Activity-Integrated Hidden Markov Model to Predict Calving Time
Abstract
Simple Summary
Abstract
1. Introduction
2. Proposed Dairy Cow Calving Time Prediction
2.1. Activity Observation
2.2. Data Summarization
2.3. Integrated Hidden Markov Model for Calving Time Prediction
- If the observed value for posture changes is less than the sample mean (μ) then the activity is at a low level, and denoted by L.
- If the observed value for posture changes lies between (μ) and (μ +σ) then the activity is at a medium level, and denoted by M.
- If the observed value for posture changes is greater than (μ +σ) then the activity is at a high level, and denoted by H.
- where a11 = transition probability from non-calving state to non-calving state,
- a12 = transition probability from non-calving state to calving state,
- a21 = transition probability from calving state to non-calving state,
- a22 = transition probability from calving state to calving state.
- where, Π1 = probability of non-calving,
- Π2 = probability of calving
2.4. Methodology Implementation Procedure
- L: n < µ,
- M: µ < n < µ + σ,
- H: n > µ + σ
3. Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mee, J.F. Why Do So Many Calves Die on Modern Dairy Farms and What Can We Do about Calf Welfare in the Future? Animal 2013, 3, 1036–1057. [Google Scholar] [CrossRef] [PubMed]
- Streyl, D.; Sauter-Louis, C.; Braunert, A.; Lange, D.; Weber, F.; Zerbe, H. Establishment of a standard operating procedure for predicting the time of calving in cattle. J. Vet. Sci. 2011, 12, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Mee, J.F.; Berry, D.; Cromie, A. Risk factors for calving assistance and dystocia in pasture-based Holstein–Friesian heifers and cows in Ireland. Vet. J. 2011, 187, 189–194. [Google Scholar] [CrossRef] [PubMed]
- Jensen, M.B. Behavior around the time of calving in dairy cows. Appl. Anim. Behav. Sci. 2012, 139, 195–202. [Google Scholar] [CrossRef]
- Mee, J.; English, L. Prediction of Onset of Calving from Tail Elevation—Preliminary Evaluation of a Novel Biosensor; Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy Co.: Cork, Ireland, July 2019; pp. 156–157. [Google Scholar]
- Maltz, E.; Antler, A. A practical way to detect approaching calving of the dairy cow by a behaviour sensor. In Proceedings Precision Livestock Farming; Wageningen Academic Publishers: Skiathos, Greece, 2007; pp. 141–146. [Google Scholar]
- Borchers, M.R.; Chang, Y.M.; Proudfoot, K.L.; Wadsworth, B.A.; Stone, A.E.; Bewley, J.M. Machine-learning-based calving prediction from activity, lying, and ruminating behaviors in dairy cattle. J. Dairy Sci. 2017, 100, 5664–5674. [Google Scholar] [CrossRef]
- Fadul, M.; Bogdahn, C.; Alsaaod, M.; Hüsler, J.; Starke, A.; Steiner, A.; Hirsbrunner, G. Prediction of calving time in dairy cattle. Anim. Reprod. Sci. 2017, 187, 37–46. [Google Scholar] [CrossRef]
- Lammoglia, M.A.; Bellows, R.A.; Short, R.E.; Bellows, S.E.; Bighorn, E.G.; Stevenson, J.S.; Randel, R.D. Body temperature and endocrine interactions before and after calving in beef cows. J. Anim. Sci. 1997, 75, 2526–2534. [Google Scholar] [CrossRef]
- Miedema, H.M.; Cockram, M.S.; Dwyer, C.M.; Macrae, A.I. Changes in the behavior of dairy cows during the 24 h before normal calving compared with behavior during late pregnancy. Appl. Anim. Behav. Sci. 2011, 131, 8–14. [Google Scholar] [CrossRef]
