Identification of Genes Related to Cold Tolerance and Novel Genetic Markers for Molecular Breeding in Taiwan Tilapia (Oreochromis spp.) via Transcriptome Analysis
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Conditions
2.2. Cooling Test
2.3. Total RNA Extraction
2.4. Transcriptome High-Throughput Next-Generation Sequencing
2.5. Transcript Database Gene Differential Expression
2.6. Reverse Transcription Polymerase Chain Reaction
2.7. Real-Time Quantitative Polymerase Chain Reaction
2.8. Genomic DNA Extraction
2.9. Microsatellite Marker DNA Genotyping
2.10. Single Nucleotide Polymorphism Markers Genotyping
2.11. Statistical Analysis
3. Results
3.1. Phenotypic Differences in Cold-Tolerance as Assessed by the Loss of Balance Behavior in Response to Cooling Stress
3.2. Transcriptome Sequencing Analysis Overview
3.2.1. RNAseq Retrieval, Pre-Processing, Assembly, and Annotation of the Unigenes
3.2.2. Detection of Microsatellites and Single Nucleotide Polymorphism Markers
3.3. Transcriptome Responses to Temperature Decreases
3.3.1. Differential Gene Expression between Cold-Tolerant and Sensitive Fish
3.3.2. Differential Expression of Functional Genes Containing SSRs and SNPs
3.3.3. Validation of the Transcriptome Sequencing Results Using Real-Time qPCR
3.4. Correlation between the Genotypes of the Polymorphic RNAseq Markers and Cold-Tolerance with Significant Genetic Variation in Taiwan Tilapia
3.4.1. Identification of Candidate SSR Markers Involved in Cold-Tolerance
3.4.2. Genotype of the Gene-Based SNP Marker That Was Significantly Correlated with Cold-Tolerance
3.5. Verification of the SNP Marker Assisted Selection for Cold-Tolerant Strains in Taiwan Tilapia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agha, S.; Mekkawy, W.; Ibanez-Escriche, N.; Lind, C.E.; Kumar, J.; Mandal, A.; Benzie, J.A.H.; Doeschl-Wilson, A. Breeding for robustness: Investigating the genotype-by-environment interaction and micro-environmental sensitivity of Genetically Improved Farmed Tilapia (Oreochromis niloticus). Anim. Genet. 2018, 49, 421–427. [Google Scholar] [CrossRef]
- Scheffer, M.; Carpenter, S.; Foley, J.A.; Folke, C.; Walker, B. Catastrophic shifts in ecosystems. Nature 2001, 413, 591–596. [Google Scholar] [CrossRef] [PubMed]
- Cattiaux, J.; Yiou, P.; Vautard, R. Dynamics of future seasonal temperature trends and extremes in Europe: A multi-model analysis from CMIP3. Clim. Dyn. 2012, 38, 1949–1964. [Google Scholar] [CrossRef]
- Plagányi, É. Climate change impacts on fisheries. Science 2019, 363, 930–931. [Google Scholar] [CrossRef] [PubMed]
- Trewavas, E. Genus Oreochromis. In Tilapiine Fishes of the Genera Sarotherodon, Oreochromis, and Danakilia; Natural History British Museum Library: London, UK, 1983; pp. 139–193. [Google Scholar]
- Wohlfarth, G.W.; Hulata, G. Applied Genetics of Tilapias, 2nd ed.; International Center for Living Aquatic Resources Management Studies and Reviews: Manila, Philippines, 1983; pp. 1–26. [Google Scholar]
- Cnaani, A.; Gall, G.; Hulata, G. Cold tolerance of tilapia species and hybrids. Aquac. Int. 2000, 8, 289–298. [Google Scholar] [CrossRef]
- Yu, C.H.; Huang, C.J.; Sung, C.H.; Huang, J.L.; Ho-Hsu, Y.Y. Taiwan tilapia production history, traceability in seafood supply, and transfer pricing in the global market. Adv. Financ. Plan. Forecast. 2015, 6, 31–64. [Google Scholar]
- Nitzan, T.; Kokou, F.; Doron-Faigenboim, A.; Slosman, T.; Biran, J.; Mizrahi, I.; Zak, T.; Benet, A.; Cnaani, A. Transcriptome analysis reveals common and differential response to low temperature exposure between tolerant and sensitive blue tilapia (Oreochromis aureus). Front. Genet. 2019, 10, 100. [Google Scholar] [CrossRef]
