Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Description of Production Company and Farms
2.2. Sampling and Isolation
2.3. Antimicrobial Susceptibility Testing
2.4. Pulsed-Field Gel Electrophoresis (PFGE)
2.5. Statistical Analysis
3. Results
3.1. Distribution of Campylobacter spp. along the Chicken Production Chain
3.2. Antimicrobial Susceptibility
3.3. Pulsed-Field Gel Electrophoresis Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- European Food Safety Authority (EFSA). The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2017/2018. EEFSA J. 2020, 18, e06007. [Google Scholar] [CrossRef]
- Young, K.T.; Davis, L.M.; DiRita, V.J. Campylobacter jejuni: Molecular biology and pathogenesis. Nat. Rev. Microbiol. 2007, 5, 665–679. [Google Scholar] [CrossRef] [PubMed]
- Skarp, C.P.A.; Hanninen, M.L.; Rautelini, H.I.K. Campylobacteriosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Sahin, O.; Morishita, T.Y.; Zhang, Q. Campylobacter colonization in poultry: Sources of infection and modes of transmission. Anim. Health Res. Rev. 2002, 3, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Callicott, K.A.; Fridriksdottir, V.; Reiersen, J.; Lowman, R.; Bisaillon, J.R.; Gunnarsson, E.; Berndtson, E.; Hiett, K.L.; Needleman, D.S.; Stern, N.J. Lack of evidence for vertical transmission of Campylobacter spp. in chickens. Appl. Environ. Microbiol. 2006, 72, 5794–5798. [Google Scholar] [CrossRef] [PubMed]
- Rosenquist, H.; Sommer, H.M.; Nielsen, N.L.; Christensen, B.B. The effect of slaughter operations on the contamination of chicken carcasses with thermotolerant Campylobacter. Int. J. Food Microbiol. 2006, 108, 226–232. [Google Scholar] [CrossRef]
- Melero, B.; Juntunen, P.; Hanninen, M.L.; Jaime, I.; Rovira, J. Tracing Campylobacter jejuni strains along the poultry meat production chain from farm to retail by pulsed-field gel electrophoresis, and the antimicrobial resistance of isolates. Food Microbiol. 2012, 32, 124–128. [Google Scholar] [CrossRef]
- Seliwiorstow, T.; Bare, J.; Berkvens, D.; Van Damme, I.; Uyttendaele, M.; De Zutter, L. Identification of risk factors for Campylobacter contamination levels on broiler carcasses during the slaughter process. Int. J. Food Microbiol. 2016, 226, 26–32. [Google Scholar] [CrossRef]
- Roccato, A.; Mancin, M.; Barco, L.; Cibin, V.; Antonello, K.; Cocola, F.; Ricci, A. Usefulness of indicator bacteria as potential marker of Campylobacter contamination in broiler carcasses. Int. J. Food Microbiol. 2018, 276, 63–70. [Google Scholar] [CrossRef]
- Lehtopolku, M.; Nakari, U.M.; Kotilainen, P.; Huovinen, P.; Siitonen, A.; Hakanen, A.J. Antimicrobial susceptibilities of multidrug-resistant Campylobacter jejuni and C. coli strains: In vitro activities of 20 antimicrobial agents. Antimicrob. Agents Chemother. 2010, 54, 1232–1236. [Google Scholar] [CrossRef]
- Animal and Plant Quarantine Agency. Establishment of Antimicrobial Resistance Surveillance System for Livestock, 2018; Ministry of Agriculture, Food and Rural Affairs: Gimcheon and Sejong, Korea, 2019.
