Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Production Company and Farms
2.2. Sampling and Isolation
2.3. Antimicrobial Susceptibility Testing
2.4. Pulsed-Field Gel Electrophoresis (PFGE)
2.5. Statistical Analysis
3. Results
3.1. Distribution of Campylobacter spp. along the Chicken Production Chain
3.2. Antimicrobial Susceptibility
3.3. Pulsed-Field Gel Electrophoresis Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority (EFSA). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EEFSA J. 2020, 18, e06007. [Google Scholar] [CrossRef] [Green Version]
- Young, K.T.; Davis, L.M.; DiRita, V.J. Campylobacter jejuni: Molecular biology and pathogenesis. Nat. Rev. Microbiol. 2007, 5, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Skarp, C.P.A.; Hanninen, M.L.; Rautelini, H.I.K. Campylobacteriosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sahin, O.; Morishita, T.Y.; Zhang, Q. Campylobacter colonization in poultry: Sources of infection and modes of transmission. Anim. Health Res. Rev. 2002, 3, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Callicott, K.A.; Fridriksdottir, V.; Reiersen, J.; Lowman, R.; Bisaillon, J.R.; Gunnarsson, E.; Berndtson, E.; Hiett, K.L.; Needleman, D.S.; Stern, N.J. Lack of evidence for vertical transmission of Campylobacter spp. in chickens. Appl. Environ. Microbiol. 2006, 72, 5794–5798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenquist, H.; Sommer, H.M.; Nielsen, N.L.; Christensen, B.B. The effect of slaughter operations on the contamination of chicken carcasses with thermotolerant Campylobacter. Int. J. Food Microbiol. 2006, 108, 226–232. [Google Scholar] [CrossRef]
- Melero, B.; Juntunen, P.; Hanninen, M.L.; Jaime, I.; Rovira, J. Tracing Campylobacter jejuni strains along the poultry meat production chain from farm to retail by pulsed-field gel electrophoresis, and the antimicrobial resistance of isolates. Food Microbiol. 2012, 32, 124–128. [Google Scholar] [CrossRef]
- Seliwiorstow, T.; Bare, J.; Berkvens, D.; Van Damme, I.; Uyttendaele, M.; De Zutter, L. Identification of risk factors for Campylobacter contamination levels on broiler carcasses during the slaughter process. Int. J. Food Microbiol. 2016, 226, 26–32. [Google Scholar] [CrossRef]
- Roccato, A.; Mancin, M.; Barco, L.; Cibin, V.; Antonello, K.; Cocola, F.; Ricci, A. Usefulness of indicator bacteria as potential marker of Campylobacter contamination in broiler carcasses. Int. J. Food Microbiol. 2018, 276, 63–70. [Google Scholar] [CrossRef]
- Lehtopolku, M.; Nakari, U.M.; Kotilainen, P.; Huovinen, P.; Siitonen, A.; Hakanen, A.J. Antimicrobial susceptibilities of multidrug-resistant Campylobacter jejuni and C. coli strains: In vitro activities of 20 antimicrobial agents. Antimicrob. Agents Chemother. 2010, 54, 1232–1236. [Google Scholar] [CrossRef] [Green Version]
- Animal and Plant Quarantine Agency. Establishment of Antimicrobial Resistance Surveillance System for Livestock, 2018; Ministry of Agriculture, Food and Rural Affairs: Gimcheon and Sejong, Korea, 2019.