- Gewaily, M.S.; Abdo, S.E.; Moustafa, E.M.; AbdEl-Kader, M.F.; Abd El-Razek, I.M.; El-Sharnouby, M.; Alkafafy, M.; Raza, S.H.A.; El Basuini, M.F.; Van Doan, H.; et al. Dietary synbiotics can help relieve the impacts of deltamethrin toxicity of Nile tilapia reared at low temperatures. Animals 2021, 11, 1790. [Google Scholar] [CrossRef] [PubMed]
- Schulte, P.M.; Healy, T.M.; Fangue, N.A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 2011, 51, 691–702. [Google Scholar] [CrossRef] [PubMed]
- Sinyakov, M.S.; Haimovich, A.; Avtalion, R.R. Acute stress promotes post-injury brain regeneration in fish. Brain Res. 2017, 1676, 28–37. [Google Scholar] [CrossRef]
- Cowan, M.; Azpeleta, C.; López-Olmeda, J.F. Rhythms in the endocrine system of fish: A review. J. Comp. Physiol. B 2017, 187, 1057–1089. [Google Scholar] [CrossRef] [PubMed]
- McCormick, S.D.; Moriyama, S.; Björnsson, B.T. Low temperature limits photoperiod control of smolting in Atlantic salmon through endocrine mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, 1352–1361. [Google Scholar] [CrossRef]
- Miao, B.B.; Niu, S.F.; Wu, R.X.; Liang, Z.B.; Tang, B.G.; Zhai, Y.; Xu, X.Q. Gene expression profile and co-expression network of pearl gentian grouper under cold stress by integrating Illumina and PacBio sequences. Animals 2021, 11, 1745. [Google Scholar] [CrossRef] [PubMed]
- Sonna, L.A.; Fujita, J.; Gaffin, S.L.; Lilly, C.M. Invited review: Effects of heat and cold stress on mammalian gene expression. J. Appl. Physiol. 2002, 92, 1725–1742. [Google Scholar] [CrossRef] [PubMed]
- Curzon, A.Y.; Shirak, A.; Zak, T.; Dor, L.; Benet-Perlberg, A.; Naor, A.; Low-Tanne, S.I.; Sharkawi, H.; Ron, M.; Seroussi, E. All-male production by marker-assisted selection for sex determining loci of admixed Oreochromis niloticus and Oreochromis aureus stocks. Anim. Genet. 2021, 52, 361–364. [Google Scholar] [CrossRef] [PubMed]
- Cnaani, A.; Hallerman, E.M.; Ron, M.; Weller, J.I.; Indelman, M.; Kashi, Y.; Gall, G.A.; Hulata, G. Detection of a chromosomal region with two quantitative trait loci, affecting cold tolerance and fish size, in an F2 tilapia hybrid. Aquaculture 2003, 223, 117–128. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, Z.; Lu, M.; Gao, F.; Ke, X.; Huang, Z. Screening and identification of microsatellite markers associated with cold tolerance in Nile tilapia Oreochromis niloticus. Genet. Mol. Res. 2015, 14, 10308–10314. [Google Scholar] [CrossRef]
- Ju, Z.; Dunham, R.; Liu, Z. Differential gene expression in the brain of channel catfish (Ictalurus punctatus) in response to cold acclimation. Mol. Genet. Genom. 2002, 268, 87–95. [Google Scholar] [CrossRef]
- Long, Y.; Song, G.; Yan, J.; He, X.; Li, Q.; Cui, Z. Transcriptomic characterization of cold acclimation in larval zebrafish. BMC Genom. 2013, 14, 612. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Chang, Y.; He, X.; Tang, R. Transcriptome analysis to identify cold-responsive genes in amur carp (Cyprinus carpio haematopterus). PLoS ONE 2015, 10, e0130526. [Google Scholar] [CrossRef] [PubMed]
- Hung, I.C.; Hsiao, Y.C.; Sun, H.S.; Chen, T.M.; Lee, S.J. MicroRNAs regulate gene plasticity during cold shock in zebrafish larvae. BMC Genom. 2016, 17, 922. [Google Scholar] [CrossRef] [PubMed]
- Qiang, J.; Cui, Y.T.; Tao, F.Y.; Bao, W.J.; He, J.; Li, X.H.; Xu, P.; Sun, L.Y. Physiological response and microRNA expression profiles in head kidney of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) exposed to acute cold stress. Sci. Rep. 2018, 8, 172. [Google Scholar] [CrossRef]
- Chen, R.H.; Chang, Y.C.; Chang, K.C.; Liu, F.G. Comparison of growth performance of the hybridization and inbred lines in tilapia-development of fast-growing strain. J. Taiwan Fish. Res. 2008, 16, 41–47. [Google Scholar]