- Ouellet, V.; Vasseur, E.; Heuwieser, W.; Burfeind, O.; Maldague, X.; Charbonneau, É. Evaluation of calving indicators measured by automated monitoring devices to predict the onset of calving in Holstein dairy cows. J. Dairy Sci. 2016, 99, 1539–1548. [Google Scholar] [CrossRef]
- Higaki, S.; Koyama, K.; Sasaki, Y.; Abe, K.; Honkawa, K.; Horii, Y.; Minamino, T.; Mikurino, Y.; Okada, H.; Miwakeichi, F.; et al. Technical note: Calving prediction in dairy cattle based on continuous measurements of ventral tail base skin temperature using supervised machine learning. J. Dairy Sci. 2020, 103, 8535–8540. [Google Scholar] [CrossRef]
- Saint-Dizier, M.; Chastant-Maillard, S. Methods and on-farm devices to predict calving time in cattle. Vet. J. 2015, 205, 349–356. [Google Scholar] [CrossRef] [PubMed]
- Rutten, C.J.; Kamphuis, C.; Hogeveen, H.; Huijps, K.; Nielen, M.; Steeneveld, W. Sensor data on cow activity, rumination, and ear temperature improve prediction of the start of calving in dairy cows. Comput. Electron. Agric. 2017, 132, 108–118. [Google Scholar] [CrossRef]
- Proudfoot, K.; Jensen, M.; Weary, D.; Von Keyserlingk, M.A. Dairy cows seek isolation at calving and when ill. J. Dairy Sci. 2014, 97, 2731–2739. [Google Scholar] [CrossRef] [PubMed]
- Schirmann, K.; Chapinal, N.; Weary, D.; Vickers, L.; Von Keyserlingk, M. Short communication: Rumination and feeding behavior before and after calving in dairy cows. J. Dairy Sci. 2013, 96, 7088–7092. [Google Scholar] [CrossRef] [PubMed]
- Huzzey, J.; Von Keyserlingk, M.; Weary, D. Changes in Feeding, Drinking, and Standing Behavior of Dairy Cows During the Transition Period. J. Dairy Sci. 2005, 88, 2454–2461. [Google Scholar] [CrossRef]
- Rice, C.A.; Eberhart, N.L.; Krawczel, P.D. Prepartum lying behavior of holstein dairy cows housed on pasture through parturition. Animals 2017, 7, 32. [Google Scholar] [CrossRef] [PubMed]
- Mee, J. Managing the dairy cow at calving time. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 521–546. [Google Scholar] [CrossRef]
- Cangar, O.; Leroy, T.; Guarino, M.; Vranken, E.; Fallon, R.; Lenehan, J.; Mee, J.; Berckmans, D. Automatic real-time monitoring of locomotion and posture behavior of pregnant cows prior to calving using online image analysis. Comput. Electron. Agric. 2008, 64, 53–60. [Google Scholar] [CrossRef]
- Ferreira, A.G.; Henrique, D.S.; Vieira, R.A.; Maeda, E.M.; Valotto, A.A. Fitting mathematical models to lactation curves from holstein cows in the southwestern region of the state of Parana, Brazil. Anais Acad. Bras. Ciências 2015, 87, 503–517. [Google Scholar] [CrossRef]
- Burfeind, O.; Suthar, V.; Voigtsberger, R.; Bonk, S.; Heuwieser, W. Validity of prepartum changes in vaginal and rectal temperature to predict calving in dairy cows. J. Dairy Sci. 2011, 94, 5053–5061. [Google Scholar] [CrossRef]
- Fenlon, C.; O’Grady, L.; Mee, J.F.; Butler, S.T.; Doherty, M.L.; Dunnion, J. A comparison of 4 predictive models of calving assistance and difficulty in dairy heifers and cows. J. Dairy Sci. 2017, 100, 9746–9758. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, G.; Leonardi, S.; Tangorra, F.M.; Calcante, A.; Beretta, E.; Pofcher, E.; Lazzari, M. Evaluation of an electronic sys-tem for automatic calving detection on a dairy farm. Anim. Product. Sci. 2013, 53, 1112–1114. [Google Scholar] [CrossRef]