- Aarestrup, F.M.; Wegener, H.C. The effects of antibiotic usage in food animals on the development of antimicrobial resistance of importance for humans in Campylobacter and Escherichia coli. Microbes. Infect. 1999, 1, 639–644. [Google Scholar] [CrossRef]
- Han, K.; Jang, S.S.; Choo, E.; Heu, S.; Ryu, S. Prevalence, genetic diversity, and antibiotic resistance patterns of Campylobacter jejuni from retail raw chickens in Korea. Int. J. Food Microbiol. 2007, 114, 50–59. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, J.H.; Kim, Y.I.; Choi, J.S.; Park, M.Y.; Nam, H.M.; Jung, S.C.; Kwon, J.W.; Lee, C.H.; Kim, Y.H.; et al. Prevalence and characterization of Campylobacter spp. isolated from domestic and imported poultry meat in Korea, 2004–2008. Foodborne Pathog. Dis. 2010, 7, 1203–1209. [Google Scholar] [CrossRef]
- Wieczorek, K.; Denis, E.; Osek, J. Comparative analysis of antimicrobial resistance and genetic diversity of Campylobacter from broilers slaughtered in Poland. Int. J. Food Microbiol. 2015, 210, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Wurfel, S.F.R.; da Silva, W.P.; de Oliveira, M.G.; Kleinubing, N.R.; Lopes, G.V.; Gandra, E.A.; Dellagostin, O.A. Genetic diversity of Campylobacter jejuni and Campylobacter coli isolated from poultry meat products sold on the retail market in Southern Brazil. Poult. Sci. 2019, 98, 932–939. [Google Scholar] [CrossRef] [PubMed]
- Prachantasena, S.; Charununtakorn, P.; Muangnoicharoen, S.; Hankla, L.; Techawal, N.; Chaveerach, P.; Tuitemwong, P.; Chokesajjawatee, N.; Williams, N.; Humphrey, T.; et al. Distribution and genetic profiles of Campylobacter in commercial broiler production from breeder to slaughter in Thailand. PLoS ONE 2016, 11, e0149585. [Google Scholar] [CrossRef] [PubMed]
- Oh, J.Y.; Kwon, Y.K.; Wei, B.; Jang, H.K.; Lim, S.K.; Kim, C.H.; Jung, S.C.; Kang, M.S. Epidemiological relationships of Campylobacter jejuni strains isolated from humans and chickens in South Korea. J. Microbiol. 2017, 55, 13–20. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Cha, S.Y.; Yoon, R.H.; Kang, M.; Roh, J.H.; Seo, H.S.; Lee, J.A.; Jang, H.K. Prevalence and antimicrobial resistance of Campylobacter spp. isolated from retail chicken and duck meat in South Korea. Food Control 2016, 62, 63–68. [Google Scholar] [CrossRef]
- Wei, B.; Cha, S.Y.; Kang, M.; Roh, J.H.; Seo, H.S.; Yoon, R.H.; Jang, H.K. Antimicrobial susceptibility profiles and molecular typing of Campylobacter jejuni and Campylobacter coli isolates from ducks in South Korea. Appl. Environ. Microbiol. 2014, 80, 7604–7610. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Antimicrobial Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria Isolated from Animals, 1st ed.; CLSI: Wayne, PA, USA, 2016. [Google Scholar]
- National Antimicrobial Resistance Monitoring System (NARMS). NARMS Retail Meat Annual Report, 2011; Food and Drug Administration: Rockville, MD, USA, 2013.
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk and Dilution Susceptibility Tests for Bacteria Isolated from Animals, 4th ed.; CLSI: Wayne, PA, USA, 2018. [Google Scholar]
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5. [Google Scholar] [CrossRef]
- Jacobs-Reitsma, W.F. Campylobacter bacteria in breeder flocks. Avian Dis. 1995, 39, 355–359. [Google Scholar] [CrossRef]
