Prediction of Lactational Milk Yield of Cows Based on Data Recorded by AMS during the Periparturient Period
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- Data on rumination time per day (min) during the periparturient period (14 days before and 28 days after calving)
- Data on milking parameters per day during 1–28 days of lactation:
- (a)
- quantity of programmed concentrate feed (kg/day)
- (b)
- amount of concentrate intake (kg/day)
- (c)
- number of milkings/day
- (d)
- number of refusal milkings/day
- (e)
- AMS box time (s/visit) = total time spent by cow in the AMS box per day/number of visits per day
- (f)
- milking time (s/visit) = total milking time per day/number of visits
- (g)
- time of colostrum/milk flow from the udder quarter (s/visit) = total time of colostrum/milk flow per day from individual quarters/(number of quarters × number of milkings per day)
- (h)
- dead milking time for udder quarters (s/visit) = total dead milking time per day in different quarters/number of quarters × number of milkings per day
- Data on colostrum/milk traits per day during 1–27 days of lactation
- (a)
- electrical conductivity of colostrum/milk (μS/cm) = total electrical conductivity from
- (b)
- colostrum/milk temperature (°C) = total colostrum/milk temperatures in all milkings per day/number of milkings
- (c)
- colostrum/milking speed (kg/min) = total colostrum/milking speed in all milkings per day/number of milkings
- (d)
- yield of colostrum/milk per day (kg) = total from all milkings
- (e)
- fat content (%) = mean from 24-h visits
- (f)
- protein content (%) = mean from 24-h visits
- (g)
- different quarters per day/number of quarters × number of milkings
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barkema, H.W.; von Keyserlingk, M.A.G.; Kastelic, J.P.; Lam, T.J.G.M.; Luby, C.; Roy, J.-P.; LeBlanc, S.J.; Keefe, G.P.; Kelton, D.F. Invited review: Changes in the dairy industry affecting dairy cattle health and welfare. J. Dairy Sci. 2015, 98, 7426–7445. [Google Scholar] [CrossRef] [Green Version]
- Egger-Danner, C.; Cole, J.B.; Pryce, J.E.; Gengler, N.; Heringstad, B.; Bradley, A.; Stock, K.F. Invited review: Overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal 2014, 9, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Carlström, C.; Strandberg, E.; Johansson, K.; Pettersson, G.; Stålhammar, H.; Philipsson, J. Genetic evaluation of in-line recorded milkability from milking parlors and automatic milking systems. J. Dairy Sci. 2014, 97, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Antanaitis, R.; Žilaitis, V.; Juozaitiene, V.; Noreika, A.; Rutkauskas, A. Evaluation of rumination time, subsequent yield, and milk trait changes dependent on the period of lactation and reproductive status of dairy cows. Pol. J. Vet. Sci. 2018, 21, 567–572. [Google Scholar] [CrossRef] [PubMed]
- Soriani, N.; Panella, G.; Calamari, L. Rumination time during the summer season and its relationships with metabolic conditions and milk production. J. Dairy Sci. 2013, 96, 5082–5094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, A.E.; Jones, B.W.; Becker, C.A.; Bewley, J.M. Influence of breed, milk yield, and temperature-humidity index on dairy cow lying time, neck activity, reticulorumen temperature, and rumination behavior. J. Dairy Sci. 2017, 100, 2395–2403. [Google Scholar] [CrossRef] [Green Version]