- Sumi, K.; Zin, T.T.; Kobayashi, I.; Horii, Y. A Study on Cow Monitoring System for Calving Process. In Proceedings of the IEEE 6th Global Conference on Consumer Electronics (GCCE 2017), Nagoya, Japan, 24–27 October 2017; pp. 379–380. [Google Scholar] [CrossRef]
- Sumi, K.; Zin, T.T.; Kobayashi, I.; Horii, Y. Framework of Cow Calving Monitoring System Using a Single Depth Camera. In Proceedings of the 2018 International Conference on Image and Vision Computing New Zealand (IVCNZ), Auckland, New Zealand, 19–21 November 2018. [Google Scholar] [CrossRef]
- Zin, T.T.; Mar, C.C.; Sumi, K. Background Modelling Using Temporal Average Filter and Running Gaussian Average. In Proceedings of the International Workshop on Frontiers of Computer Vision (IW-FCV), Ibusuki, Japan, 20–22 February 2020. [Google Scholar]
- Zin, T.T.; Maung, S.Z.M.; Tin, P.; Horii, Y. Feature Detection and Classification of Cow Motion for Predicting Calving time. In Proceedings of the 2020 IEEE 9th Global Conference on Consumer Electronics (GCCE), Kobe, Japan, 13–16 October 2020; pp. 305–306. [Google Scholar]
ID | Recording Started Date and Time | Calving Date and Time | ||
---|---|---|---|---|
(mm/dd/yy) | (h/min/s) | (mm/dd/yy) | (h/min/s) | |
1 | 11.29.2017 | (00:00:00) | 12.02.2017 | (12:32:50) |
2 | 11.26.2017 | (17:10:00) | 11.29.2017 | (17:10:00) |
3 | 11.26.2017 | (19:35:00) | 11.29.2017 | (19:35:00) |
4 | 12.04.2017 | (10:05:00) | 12.07.2017 | (10:06:35) |
5 | 11.30.2017 | (15:10:00) | 12.03.2017 | (15:10:00) |
6 | 11.30.2017 | (21:15:00) | 12.03.2017 | (21:15:00) |
7 | 12.04.2017 | (10:10:00) | 12.07.2017 | (10:13:00) |
8 | 12.04.2017 | (16:05:00) | 12.07.2017 | (16:09:40) |
9 | 12.04.2017 | (14:00:00) | 12.06.2017 | (20:10:00) |
10 | 12.11.2017 | (06:00:00) | 12.14.2017 | (05:58:50) |
11 | 12.06.2017 | (10:00:00) | 12.08.2017 | (03:25:00) |
12 | 12.12.2017 | (04:50:00) | 12.15.2017 | (04:53:09) |
13 | 12.07.2017 | (17:20:00) | 12.10.2017 | (17:20:00) |
14 | 12.13.2017 | (21:00:00) | 12.16.2017 | (21:03:29) |
15 | 12.16.2017 | (21:55:00) | 12.19.2017 | (21:55:00) |
16 | 12.14.2017 | (17:15:00) | 12.17.2017 | (17:19:20) |
17 | 12.17.2017 | (06:10:00) | 12.20.2017 | (06:10:00) |
18 | 12.14.2017 | (16:15:00) | 12.17.2017 | (16:17:12) |
19 | 12.17.2017 | (09:50:50) | 12.20.2017 | (09:50:00) |
20 | 12.15.2017 | (01:25:00) | 12.18.2017 | (01:25:21) |
21 | 12.17.2017 | (12:15:00) | 12.20.2017 | (12:15:00) |
22 | 12.09.2017 | (17:15:00) | 12.12.2017 | (17:15:00) |
23 | 12.01.2017 | (10:25:00) | 12.04.2017 | (10:25:18) |
24 | 12.03.2017 | (02:40:00) | 12.06.2017 | (02:41:22) |
25 | 11.29.2017 | (00:30:00) | 12.02.2017 | (00:30:00) |
Variable Name | Unit Measure | Descriptions |
---|---|---|
Lying Time | Minute/Interval | The time in minutes that a cow has spent lying with in a predefined interval |
Standing Time | Minute/Interval | The time in minutes that a cow has spent standing with in a predefined interval |
Lying Bouts | Number/Interval | The number of transitions from standing to lying during the interval |
Standing Bouts | Number/Interval | The number of transitions from lying to standing during the interval |