- Huang, C.W.; Li, Y.H.; Hu, S.Y.; Chi, J.R.; Liao, C.H.; Lin, G.H.; Lin, C.C.; Gong, H.Y.; Chen, R.H.; Chang, S.J.; et al. Differential expression patterns of growth-related microRNAs in the skeletal muscle of Nile tilapia (Oreochromis niloticus). J. Anim. Sci. 2012, 90, 4266–4279. [Google Scholar] [CrossRef]
- Kõressaar, T.; Lepamets, M.; Kaplinski, L.; Raime, K.; Andreson, R.; Remm, M. Primer3_masker: Integrating masking of template sequence with primer design software. Bioinformatics 2018, 34, 1937–1938. [Google Scholar] [CrossRef]
- Kim, D.; Langmead, B.; Salzberg, S.L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621. [Google Scholar] [CrossRef] [PubMed]
- Yeh, F.C.; Yang, R.; Boyle, T.J.; Ye, Z.; Xiyan, J.M. PopGene32, Microsoft Window-Based Freeware for Population Genetic Analysis, version 1.32; Molecular Biology and Biotechnology Centre, University of Alberta: Edmonton, AB, Canada, 2000. [Google Scholar]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Pan, G.; Yang, J. Analysis of microsatellite DNA markers reveals no genetic differentiation between wild and hatchery populations of Pacific Threadfin in Hawaii. Int. J. Biol. Sci. 2010, 6, 827. [Google Scholar] [CrossRef]
- Khaw, H.L.; Ponzoni, R.W.; Danting, M.J.C. Estimation of genetic change in the GIFT strain of Nile tilapia (Oreochromis niloticus) by comparing contemporary progeny produced by males born in 1991 or in 2003. Aquaculture 2008, 275, 64–69. [Google Scholar] [CrossRef]
- He, J.; Qiang, J.; Yang, H.; Xu, P.; Zhu, Z.; Yang, R. Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile genetically improved farmed tilapia Oreochromis niloticus (L.), subjected to short-term low temperature stress. J. Therm. Biol. 2015, 53, 90–99. [Google Scholar] [CrossRef]
- Sifa, L.; Chenhong, L.; Dey, M.; Gagalac, F.; Dunham, R. Cold tolerance of three strains of Nile tilapia, Oreochromis niloticus, in China. Aquaculture 2002, 213, 123–129. [Google Scholar] [CrossRef]
- Agnèse, J.F.; Adépo-Gourène, B.; Abban, E.K.; Fermon, Y. Genetic differentiation among natural populations of the Nile tilapia Oreochromis niloticus (Teleostei, Cichlidae). Heredity 1997, 79, 88–96. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Carroll, S.B. Evo-devo and an expanding evolutionary synthesis: A genetic theory of morphological evolution. Cell 2008, 134, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, H.E.; Coyne, J.A. The locus of evolution: Evo devo and the genetics of adaptation. Evolution 2007, 61, 995–1016. [Google Scholar] [CrossRef] [PubMed]
- Romero, I.G.; Ruvinsky, I.; Gilad, Y. Comparative studies of gene expression and the evolution of gene regulation. Nat. Rev. Genet. 2012, 13, 505–516. [Google Scholar] [CrossRef]
- Khater, A.A.; Smitherman, R.O. Cold tolerance and growth of three strains of Oreochromis niloticus. In Proceedings of the 2nd International Symposium on Tilapia in Aquaculture, ICLARM Conference Proceedings, Bangkok, Thailand, 16–20 March 1987; Pullin, R.S.V., Bhukaswan, T., Tonguthai, K., Maclean, J.L., Eds.; Department of Fisheries: Metro Manila, Philippines, 1988; pp. 215–218. [Google Scholar]
- Cossins, A.R.; Crawford, D.L. Fish as models for environmental genomics. Nat. Rev. Genet. 2005, 6, 324–333. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.Y.; Qiang, J.; He, J.; Gabriel, N.N.; Xu, P. Changes in the physiological parameters, fatty acid metabolism, and SCD activity and expression in juvenile GIFT tilapia (Oreochromis niloticus) reared at three different temperatures. Fish. Physiol. Biochem. 2015, 41, 937–950. [Google Scholar] [CrossRef] [PubMed]