- Calamari, L.; Soriani, N.; Panella, G.; Petrera, F.; Minuti, A.; Trevisi, E. Rumination time around calving: An early signal to detect cows at greater risk of disease. J. Dairy Sci. 2014, 97, 3635–3647. [Google Scholar] [CrossRef] [PubMed]
- Liboreiro, D.N.; Machado, K.S.; Silva, P.R.B.; Maturana, M.M.; Nishimura, T.K.; Brandão, A.P.; Endres, M.I.; Chebel, R.C. Characterization of peripartum rumination and activity of cows diagnosed with metabolic and uterine diseases. J. Dairy Sci. 2015, 98, 6812–6827. [Google Scholar] [CrossRef] [Green Version]
- Wethal, K.B.; Heringstad, B. Genetic analyses of novel temperament and milkability traits in Norwegian Red cattle based on data from automatic milking systems. J. Dairy Sci. 2019, 102, 8221–8233. [Google Scholar] [CrossRef]
- Sitkowska, B.; Piwczyński, D.; Aerts, J.; Kolenda, M.; Özkaya, S. Detection of high levels of somatic cells in milk on farms equipped with an automatic milking system by decision trees technique. Turkish J. Vet. Anim. Sci. 2017, 41, 532–540. [Google Scholar] [CrossRef]
- Piwczyński, D.; Sitkowska, B.; Kolenda, M.; Brzozowski, M.; Aerts, J.; Schork, P.M. Forecasting the milk yield of cows on farms equipped with automatic milking system with the use of decision trees. Anim. Sci. J. 2020, 91, e13414. [Google Scholar] [CrossRef] [PubMed]
- Piwczyński, D.; Nogalski, Z.; Sitkowska, B. Statistical modeling of calving ease and stillbirths in dairy cattle using the classification tree technique. Livest. Sci. 2013, 154, 19–27. [Google Scholar] [CrossRef]
- Siatka, K.; Sawa, A.; Piwczyński, D.; Bogucki, M.; Krężel-Czopek, S. Factors affecting first insemination success in Polish Holstein-Fresian cows. Anim. Sci. Pap. Reports 2018, 36, 275–285. [Google Scholar]
- Ghiasi, H.; Piwczyński, D.; Khaldari, M.; Kolenda, M. Application of classification trees in determining the impact of phenotypic factors on conception to first service in Holstein cattle. Anim. Prod. Sci. 2016, 56, 1061–1069. [Google Scholar] [CrossRef]
- Bisinotto, R.S.; Greco, L.F.; Ribeiro, E.S.; Martinez, N.; Lima, F.S.; Staples, C.R.; Thatcher, W.W.; Santos, J.E.P. Influences of nutrition and metabolism on fertility of dairy cows. Anim. Reprod. 2012, 9, 260–272. [Google Scholar]
- SAS Institute Inc. SAS Institute Inc.: SAS/STAT® 9.4 User’s Guide Cary; SAS Institute Inc.: Cary, NC, USA, 2014. [Google Scholar]
- Schirmann, K.; Chapinal, N.; Weary, D.M.; Vickers, L.; Von Keyserlingk, M.A.G. Short communication: Rumination and feeding behavior before and after calving in dairy cows. J. Dairy Sci. 2013, 96, 7088–7092. [Google Scholar] [CrossRef]
- Schirmann, K.; Chapinal, N.; Weary, D.M.; Heuwieser, W.; von Keyserlingk, M.A.G. Short-term effects of regrouping on behavior of prepartum dairy cows. J. Dairy Sci. 2011, 94, 2312–2319. [Google Scholar] [CrossRef]
- Hovinen, M.; Pyörälä, S. Invited review: Udder health of dairy cows in automatic milking. J. Dairy Sci. 2011, 94, 547–562. [Google Scholar] [CrossRef]
- Ontsouka, C.E.; Bruckmaier, R.M.; Blum, J.W. Fractionized milk composition during removal of colostrum and mature milk. J. Dairy Sci. 2003, 86, 2005–2011. [Google Scholar] [CrossRef] [Green Version]