- Ingresa-Capaccioni, S.; Jimenez-Trigos, E.; Marco-Jimenez, F.; Catala, P.; Vega, S.; Marin, C. Campylobacter epidemiology from breeders to their progeny in Eastern Spain. Poult. Sci. 2016, 95, 676–683. [Google Scholar] [CrossRef]
- Bouwknegt, M.; van de Giessen, A.W.; Dam-Deisz, W.D.; Havelaar, A.H.; Nagelkerke, N.J.; Henken, A.M. Risk factors for the presence of Campylobacter spp. in Dutch broiler flocks. Prev. Vet. Med. 2004, 62, 35–49. [Google Scholar] [CrossRef]
- Perez-Arnedo, I.; Gonzalez-Fandos, E. Prevalence of Campylobacter spp. in poultry in three Spanish farms, a slaughterhouse and a further processing plant. Foods 2019, 8, 111. [Google Scholar] [CrossRef]
- Rasschaert, G.; De Zutter, L.; Herman, L.; Heyndrickx, M. Campylobacter contamination of broilers: The role of transport and slaughterhouse. Int. J. Food Microbiol. 2020, 322, 108564. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, K.; Osek, J. Antimicrobial resistance mechanisms among Campylobacter. BioMed Res. Int. 2013. [Google Scholar] [CrossRef] [PubMed]
- Kassa, T.; Gebre-Selassie, S.; Asrat, D. Antimicrobial susceptibility patterns of thermotolerant Campylobacter strains isolated from food animals in Ethiopia. Vet. Microbiol. 2007, 119, 82–87. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Wang, Y.; Shen, J.; Zhang, Q.; Wu, C. Tracking Campylobacter contamination along a broiler chicken production chain from the farm level to retail in China. Int. J. Food Microbiol. 2014, 181, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Henry, I.; Reichardt, J.; Denis, M.; Cardinale, E. Prevalence and risk factors for Campylobacter spp. in chicken broiler flocks in Reunion Island (Indian Ocean). )Prev. Vet. Med. 2011, 100, 64–70. [Google Scholar] [CrossRef]
- Gibreel, A.; Taylor, D.E. Macrolide resistance in Campylobacter jejuni and Campylobacter coli. J. Antimicrob. Chemother. 2006, 58, 243–255. [Google Scholar] [CrossRef]
- Karki, A.B.; Marasini, D.; Oakey, C.K.; Mar, K.; Fakhr, M.K. Campylobacter coli from retail liver and meat products is more aerotolerant than Campylobacter jejuni. Front. Microbiol. 2018, 9. [Google Scholar] [CrossRef]
- Hansson, I.; Ederoth, M.; Andersson, L.; Vagsholm, I.; Olsson Engvall, E. Transmission of Campylobacter spp. to chickens during transport to slaughter. J. Appl. Microbiol. 2005, 99, 1149–1157. [Google Scholar] [CrossRef]
- Manning, G.; Duim, B.; Wassenaar, T.; Wagenaar, J.A.; Ridley, A.; Newell, D.G. Evidence for a genetically stable strain of Campylobacter jejuni. Appl. Environ. Microbiol. 2001, 67, 1185–1189. [Google Scholar] [CrossRef]
- Rivoal, K.; Ragimbeau, C.; Salvat, G.; Colin, P.; Ermel, G. Genomic diversity of Campylobacter coli and Campylobacter jejuni isolates recovered from free-range broiler farms and comparison with isolates of various origins. Appl. Environ. Microbiol. 2005, 71, 6216–6227. [Google Scholar] [CrossRef]
- Bull, S.A.; Allen, V.M.; Domingue, G.; Jorgensen, F.; Frost, J.A.; Ure, R.; Whyte, R.; Tinker, D.; Corry, J.E.; Gillard-King, J.; et al. Sources of Campylobacter spp. colonizing housed broiler flocks during rearing. Appl. Environ. Microbiol. 2006, 72, 645–652. [Google Scholar] [CrossRef]