- Aarestrup, F.M.; Wegener, H.C. The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in Campylobacter and Escherichia coli. Microbes. Infect. 1999, 1, 639–644. [Google Scholar] [CrossRef]
- Han, K.; Jang, S.S.; Choo, E.; Heu, S.; Ryu, S. Prevalence, genetic diversity, and antibiotic resistance patterns of Campylobacter jejuni from retail raw chickens in Korea. Int. J. Food Microbiol. 2007, 114, 50–59. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.H.; Kim, Y.I.; Choi, J.S.; Park, M.Y.; Nam, H.M.; Jung, S.C.; Kwon, J.W.; Lee, C.H.; Kim, Y.H.; et al. Prevalence and characterization of Campylobacter spp. isolated from domestic and imported poultry meat in Korea, 2004–2008. Foodborne Pathog. Dis. 2010, 7, 1203–1209. [Google Scholar] [CrossRef]
- Wieczorek, K.; Denis, E.; Osek, J. Comparative analysis of antimicrobial resistance and genetic diversity of Campylobacter from broilers slaughtered in Poland. Int. J. Food Microbiol. 2015, 210, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Wurfel, S.F.R.; da Silva, W.P.; de Oliveira, M.G.; Kleinubing, N.R.; Lopes, G.V.; Gandra, E.A.; Dellagostin, O.A. Genetic diversity of Campylobacter jejuni and Campylobacter coli isolated from poultry meat products sold on the retail market in Southern Brazil. Poult. Sci. 2019, 98, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Prachantasena, S.; Charununtakorn, P.; Muangnoicharoen, S.; Hankla, L.; Techawal, N.; Chaveerach, P.; Tuitemwong, P.; Chokesajjawatee, N.; Williams, N.; Humphrey, T.; et al. Distribution and genetic profiles of Campylobacter in commercial broiler production from breeder to slaughter in Thailand. PLoS ONE 2016, 11, e0149585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, J.Y.; Kwon, Y.K.; Wei, B.; Jang, H.K.; Lim, S.K.; Kim, C.H.; Jung, S.C.; Kang, M.S. Epidemiological relationships of Campylobacter jejuni strains isolated from humans and chickens in South Korea. J. Microbiol. 2017, 55, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Cha, S.Y.; Yoon, R.H.; Kang, M.; Roh, J.H.; Seo, H.S.; Lee, J.A.; Jang, H.K. Prevalence and antimicrobial resistance of Campylobacter spp. isolated from retail chicken and duck meat in South Korea. Food Control 2016, 62, 63–68. [Google Scholar] [CrossRef]
- Wei, B.; Cha, S.Y.; Kang, M.; Roh, J.H.; Seo, H.S.; Yoon, R.H.; Jang, H.K. Antimicrobial susceptibility profiles and molecular typing of Campylobacter jejuni and Campylobacter coli isolates from ducks in South Korea. Appl. Environ. Microbiol. 2014, 80, 7604–7610. [Google Scholar] [CrossRef] [Green Version]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated from Animals, 1st ed.; CLSI: Wayne, PA, USA, 2016. [Google Scholar]
- National Antimicrobial Resistance Monitoring System (NARMS). NARMS Retail Meat Annual Report, 2011; Food and Drug Administration: Rockville, MD, USA, 2013.
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5. [Google Scholar] [CrossRef]
- Jacobs-Reitsma, W.F. Campylobacter bacteria in breeder flocks. Avian Dis. 1995, 39, 355–359. [Google Scholar] [CrossRef]
- Ingresa-Capaccioni, S.; Jimenez-Trigos, E.; Marco-Jimenez, F.; Catala, P.; Vega, S.; Marin, C. Campylobacter epidemiology from breeders to their progeny in Eastern Spain. Poult. Sci. 2016, 95, 676–683. [Google Scholar] [CrossRef]