- King, M.T.M.; LeBlanc, S.J.; Pajor, E.A.; Wright, T.C.; DeVries, T.J. Behavior and productivity of cows milked in automated systems before diagnosis of health disorders in early lactation. J. Dairy Sci. 2018, 101, 4343–4356. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, E.I.; Asselstine, V.H.; LeBlanc, S.J.; Duffield, T.F.; DeVries, T.J. Association of rumination time and health status with milk yield and composition in early-lactation dairy cows. J. Dairy Sci. 2018, 101, 462–471. [Google Scholar] [CrossRef] [PubMed]
- Sitkowska, B.; Piwczyński, D.; Brzozowski, M.; Aerts, J. Quarter milking in primiparous and multiparous cows*. Sci. Ann. Polish Soc. Anim. Prod. 2016, 12, 35–48. [Google Scholar] [CrossRef]
- Unal, H.; Kuraloglu, H.; Koyuncu, M.; Alibas, K. Effect of cow traffic type on automatic milking system performance in dairy farms. J. Anim. Plant Sci. 2017, 27, 1454–1463. [Google Scholar]
- Bogucki, M.; Sawa, A.; Kuropatwińska, I. Association of automatic milking systems milking frequency in primiparous and multiparous cows with their yield and milkability. Acta Agric. Scand. A Anim. Sci. 2017, 67, 66–70. [Google Scholar] [CrossRef]
- Piwczyński, D.; Gondek, J.; Sitkowska, B.; Kolenda, M. Comparison of results coming from automatic milking system in selected countries in Europe and U.S. J. Cent. Eur. Agric. 2020, 21, 187–196. [Google Scholar] [CrossRef]
- Piwczyski, D.; Sitkowska, B.; Aerts, J.; Kolenda, M. The daily distribution of milkings of cows in farms equipped with the automatic milking system. Acta Sci. Pol. Zootech. 2013, 12, 61–70. [Google Scholar]
- Edwards, J.P.; Jago, J.G.; Lopez-Villalobos, N. Analysis of milking characteristics in New Zealand dairy cows. J. Dairy Sci. 2014, 97, 259–269. [Google Scholar] [CrossRef] [Green Version]
- Gáde, S.; Stamer, E.; Bennewitz, J.; Junge, W.; Kalm, E. Genetic parameters for serial, automatically recorded milkability and its relationship to udder health in dairy cattle. Animal 2007, 1, 787–796. [Google Scholar] [CrossRef] [Green Version]
- Carlström, C.; Pettersson, G.; Johansson, K.; Strandberg, E.; Stålhammar, H.; Philipsson, J. Feasibility of using automatic milking system data from commercial herds for genetic analysis of milkability. J. Dairy Sci. 2013, 96, 5324–5332. [Google Scholar] [CrossRef] [Green Version]
- Guliński, P.; Kłopotowska, A. An attempt to develop a method for determining the typical chemical composition of the milk of Polish Holstein-Friesian cows–a proposal. Rocz. Nauk. Pol. Tow. Zootech. 2019, 15, 9–21. [Google Scholar] [CrossRef]
- Boas, D.F.V.; Filho, A.E.V.; Pereira, M.A.; Junior, L.C.R.; Faro, L. El Association between electrical conductivity and milk production traits in dairy Gyr cows. J. Appl. Anim. Res. 2017, 45, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Neamț, R.; Ilie, D.E.; Gavojdian, D.; Acatincăi, S.; Florin, N.; Cziszter, L. Influence of Electrical Conductivity, Days in Milk and Parity on Milk Production and Chemical Composition. Anim. Sci. Biotechnol. 2016, 49, 128–136. [Google Scholar]
- Sandrucci, A.; Tamburini, A.; Bava, L.; Zucali, M. Factors Affecting Milk Flow Traits in Dairy Cows: Results of a Field Study. J. Dairy Sci. 2007, 90, 1159–1167. [Google Scholar] [CrossRef]