- Vidal, A.B.; Colles, F.M.; Rodgers, J.D.; McCarthy, N.D.; Davies, R.H.; Maiden, M.C.J.; Clifton-Hadley, F.A. Genetic Diversity of Campylobacter jejuni and Campylobacter coli isolates from conventional broiler flocks and the impacts of sampling strategy and laboratory method. Appl. Environ. Microbiol. 2016, 82, 2347–2355. [Google Scholar] [CrossRef] [PubMed]
- Peyrat, M.B.; Soumet, C.; Maris, P.; Sanders, P. Recovery of Campylobacter jejuni from surfaces of poultry slaughterhouses after cleaning and disinfection procedures: Analysis of a potential source of carcass contamination. Int. J. Food Microbiol. 2008, 124, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.L.; Reuter, M.; Salt, L.J.; Cross, K.L.; Betts, R.P.; van Vliet, A.H. Chicken juice enhances surface attachment and biofilm formation of Campylobacter jejuni. Appl. Environ. Microbiol. 2014, 80, 7053–7060. [Google Scholar] [CrossRef] [PubMed]
- Rossler, E.; Olivero, C.; Soto, L.P.; Frizzo, L.S.; Zimmermann, J.; Rosmini, M.R.; Sequeira, G.J.; Signorini, M.L.; Zbrun, M.V. Prevalence, genotypic diversity and detection of virulence genes in thermotolerant Campylobacter at different stages of the poultry meat supply chain. Int. J. Food Microbiol. 2020, 326, 108641. [Google Scholar] [CrossRef]
- Garcia-Sanchez, L.; Melero, B.; Jaime, I.; Hanninen, M.L.; Rossi, M.; Rovira, J. Campylobacter jejuni survival in a poultry processing plant environment. Food Microbiol. 2017, 65, 185–192. [Google Scholar] [CrossRef]
- Premarathne, J.; Satharasinghe, D.A.; Huat, J.T.Y.; Basri, D.F.; Rukayadi, Y.; Nakaguchi, Y.; Nishibuchi, M.; Radu, S. Impact of human Campylobacter infections in Southeast Asia: The contribution of the poultry sector. Crit. Rev. Food Sci. Nutr. 2017, 57, 3971–3986. [Google Scholar] [CrossRef] [PubMed]
- Perez-Boto, D.; Garcia-Pena, F.J.; Abad-Moreno, J.C.; Echeita, M.A. Antimicrobial susceptibilities of Campylobacter jejuni and Campylobacter coli strains isolated from two early stages of poultry production. Microb. Drug Resist. 2013, 19, 323–330. [Google Scholar] [CrossRef]
- Choi, S.W.; Ha, J.S.; Kim, B.Y.; Lee, D.H.; Park, J.K.; Youn, H.N.; Hong, Y.H.; Lee, S.B.; Lee, J.B.; Park, S.Y.; et al. Prevalence and characterization of Salmonella species in entire steps of a single integrated broiler supply chain in Korea. Poult. Sci. 2014, 93, 1251–1257. [Google Scholar] [CrossRef]
Line | C. coli (80/182, 44.0%) | C. jejuni (102/182, 56.0%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Breeder n/(%) | Hatchery n/(%) | Broiler n/(%) | SlaughterHouse n/(%) | Retail Meat n/(%) | Breeder n/(%) | Hatchery n/(%) | Broiler n/(%) | SlaughterHouse n/(%) | Retail Meat n/(%) | |||||
1 d–14 d | 15 d–24 d | >25 d | 1 d–14 d | 15 d–24 d | >25 d | |||||||||
1 | 4/32 (12.5) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 5/34 14.7) c | 3/3 (100.0) | 8/32 (25.0) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/34 (0.0) | 0/3 (0.0) |
2 | 1/16 (6.3) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/44 (0.0) | 8/14 (57.1) | 7/16 (43.8) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/44 (0.0) | 2/14 (14.3) |
3 | 10/24 (41.7) | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/34 (0.0) | 4/7 (57.1) | 10/24 (41.7) | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 5/34 (14.7) c | 3/7 (42.9) |
4 | 6/16 (37.5) | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/34 (0.0) | 0/3 (0.0) | 3/16 (18.8) | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 1/34 (2.9) c | 0/3 (0.0) |