- Bouwknegt, M.; van de Giessen, A.W.; Dam-Deisz, W.D.; Havelaar, A.H.; Nagelkerke, N.J.; Henken, A.M. Risk factors for the presence of Campylobacter spp. in Dutch broiler flocks. Prev. Vet. Med. 2004, 62, 35–49. [Google Scholar] [CrossRef]
- Perez-Arnedo, I.; Gonzalez-Fandos, E. Prevalence of Campylobacter spp. in poultry in three Spanish farms, a slaughterhouse and a further processing plant. Foods 2019, 8, 111. [Google Scholar] [CrossRef] [Green Version]
- Rasschaert, G.; De Zutter, L.; Herman, L.; Heyndrickx, M. Campylobacter contamination of broilers: The role of transport and slaughterhouse. Int. J. Food Microbiol. 2020, 322, 108564. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, K.; Osek, J. Antimicrobial resistance mechanisms among Campylobacter. BioMed Res. Int. 2013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kassa, T.; Gebre-Selassie, S.; Asrat, D. Antimicrobial susceptibility patterns of thermotolerant Campylobacter strains isolated from food animals in Ethiopia. Vet. Microbiol. 2007, 119, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, Y.; Shen, J.; Zhang, Q.; Wu, C. Tracking Campylobacter contamination along a broiler chicken production chain from the farm level to retail in China. Int. J. Food Microbiol. 2014, 181, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Henry, I.; Reichardt, J.; Denis, M.; Cardinale, E. Prevalence and risk factors for Campylobacter spp. in chicken broiler flocks in Reunion Island (Indian Ocean). )Prev. Vet. Med. 2011, 100, 64–70. [Google Scholar] [CrossRef]
- Gibreel, A.; Taylor, D.E. Macrolide resistance in Campylobacter jejuni and Campylobacter coli. J. Antimicrob. Chemother. 2006, 58, 243–255. [Google Scholar] [CrossRef]
- Karki, A.B.; Marasini, D.; Oakey, C.K.; Mar, K.; Fakhr, M.K. Campylobacter coli from retail liver and meat products is more aerotolerant than Campylobacter jejuni. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Hansson, I.; Ederoth, M.; Andersson, L.; Vagsholm, I.; Olsson Engvall, E. Transmission of Campylobacter spp. to chickens during transport to slaughter. J. Appl. Microbiol. 2005, 99, 1149–1157. [Google Scholar] [CrossRef]
- Manning, G.; Duim, B.; Wassenaar, T.; Wagenaar, J.A.; Ridley, A.; Newell, D.G. Evidence for a genetically stable strain of Campylobacter jejuni. Appl. Environ. Microbiol. 2001, 67, 1185–1189. [Google Scholar] [CrossRef] [Green Version]
- Rivoal, K.; Ragimbeau, C.; Salvat, G.; Colin, P.; Ermel, G. Genomic diversity of Campylobacter coli and Campylobacter jejuni isolates recovered from free-range broiler farms and comparison with isolates of various origins. Appl. Environ. Microbiol. 2005, 71, 6216–6227. [Google Scholar] [CrossRef] [Green Version]
- Bull, S.A.; Allen, V.M.; Domingue, G.; Jorgensen, F.; Frost, J.A.; Ure, R.; Whyte, R.; Tinker, D.; Corry, J.E.; Gillard-King, J.; et al. Sources of Campylobacter spp. colonizing housed broiler flocks during rearing. Appl. Environ. Microbiol. 2006, 72, 645–652. [Google Scholar] [CrossRef] [Green Version]