- Piwczyński, D.; Brzozowski, M.; Sitkowska, B. The impact of the installation of an automatic milking system on female fertility traits in Holstein-Friesian cows. Livest. Sci. 2020, 240. [Google Scholar] [CrossRef]
- Hogeveen, H.; Ouweltjes, W.; De Koning, C.J.A.M.; Stelwagen, K. Milking interval, milk production and milk flow-rate in an automatic milking system. Livest. Prod. Sci. 2001, 72, 157–167. [Google Scholar] [CrossRef]
- Sorensen, A.; Muir, D.D.; Knight, C.H. Extended lactation in dairy cows: Effects of milking frequency, calving season and nutrition on lactation persistency and milk quality. J. Dairy Res. 2008, 75, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Lyons, N.A.; Kerrisk, K.L.; Garcia, S.C. Milking frequency management in pasture-based automatic milking systems: A review. Livest. Sci. 2014, 159, 102–116. [Google Scholar] [CrossRef]
- Castro, A.; Pereira, J.M.; Amiama, C.; Bueno, J. Estimating efficiency in automatic milking systems. J. Dairy Sci. 2012, 95, 929–936. [Google Scholar] [CrossRef]
- Szymik, B.; Topolski, P.; Jagusiak, W. Cechy zdolności udojowej–cechy funkcjonalne istotne w nowoczesnych systemach doju. Wiadomości Zootech. 2018, 3, 30–35. [Google Scholar]
- Tremblay, M.; Hess, J.P.; Christenson, B.M.; McIntyre, K.K.; Smink, B.; van der Kamp, A.J.; de Jong, L.G.; Döpfer, D. Factors associated with increased milk production for automatic milking systems. J. Dairy Sci. 2016, 99, 3824–3837. [Google Scholar] [CrossRef]
- Sitkowska, B.; Piwczynski, D.; Aerts, J.; Waskowicz, M. Changes in milking parameters with robotic milking. Arch. Tierzucht 2015, 58, 137–143. [Google Scholar] [CrossRef] [Green Version]
Herd | Number of Milking Robots | Number of Cows in Barn | Technological Groups | Number of Cows/Robot | Feeding System | Housing System |
---|---|---|---|---|---|---|
A | 1 | 65 | In lactation, dry period | 52–55 | Partial Mixed Ration | free stalls, grates |
B | 3 | 225 | In lactation, dry period | 65–68 | Partial Mixed Ration | free stalls, grates |
C | 2 | 150 | In lactation, dry period | 64–67 | Partial Mixed Ration | free stalls, grates |
Trait | N | SD | CV (%) | |
---|---|---|---|---|
Rumination time (min/day) | 2665 | 326.76 | 125.77 | 38.49 |
Quantity of programmed concentrate feed (kg/day) | 2675 | 3.26 | 0.65 | 19.86 |
Amount of concentrate intake (kg/day) | 2669 | 2.56 | 1.03 | 40.16 |
Number of milkings/day | 2603 | 1.82 | 0.60 | 33.21 |
Number of refusal milkings/day | 2603 | 1.15 | 2.89 | 251.79 |
Automatic milking system (AMS) box time (s/visit) | 2626 | 419.37 | 138.19 | 32.95 |
Milking time (s/visit) | 2626 | 322.04 | 135.24 | 42.00 |
Time of colostrum flow from the udder quarter (s/visit) | 2626 | 222.24 | 99.27 | 44.67 |
Dead milking time for udder quarters (s/visit) | 2626 | 13.48 | 6.28 | 46.61 |
Colostrum milking speed (kg/min) | 2613 | 2.78 | 1.14 | 40.95 |
Eectrical conductivity of colostrum (μS/cm) | 2613 | 69.35 | 5.45 | 7.86 |
Colostrum temperature (°C) | 2613 | 38.96 | 1.09 | 2.79 |
Colostrum yield (kg/day) | 2591 | 17.91 | 9.62 | 53.75 |
Fat content (%) | 2170 | 4.89 | 1.60 | 32.77 |
Protein content (%) | 2170 | 4.85 | 0.46 | 9.59 |
Fat/protein ratio | 2170 | 1.02 | 0.33 | 32.52 |