5 | 4/32 (12.5) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 4/24 (16.7) a | 2/5 (40.0) b | 1/3 (33.3) | 8/32 (25.0) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 1/24 (4.7) a | 0/5 (0.0) | 0/3 (0.0) |
6 | 8/16 (50.0) | 0/25 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/5 (0.0) | 0/6 (0.0) | 1/16 (6.3) | 0/25 (0.0) | 6/24 (25.0) a | 0/24 (0.0) | 0/24 (0.0) | 5/5 (100) | 2/6 (33.3) |
7 | 4/24 (16.7) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/20 (0.0) | 5/9 (55.6) | 4/24 (16.7) | 0/20 (0.0) | 1/24 (4.7) b | 0/24 (0.0) | 0/24 (0.0) | 3/20 (15.0) b | 4/9 (44.4) |
8 | 8/16 (50.0) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/10 (0.0) | 0/6 (0.0) | 2/16 (12.5) | 0/20 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/10 (0.0) | 1/6 (16.7) |
9 | - | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/39 (0.0) | 3/3 (100.0) | - | 0/10 (0.0) | 0/24 (0.0) | 3/24 (12.5) b | 0/24 (0.0) | 10/39 (25.6) d | 0/3 (0.0) |
10 | - | 0/10 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/24 (0.0) | 0/5 (0.0) | 0/3 (0.0) | - | 0/10 (0.0) | 4/24 (16.7) a | 0/24 (0.0) | 5/24 (20.8) b | 0/5 (0.0) | 3/3 (100.0) |
Total | 45/176 (25.6) | 0/165 (0.0) | 0/240 (0.0) | 0/240 (0.0) | 4/240 (1.7) | 7/230 (3.0) | 24/57 (42.1) | 43/176 (24.4) | 0/165 (0.0) | 11/240 (4.6) | 3/240 (1.3) | 6/240 (2.5) | 24/230 (10.4) | 15/57 (26.3) |
Antimicrobial Agent | Campylobacter spp. | C. coli | C. jejuni | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Total (n = 182) | Breeder (n = 45) | Broiler (n = 4) | Slaughterhouse (n = 7) | Retail Meat (n = 24) | Total (n = 80) | Breeder (n = 43) | Broiler (n = 20) | Slaughterhouse (n = 24) | Retail Meat (n = 15) | Total (n = 102) | |
Azithromycin | 18 (9.9%) | 10 (22.2%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 10 (12.5%) | 8 (18.6%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 8 (7.8%) |
Erythromycin | 16 (8.8%) | 9 (20.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 9 (11.3%) | 7 (16.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 7 (6.9%) |
Telithromycin | 11 (6.0%) | 7 (15.6%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 7 (8.8%) | 4 (9.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 4 (3.9%) |
Nalidixic acid | 161 (88.5%) | 43 (95.6%) | 4 (100.0%) | 5 (71.4%) | 19 (79.2%) | 71 (88.8%) | 43 (100.0%) | 16 (80.0%) | 16 (66.7%) | 15 (100.0%) | 90 (88.2%) |
Ciprofloxacin | 170 (93.4%) | 45 (100.0%) | 4 (100.0%) | 7 (100.0%) | 24 (100.0%) | 80 (100%) | 43 (100.0%) | 16 (80.0%) | 16 (66.7%) | 15 (100.0%) | 90 (88.2%) |
Enrofloxacin | 170 (93.4%) | 45 (100.0%) | 4 (100.0%) | 7 (100.0%) | 24 (100.0%) | 80 (100%) | 43 (100.0%) | 16 (80.0%) | 16 (66.7%) | 15 (100.0%) | 90 (88.2%) |
Clindamycin | 3 (1.6%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 3 (7.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 3 (3.0%) |
Gentamicin | 8 (4.4%) | 6 (13.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 6 (7.5%) | 2 (4.7%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 2 (2.0%) |
Florfenicol | 1 (0.5%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (2.3%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 1 (1.0%) |