- Vidal, A.B.; Colles, F.M.; Rodgers, J.D.; McCarthy, N.D.; Davies, R.H.; Maiden, M.C.J.; Clifton-Hadley, F.A. Genetic Diversity of Campylobacter jejuni and Campylobacter coli isolates from conventional broiler flocks and the impacts of sampling strategy and laboratory method. Appl. Environ. Microbiol. 2016, 82, 2347–2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peyrat, M.B.; Soumet, C.; Maris, P.; Sanders, P. Recovery of Campylobacter jejuni from surfaces of poultry slaughterhouses after cleaning and disinfection procedures: Analysis of a potential source of carcass contamination. Int. J. Food Microbiol. 2008, 124, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.L.; Reuter, M.; Salt, L.J.; Cross, K.L.; Betts, R.P.; van Vliet, A.H. Chicken juice enhances surface attachment and biofilm formation of Campylobacter jejuni. Appl. Environ. Microbiol. 2014, 80, 7053–7060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rossler, E.; Olivero, C.; Soto, L.P.; Frizzo, L.S.; Zimmermann, J.; Rosmini, M.R.; Sequeira, G.J.; Signorini, M.L.; Zbrun, M.V. Prevalence, genotypic diversity and detection of virulence genes in thermotolerant Campylobacter at different stages of the poultry meat supply chain. Int. J. Food Microbiol. 2020, 326, 108641. [Google Scholar] [CrossRef]
- Garcia-Sanchez, L.; Melero, B.; Jaime, I.; Hanninen, M.L.; Rossi, M.; Rovira, J. Campylobacter jejuni survival in a poultry processing plant environment. Food Microbiol. 2017, 65, 185–192. [Google Scholar] [CrossRef]
- Premarathne, J.; Satharasinghe, D.A.; Huat, J.T.Y.; Basri, D.F.; Rukayadi, Y.; Nakaguchi, Y.; Nishibuchi, M.; Radu, S. Impact of human Campylobacter infections in Southeast Asia: The contribution of the poultry sector. Crit. Rev. Food Sci. Nutr. 2017, 57, 3971–3986. [Google Scholar] [CrossRef] [PubMed]
- Perez-Boto, D.; Garcia-Pena, F.J.; Abad-Moreno, J.C.; Echeita, M.A. Antimicrobial susceptibilities of Campylobacter jejuni and Campylobacter coli strains isolated from two early stages of poultry production. Microb. Drug Resist. 2013, 19, 323–330. [Google Scholar] [CrossRef]
- Choi, S.W.; Ha, J.S.; Kim, B.Y.; Lee, D.H.; Park, J.K.; Youn, H.N.; Hong, Y.H.; Lee, S.B.; Lee, J.B.; Park, S.Y.; et al. Prevalence and characterization of Salmonella species in entire steps of a single integrated broiler supply chain in Korea. Poult. Sci. 2014, 93, 1251–1257. [Google Scholar] [CrossRef]
Line | C. coli (80/182, 44.0%) | C. jejuni (102/182, 56.0%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Breeder n/(%) | Hatchery n/(%) | Broiler n/(%) | SlaughterHouse n/(%) | Retail Meat n/(%) | Breeder n/(%) | Hatchery n/(%) | Broiler n/(%) | SlaughterHouse n/(%) | Retail Meat n/(%) | |||||
1 d–14 d | 15 d–24 d | >25 d | 1 d–14 d | 15 d–24 d | >25 d | |||||||||
1 | 4/32 (12.5) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 5/34 14.7) c | 3/3 (100.0) | 8/32 (25.0) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/34 (0.0) | 0/3 (0.0) |
2 | 1/16 (6.3) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/44 (0.0) | 8/14 (57.1) | 7/16 (43.8) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/44 (0.0) | 2/14 (14.3) |
3 | 10/24 (41.7) | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/34 (0.0) | 4/7 (57.1) | 10/24 (41.7) | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 5/34 (14.7) c | 3/7 (42.9) |
4 | 6/16 (37.5) | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/34 (0.0) | 0/3 (0.0) | 3/16 (18.8) | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 1/34 (2.9) c | 0/3 (0.0) |