Cow ID 1 | ||||||||
---|---|---|---|---|---|---|---|---|
Time | Posture Changes | Activity Level | Time | Posture Change | Activity Level | Time | Posture Change | Activity Level |
−72 | 2 | Mid | −48 | 2 | Mid | −24 | 3 | Mid |
−71 | 2 | Mid | −47 | 4 | High | −23 | 3 | Mid |
−70 | 5 | High | −46 | 2 | Mid | −22 | 4 | High |
−69 | 6 | High | −45 | 3 | Mid | −21 | 2 | Mid |
−68 | 1 | Low | −44 | 1 | Low | −20 | 4 | High |
−67 | 2 | Mid | −43 | 2 | Mid | −19 | 2 | Mid |
−66 | 1 | Low | −42 | 1 | Low | −18 | 2 | Mid |
−65 | 0 | Low | −41 | 0 | Low | −17 | 0 | Low |
−64 | 0 | Low | −40 | 1 | Low | −16 | 0 | Low |
−63 | 2 | Mid | −39 | 2 | Mid | −15 | 0 | Low |
−62 | 2 | Mid | −38 | 2 | Mid | −14 | 0 | Low |
−61 | 2 | Mid | −37 | 1 | Low | −13 | 4 | High |
−60 | 2 | Mid | −36 | 4 | High | −12 | 2 | Mid |
−59 | 1 | Low | −35 | 1 | Low | −11 | 0 | Low |
−58 | 2 | Mid | −34 | 2 | Mid | −10 | 1 | Low |
−57 | 2 | Mid | −33 | 1 | Low | −9 | 1 | Low |
−56 | 1 | Low | −32 | 0 | Low | −8 | 2 | Mid |
−55 | 0 | Low | −31 | 0 | Low | −7 | 2 | Mid |
−54 | 0 | Low | −30 | 0 | Low | −6 | 2 | Mid |
−53 | 0 | Low | −29 | 1 | Low | −5 | 6 | High |
−52 | 1 | Low | −28 | 4 | High | −4 | 2 | Mid |
−51 | 1 | Low | −27 | 2 | Mid | −3 | 2 | Mid |
−50 | 2 | Mid | −26 | 3 | Mid | −2 | 5 | High |
−49 | 1 | Low | −25 | 0 | Low | −1 | 13 | High |
Sample Mean µ of posture change frequency | 1.931 |
Standard Deviation σ of posture change frequency | 1.967 |
(µ + σ) | 3.897 |
(µ + 2σ) | 5.864 |
Actual Time | 3 h Interval 1–24 | Activity | States | Actual Time | 3 h Interval 1–24 | Activity | States |
---|---|---|---|---|---|---|---|
−72 | −24 | L | NC | −36 | −12 | L | NC |
−69 | −23 | L | NC | −33 | −11 | L | NC |
−66 | −22 | L | NC | −30 | −10 | L | NC |
−63 | −21 | L | NC | −27 | −9 | L | NC |
−60 | −20 | L | NC | −24 | −8 | M | NC |
−57 | −19 | L | NC | −21 | −7 | L | NC |
−54 | −18 | L | NC | −18 | −6 | L | NC |
−51 | −17 | L | NC | −15 | −5 | L | NC |
−48 | −16 | L | NC | −12 | −4 | L | NC |
−45 | −15 | L | NC | −9 | −3 | L | NC |
−42 | −14 | L | NC | −6 | −2 | M | NC |
−39 | −13 | L | NC | −3 | −1 | H | C |
No. | Sensitivity (%) | Precision (%) |
---|---|---|
1 | 91.30 | 95.45 |
2 | 86.96 | 95.24 |
3 | 90.63 | 87.88 |
4 | 95.83 | 100 |
5 | 91.67 | 100 |
6 | 90.48 | 86.36 |
7 | 91.67 | 100 |
8 | 91.67 | 100 |
9 | 85 | 80.95 |
10 | 95.24 | 86.96 |
Average | 91.05 | 93.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sumi, K.; Maw, S.Z.; Zin, T.T.; Tin, P.; Kobayashi, I.; Horii, Y. Activity-Integrated Hidden Markov Model to Predict Calving Time. Animals 2021, 11, 385. https://doi.org/10.3390/ani11020385
Sumi K, Maw SZ, Zin TT, Tin P, Kobayashi I, Horii Y. Activity-Integrated Hidden Markov Model to Predict Calving Time. Animals. 2021; 11(2):385. https://doi.org/10.3390/ani11020385
Chicago/Turabian StyleSumi, Kosuke, Swe Zar Maw, Thi Thi Zin, Pyke Tin, Ikuo Kobayashi, and Yoichiro Horii. 2021. "Activity-Integrated Hidden Markov Model to Predict Calving Time" Animals 11, no. 2: 385. https://doi.org/10.3390/ani11020385
APA StyleSumi, K., Maw, S. Z., Zin, T. T., Tin, P., Kobayashi, I., & Horii, Y. (2021). Activity-Integrated Hidden Markov Model to Predict Calving Time. Animals, 11(2), 385. https://doi.org/10.3390/ani11020385