Tetracycline | 103 (56.6%) | 29 (64.4%) | 4 (100.0%) | 7 (100.0%) | 20 (83.3%) | 60 (75.0%) | 23 (53.5%) | 6 (30.0%) | 5 (20.8%) | 9 (60.0%) | 43 (42.2%) |
Ampicillin | 133 (73.1%) | 35 (77.8%) | 4 (100.0%) | 5 (71.4%) | 18 (75.0%) | 62 (77.5%) | 39 (90.7%) | 12 (60.0%) | 8 (33.3%) | 12 (80.0%) | 71 (69.6%) |
No. of Antimicrobial Agents | Antimicrobial Resistance Pattern | n a (%) | No. of C. coli in Each Stage | No. of C. jejuni in Each Stage | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Breeder | Broiler | Slaughterhouse | Retail Meat | Breeder | Broiler | Slaughterhouse | Retail Meat | |||
Susceptible | 7 (3.8) | 7 | ||||||||
1 | AMP | 5 (2.7) | 4 | 1 | ||||||
2 | CIP+ENR | 2 (1.1) | 1 | 1 | ||||||
3 | NAL+CIP+ENR | 27 (14.8) | 9 | 4 | 8 | 5 | 1 | |||
3 | CIP+ENR+AMP | 2 (1.1) | 1 | 1 | ||||||
4 | NAL+CIP+ENR+AMP | 44 (24.2) | 12 | 2 | 16 | 2 | 7 | 5 | ||
4 | NAL+CIP+ENR+TET | 14 (7.7) | 3 | 5 | 1 | 3 | 2 | |||
4 | CIP+ENR+TET+AMP | 5 (2.7) | 2 | 3 | ||||||
5 | NAL+CIP+ENR+TET+AMP | 54 (29.7) | 12 | 4 | 1 | 11 | 12 | 6 | 2 | 6 |
5 | NAL+CIP+ENR+GEN+AMP | 1 (0.5) | 1 | |||||||
6 | NAL+CIP+ENR+GEN+TET+AMP | 4 (2.2) | 3 | 1 | ||||||
6 | AZM+NAL+CIP+ENR+TET+AMP | 1 (0.5) | 1 | |||||||
6 | NAL+CIP+ENR+FFN+TET+AMP | 1 (0.5) | 1 | |||||||
7 | AZM+ERY+NAL+CIP+ENR+TET+AMP | 4 (2.2) | 1 | 3 | ||||||
7 | AZM+NAL+CIP+ENR+GEN+TET+AMP | 1 (0.5) | 1 | |||||||
8 | AZM+ERY+NAL+CIP+ENR+GEN+TET+AMP | 2 (1.1) | 1 | 1 | ||||||
8 | AZM+ERY+TEL+NAL+CIP+ENR+TET+AMP | 6 (3.3) | 6 | |||||||
8 | AZM+ERY+NAL+CIP+ENR+CLI+TET+AMP | 2 (1.1) | 2 |
Line | MDR C. coli | MDR C. jejuni | ||||||
---|---|---|---|---|---|---|---|---|
Breeder | Broiler | Slaughterhouse | Retail Meat | Breeder | Broiler | Slaughterhouse | Retail Meat | |
1 | 12 a,17 a,29 a,38 | 25 c, 30 c | 20, 32 | 19 a, 27 b, 33 a, 36, 37 b, 41 a | ||||
2 | 3 | 6 c, 7, 13 a | 2, 5, 10, 12, 36 | 16 a, 25 | ||||
3 | 2, 11 a, 18 b, 27 a, 42 a, 43 a, 44 | 5, 19 b,c | 3 a, 19 b,c, 42 | 38 a | 15, 40 a | |||
4 | 27 a, 28 a, 37 a | 9, 28 b, 32 a | 19 a | |||||
5 | 22 b,26 | 23, 24 | 33 | 34 | 13, 26 b, 29 b,c, 30 a | 19 a | ||
6 | 4 a, 8, 14 b, 15 b, 21, 39 c, 40 c | 11a | 35, 36 | 3 a, 4 a, 16 a | 18 a | |||
7 | 1, 8, 9 a, 41 | 10 c, 34 a | 24 a, 34 a, 39 a | 22 a | 8 a | 6, 11, 21 a, 31 | ||
8 | 16, 21, 27 a, 31 b, 35 a, 36 a | 1, 9 | 18 a | |||||
9 | - | 10 | - | 22 a, 23 a | 14, 18, 20 a | |||
10 | - | - | 17 a | 7 c, 8 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwon, B.-R.; Wei, B.; Cha, S.-Y.; Shang, K.; Zhang, J.-F.; Kang, M.; Jang, H.-K. Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation. Animals 2021, 11, 246. https://doi.org/10.3390/ani11020246
Kwon B-R, Wei B, Cha S-Y, Shang K, Zhang J-F, Kang M, Jang H-K. Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation. Animals. 2021; 11(2):246. https://doi.org/10.3390/ani11020246
Chicago/Turabian StyleKwon, Bo-Ram, Bai Wei, Se-Yeoun Cha, Ke Shang, Jun-Feng Zhang, Min Kang, and Hyung-Kwan Jang. 2021. "Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation" Animals 11, no. 2: 246. https://doi.org/10.3390/ani11020246
APA StyleKwon, B.-R., Wei, B., Cha, S.-Y., Shang, K., Zhang, J.-F., Kang, M., & Jang, H.-K. (2021). Longitudinal Study of the Distribution of Antimicrobial-Resistant Campylobacter Isolates from an Integrated Broiler Chicken Operation. Animals, 11(2), 246. https://doi.org/10.3390/ani11020246