5 | 4/32 (12.5) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 4/24 (16.7) a | 2/5 (40.0) b | 1/3 (33.3) | 8/32 (25.0) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 1/24 (4.7) a | 0/5 (0.0) | 0/3 (0.0) |
6 | 8/16 (50.0) | 0/25 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/5 (0.0) | 0/6 (0.0) | 1/16 (6.3) | 0/25 (0.0) | 6/24 (25.0) a | 0/24 (0.0) | 0/24 (0.0) | 5/5 (100) | 2/6 (33.3) |
7 | 4/24 (16.7) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/20 (0.0) | 5/9 (55.6) | 4/24 (16.7) | 0/20 (0.0) | 1/24 (4.7) b | 0/24 (0.0) | 0/24 (0.0) | 3/20 (15.0) b | 4/9 (44.4) |
8 | 8/16 (50.0) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/10 (0.0) | 0/6 (0.0) | 2/16 (12.5) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/10 (0.0) | 1/6 (16.7) |
9 | - | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/39 (0.0) | 3/3 (100.0) | - | 0/10 (0.0) | 0/24 (0.0) | 3/24 (12.5) b | 0/24 (0.0) | 10/39 (25.6) d | 0/3 (0.0) |
10 | - | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/5 (0.0) | 0/3 (0.0) | - | 0/10 (0.0) | 4/24 (16.7) a | 0/24 (0.0) | 5/24 (20.8) b | 0/5 (0.0) | 3/3 (100.0) |
Total | 45/176 (25.6) | 0/165 (0.0) | 0/240 (0.0) | 0/240 (0.0) | 4/240 (1.7) | 7/230 (3.0) | 24/57 (42.1) | 43/176 (24.4) | 0/165 (0.0) | 11/240 (4.6) | 3/240 (1.3) | 6/240 (2.5) | 24/230 (10.4) | 15/57 (26.3) |
Antimicrobial Agent | Campylobacter spp. | C. coli | C. jejuni | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total (n = 182) | Breeder (n = 45) | Broiler (n = 4) | Slaughterhouse (n = 7) | Retail Meat (n = 24) | Total (n = 80) | Breeder (n = 43) | Broiler (n = 20) | Slaughterhouse (n = 24) | Retail Meat (n = 15) | Total (n = 102) | |
Azithromycin | 18 (9.9%) | 10 (22.2%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 10 (12.5%) | 8 (18.6%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 8 (7.8%) |
Erythromycin | 16 (8.8%) | 9 (20.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 9 (11.3%) | 7 (16.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 7 (6.9%) |
Telithromycin | 11 (6.0%) | 7 (15.6%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 7 (8.8%) | 4 (9.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 4 (3.9%) |
Nalidixic acid | 161 (88.5%) | 43 (95.6%) | 4 (100.0%) | 5 (71.4%) | 19 (79.2%) | 71 (88.8%) | 43 (100.0%) | 16 (80.0%) | 16 (66.7%) | 15 (100.0%) | 90 (88.2%) |
Ciprofloxacin | 170 (93.4%) | 45 (100.0%) | 4 (100.0%) | 7 (100.0%) | 24 (100.0%) | 80 (100%) | 43 (100.0%) | 16 (80.0%) | 16 (66.7%) | 15 (100.0%) | 90 (88.2%) |
Enrofloxacin | 170 (93.4%) | 45 (100.0%) | 4 (100.0%) | 7 (100.0%) | 24 (100.0%) | 80 (100%) | 43 (100.0%) | 16 (80.0%) | 16 (66.7%) | 15 (100.0%) | 90 (88.2%) |
Clindamycin | 3 (1.6%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 3 (7.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 3 (3.0%) |
Gentamicin | 8 (4.4%) | 6 (13.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 6 (7.5%) | 2 (4.7%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 2 (2.0%) |
Florfenicol | 1 (0.5%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (2.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (1.0%) |
