Bauer, C.M.; Weishaupt, M.A. Influence of Functional Rider and Horse Asymmetries on Saddle Force Distribution During Stance and in Sitting Trot. J. Equine Vet. Sci. 2019, 78, 20–28. [Google Scholar] [CrossRef] [Green Version]
- De Cocq, P.; Duncker, A.M.; Clayton, H.M.; Bobbert, M.F.; Muller, M.; Van Leeuwen, J.L. Vertical forces on the horse’s back in sitting and rising trot. J. Biomech. 2010, 43, 627–631. [Google Scholar] [CrossRef]
- Peham, C.; Licka, T.; Kapaun, M.; Scheidl, M. A new method to quantify harmony of the horse-rider system in dressage. Sports Eng. 2001, 4, 95–101. [Google Scholar] [CrossRef]
- Wolframm, I.A.; Bosga, J.; Meulenbroek, R.G. Coordination dynamics in horse-rider dyads. Hum. Mov. Sci. 2013, 32, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Engell, M.T.; Hernlund, E.; Bystrøm, A.; Egenvall, A.; Bergh, A.; Clayton, H.M.; Roepstorff, L. Head, trunk and pelvic kine-matics in the frontal plane in un-mounted horseback riders rocking a balance chair from side-to-side. Compar. Exerc. Physiol. 2018, 14, 249–259. [Google Scholar] [CrossRef]
- Hrysomallis, C. Balance Ability and Athletic Performance. Sports Med. 2011, 41, 221–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giboin, L.-S.; Gruber, M.; Kramer, A. Task-specificity of balance training. Hum. Mov. Sci. 2015, 44, 22–31. [Google Scholar] [CrossRef]
- Christensen, J.W.; Munk, R.; Hawson, L.; Palme, R.; Larsen, T.; Egenvall, A.; König von Borstel, U.; Rørvang, R.V. Rider effects on horses’ conflict behaviour, rein tension, physiological measures and rideability scores. Appl. Anim. Behav. Sci. 2021, 234, 105184. [Google Scholar] [CrossRef]
- Tessem, S.; Hagstrøm, N.; Fallang, B. Weight distribution in standing and sitting positions, and weight transfer during reaching tasks, in seated stroke subjects and healthy subjects. Physiother. Res. Int. 2007, 12, 82–94. [Google Scholar] [CrossRef]
- Christensen, J.W.; Beekmansb, M.; van Dalumb, M.; van Dierendonck, M. Effects of hyperflexion on acute stress responses in ridden dressage horses. Physiol. Behav. 2014, 128, 39–45. [Google Scholar] [CrossRef] [PubMed]
Variable | Pelvic Circles | Balance on Ball | Riding Quality and Harmony | Standing Weight Difference | Seated Weight Difference |
---|---|---|---|---|---|
Pelvic roll | 0.770 < 0.0001 | −0.431 0.0574 | 0.485 0.0302 | −0.445 0.0485 | −0.110 0.639 |
Pelvic circles | −0.305 0.187 | 0.357 0.119 | −0.309 0.180 | 0.061 0.792 | |
Balance on ball | −0.380 0.0960 | 0.365 0.111 | 0.135 0.564 | ||
Riding quality and harmony | −0.408 0.0731 | 0.218 0.350 | |||
Standing weight difference | 0.510 0.0216 |
Variables | Pelvic Roll | p Value | ||
---|---|---|---|---|
Group 1 | Group 2 | Group 3 | ||
Heart rate (beats/min) | 96.33 a (2.79) | 106.95 a,b (3.04) | 112.10 b (2.50) | 0.002 |
Cortisol (ng/g) | 1.12 (0.23) | 1.36 (0.24) | 1.18 (0.20) | 0.772 |
Log conflict behaviors (number) | 1.01 a,b (0.24) | 1.41 b (0.24) | 0.52 a (0.21) | 0.04 |
Variables | Pelvic Circling | p Value | ||
---|---|---|---|---|
Group 1 | Group 2 | Group 3 | ||
Heart rate (beats/min) | 100.06 (3.02) | 109.48 (3.15) | 110.50 (4.13) | 0.068 |
Log cortisol (ng/g) | −0.03 (0.05) | 0.10 (0.05) | 0.01 (0.07) | 0.203 |
Log conflict behaviors (number) | 1.34 (0.22) | 0.72 (0.22) | 0.53 (0.31) | 0.068 |
Variables | Balance on Ball | p Value | ||
---|---|---|---|---|
Group 1 | Group 2 | Group 3 | ||
Heart rate (beats/min) | 111.52 a (3.03) | 108.37 a,b (3.66) | 99.34 b (2.82) | 0.023 |
Log cortisol (ng/g) | 0.10 (0.05) | 0.04 (0.07) | −0.03 (0.05) | 0.203 |
Log conflict behaviors (number) | 21.57 (16.41) | 12.53 (19.41) | 39.58 (15.35) | 0.526 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uldahl, M.; Christensen, J.W.; Clayton, H.M. Relationships between the Rider’s Pelvic Mobility and Balance on a Gymnastic Ball with Equestrian Skills and Effects on Horse Welfare. Animals 2021, 11, 453. https://doi.org/10.3390/ani11020453
Uldahl M, Christensen JW, Clayton HM. Relationships between the Rider’s Pelvic Mobility and Balance on a Gymnastic Ball with Equestrian Skills and Effects on Horse Welfare. Animals. 2021; 11(2):453. https://doi.org/10.3390/ani11020453
Chicago/Turabian StyleUldahl, Mette, Janne W. Christensen, and Hilary M. Clayton. 2021. "Relationships between the Rider’s Pelvic Mobility and Balance on a Gymnastic Ball with Equestrian Skills and Effects on Horse Welfare" Animals 11, no. 2: 453. https://doi.org/10.3390/ani11020453