Trait | N | SD | CV (%) | |
---|---|---|---|---|
Rumination time (min/day) | 15,390 | 444.90 | 81.00 | 18.4 |
Quantity of programmed concentrate feed (kg/day) | 15,466 | 6.19 | 1.68 | 27.1 |
Amount of concentrate intake (kg/day) | 15,408 | 5.56 | 1.77 | 31.9 |
Number of milkings/day | 15,285 | 2.78 | 0.85 | 30.52 |
Number of refusal milkings/day | 15,336 | 1.70 | 3.21 | 188.4 |
AMS box time (s/visit) | 15,285 | 446.43 | 143.80 | 32.2 |
Milking time (s/visit) | 15,285 | 351.97 | 144.33 | 41.0 |
Time of milk flow from the udder quarter (s/visit) | 15,285 | 250.41 | 106.14 | 42.4 |
Dead milking time for udder quarters (s/visit) | 15,285 | 14.13 | 6.81 | 48.2 |
Milking speed (kg/min) | 15,267 | 2.81 | 1.07 | 38.2 |
Electrical conductivity of milk (μS/cm) | 15267 | 68.77 | 4.93 | 7.2 |
Milk temperature °C | 15,267 | 39.03 | 0.75 | 1.92 |
Milk yield (kg/day) | 15,359 | 35.23 | 11.51 | 32.7 |
Fat content (%) | 13,295 | 4.00 | 0.76 | 18.9 |
Protein content (%) | 13,295 | 3.54 | 0.33 | 9.4 |
Fat/protein ratio | 13,295 | 1.14 | 0.23 | 20.1 |
Days of Periparturient Period | Rumination Time (min/day) | Electrical Conductivity of Colostrum/Milk (μS/cm) | Colostrum /Milk Temperature (°C) | Amount of Concentrate Intake (kg/day) | Number of Milkings /Day | Milking Time (s/visit) | Colostrum /Milking Speed (kg/min) |
---|---|---|---|---|---|---|---|
–14 to –8 | 0.126 xx | ||||||
–7 to –1 | 0.111 x | ||||||
1 to 4 | 0.097 x | −0.060 | 0.002 | 0.109 x | 0.257 xx | 0.116 xx | 0.110 x |
5 to 7 | 0.249 xx | −0.078 | −0.003 | 0.101 x | 0.279 xx | 0.135 xx | 0.089 x |
8 to 14 | 0.312 xx | −0.083 | −0.021 | 0.136 xx | 0.301 xx | 0.155 xx | 0.082 |
15 to 21 | 0.307 xx | −0.081 | −0.010 | 0.150 xx | 0.280 xx | 0.168 xx | 0.100 x |
22 to 28 | 0.310 xx | −0.086 x | −0.015 | 0.197 xx | 0.252 xx | 0.174 xx | 0.107 x |
Variable | Number of Devisions | Importance |
---|---|---|
Survival to next calving | 1 | 1 |
Milking time during 22–28 days of lactation (s/visit) | 1 | 0.7782 |
Number of milkings/day during 22–28 days of lactation (no./day) | 1 | 0.4793 |
Milking speed during 8–14 days of lactation (kg/min) | 1 | 0.3720 |
Milking time during 5–7 days of lactation (s/visit) | 1 | 0.2717 |
Protein content during 1–4 days of lactation (%) | 1 | 0.2183 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kliś, P.; Piwczyński, D.; Sawa, A.; Sitkowska, B. Prediction of Lactational Milk Yield of Cows Based on Data Recorded by AMS during the Periparturient Period. Animals 2021, 11, 383. https://doi.org/10.3390/ani11020383
Kliś P, Piwczyński D, Sawa A, Sitkowska B. Prediction of Lactational Milk Yield of Cows Based on Data Recorded by AMS during the Periparturient Period. Animals. 2021; 11(2):383. https://doi.org/10.3390/ani11020383
Chicago/Turabian StyleKliś, Piotr, Dariusz Piwczyński, Anna Sawa, and Beata Sitkowska. 2021. "Prediction of Lactational Milk Yield of Cows Based on Data Recorded by AMS during the Periparturient Period" Animals 11, no. 2: 383. https://doi.org/10.3390/ani11020383
APA StyleKliś, P., Piwczyński, D., Sawa, A., & Sitkowska, B. (2021). Prediction of Lactational Milk Yield of Cows Based on Data Recorded by AMS during the Periparturient Period. Animals, 11(2), 383. https://doi.org/10.3390/ani11020383