Tetracycline | 103 (56.6%) | 29 (64.4%) | 4 (100.0%) | 7 (100.0%) | 20 (83.3%) | 60 (75.0%) | 23 (53.5%) | 6 (30.0%) | 5 (20.8%) | 9 (60.0%) | 43 (42.2%) |
Ampicillin | 133 (73.1%) | 35 (77.8%) | 4 (100.0%) | 5 (71.4%) | 18 (75.0%) | 62 (77.5%) | 39 (90.7%) | 12 (60.0%) | 8 (33.3%) | 12 (80.0%) | 71 (69.6%) |
No. of Antimicrobial Agents | Antimicrobial Resistance Pattern | n a (%) | No. of C. coli in Each Stage | No. of C. jejuni in Each Stage | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Breeder | Broiler | Slaughterhouse | Retail Meat | Breeder | Broiler | Slaughterhouse | Retail Meat | |||
Susceptible | 7 (3.8) | 7 | ||||||||
1 | AMP | 5 (2.7) | 4 | 1 | ||||||
2 | CIP+ENR | 2 (1.1) | 1 | 1 | ||||||
3 | NAL+CIP+ENR | 27 (14.8) | 9 | 4 | 8 | 5 | 1 | |||
3 | CIP+ENR+AMP | 2 (1.1) | 1 | 1 | ||||||
4 | NAL+CIP+ENR+AMP | 44 (24.2) | 12 | 2 | 16 | 2 | 7 | 5 | ||
4 | NAL+CIP+ENR+TET | 14 (7.7) | 3 | 5 | 1 | 3 | 2 | |||
4 | CIP+ENR+TET+AMP | 5 (2.7) | 2 | 3 | ||||||
5 | NAL+CIP+ENR+TET+AMP | 54 (29.7) | 12 | 4 | 1 | 11 | 12 | 6 | 2 | 6 |
5 | NAL+CIP+ENR+GEN+AMP | 1 (0.5) | 1 | |||||||
6 | NAL+CIP+ENR+GEN+TET+AMP | 4 (2.2) | 3 | 1 | ||||||
6 | AZM+NAL+CIP+ENR+TET+AMP | 1 (0.5) | 1 | |||||||
6 | NAL+CIP+ENR+FFN+TET+AMP | 1 (0.5) | 1 | |||||||
7 | AZM+ERY+NAL+CIP+ENR+TET+AMP | 4 (2.2) | 1 | 3 | ||||||
7 | AZM+NAL+CIP+ENR+GEN+TET+AMP | 1 (0.5) | 1 | |||||||
8 | AZM+ERY+NAL+CIP+ENR+GEN+TET+AMP | 2 (1.1) | 1 | 1 | ||||||
8 | AZM+ERY+TEL+NAL+CIP+ENR+TET+AMP | 6 (3.3) | 6 | |||||||
8 | AZM+ERY+NAL+CIP+ENR+CLI+TET+AMP | 2 (1.1) | 2 |
Line | MDR C. coli | MDR C. jejuni | ||||||
---|---|---|---|---|---|---|---|---|
Breeder | Broiler | Slaughterhouse | Retail Meat | Breeder | Broiler | Slaughterhouse | Retail Meat | |
1 | 12 a,17 a,29 a,38 | 25 c, 30 c | 20, 32 | 19 a, 27 b, 33 a, 36, 37 b, 41 a | ||||
2 | 3 | 6 c, 7, 13 a | 2, 5, 10, 12, 36 | 16 a, 25 | ||||
3 | 2, 11 a, 18 b, 27 a, 42 a, 43 a, 44 | 5, 19 b,c | 3 a, 19 b,c, 42 | 38 a | 15, 40 a | |||
4 | 27 a, 28 a, 37 a | 9, 28 b, 32 a | 19 a | |||||
5 | 22 b,26 | 23, 24 | 33 | 34 | 13, 26 b, 29 b,c, 30 a | 19 a | ||
6 | 4 a, 8, 14 b, 15 b, 21, 39 c, 40 c | 11a | 35, 36 | 3 a, 4 a, 16 a | 18 a | |||
7 | 1, 8, 9 a, 41 | 10 c, 34 a | 24 a, 34 a, 39 a | 22 a | 8 a | 6, 11, 21 a, 31 | ||
8 | 16, 21, 27 a, 31 b, 35 a, 36 a | 1, 9 | 18 a | |||||
9 | - | 10 | - | 22 a, 23 a | 14, 18, 20 a | |||
10 | - | - | 17 a | 7 c, 8 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, B.-R.; Wei, B.; Cha, S.-Y.; Shang, K.; Zhang, J.-F.; Kang, M.; Jang, H.-K. Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation. Animals 2021, 11, 246. https://doi.org/10.3390/ani11020246
Kwon B-R, Wei B, Cha S-Y, Shang K, Zhang J-F, Kang M, Jang H-K. Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation. Animals. 2021; 11(2):246. https://doi.org/10.3390/ani11020246
Chicago/Turabian StyleKwon, Bo-Ram, Bai Wei, Se-Yeoun Cha, Ke Shang, Jun-Feng Zhang, Min Kang, and Hyung-Kwan Jang. 2021. "Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation" Animals 11, no. 2: 246. https://doi.org/10.3390/ani11020246
APA StyleKwon, B.-R., Wei, B., Cha, S.-Y., Shang, K., Zhang, J.-F., Kang, M., & Jang, H.-K. (2021). Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation. Animals, 11(2), 246. https://doi.org/10.3390/ani11020246