- King, M.; Sardella, B. The effects of acclimation temperature, salinity, and behavior on the thermal tolerance of Mozambique tilapia (Oreochromis mossambicus). J. Exp. Zool. A Ecol. Integr. Physiol. 2017, 327, 417–422. [Google Scholar] [CrossRef]
- Kokou, F.; Sasson, G.; Nitzan, T.; Doron-Faigenboim, A.; Harpaz, S.; Cnaani, A.; Mizrahi, I. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. Elife 2018, 7, e36398. [Google Scholar] [CrossRef]
- Long, Y.; Liu, R.; Song, G.; Li, Q.; Cui, Z. Establishment and characterization of a cold-sensitive neural cell line from the brain of tilapia (Oreochromis niloticus). J. Fish. Biol. 2021, 98, 842–854. [Google Scholar] [CrossRef]
- Hu, P.; Liu, M.; Liu, Y.; Wang, J.; Zhang, D.; Niu, H.; Jiang, S.; Wang, J.; Zhang, D.; Han, B. Transcriptome comparison reveals a genetic network regulating the lower temperature limit in fish. Sci. Rep. 2016, 6, 28952. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, R.E.; El-Houseiny, W.; Behairy, A.; Abo-Elmaaty, A.; Al-Sagheer, A.A. The palliative role of Eruca sativa leaves dietary supplementation against oxidative stress, immunosuppression, and growth retardation in temperature-stressed Oreochromis niloticus. J. Therm. Biol. 2019, 84, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Lima de Almeida, C.A.; Lima de Almeida, C.K.; de Fátima Ferreira Martins, E.; Gomes, Â.M.; da Anunciação Pimentel, L.; Pereira, R.T.; Fortes-Silva, R. Effect of the dietary linoleic/alpha-linolenic ratio (n6/n3) on histopathological alterations caused by suboptimal temperature in tilapia (Oreochromis niloticus). J. Therm. Biol. 2019, 85, 102386. [Google Scholar] [CrossRef]
- Zhou, T.; Gui, L.; Liu, M.; Li, W.; Hu, P.; Duarte, D.F.C.; Niu, H.; Chen, L. Transcriptomic responses to low temperature stress in the Nile tilapia, Oreochromis niloticus. Fish. Shellfish Immunol. 2019, 84, 1145–1156. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; You, F.; Wang, Q.; Weng, S.; Liu, H.; Wang, L.; Zhang, P.J.; Tan, X. Transcriptional responses of olive flounder (Paralichthys olivaceus) to low temperature. PLoS ONE 2014, 9, e108582. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.C.; Kang, C.K.; Tang, C.H.; Lee, T.H. Transcriptomic analysis of metabolic pathways in milkfish that respond to salinity and temperature changes. PLoS ONE 2015, 10, e0134959. [Google Scholar]
- Liu, S.; Vallejo, R.L.; Palti, Y.; Gao, G.; Marancik, D.P.; Hernandez, A.G.; Wiens, G.D. Identification of single nucleotide polymorphism markers associated with bacterial cold water disease resistance and spleen size in rainbow trout. Front. Genet. 2015, 6, 298. [Google Scholar] [CrossRef]
- Gracey, A.Y.; Fraser, E.J.; Li, W.; Fang, Y.; Taylor, R.R.; Rogers, J.; Brass, A.; Cossins, A.R. Coping with cold: An integrative, multitissue analysis of the transcriptome of a poikilothermic vertebrate. Proc. Natl. Acad. Sci. USA 2004, 101, 16970–16975. [Google Scholar] [CrossRef] [PubMed]
- Assefa, A.T.; Vandesompele, J.; Thas, O. On the utility of RNA sample pooling to optimize cost and statistical power in RNA sequencing experiments. BMC Genom. 2020, 21, 312. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhang, C.; Mu, J.; Zhang, H.; Yao, W.; Ding, X.; Ding, J.; Chang, Y. All-in-one sequencing: An improved library preparation method for cost-effective and high-throughput next-generation sequencing. Plant. Methods 2020, 16, 74. [Google Scholar] [CrossRef] [PubMed]
- Otani, T.; Furuse, M. Tight Junction Structure and Function Revisited. Trends Cell Biol. 2020, 30, 805–817. [Google Scholar] [CrossRef] [PubMed]
- Ciechanover, A.; Orian, A.; Schwartz, A.L. Ubiquitin-mediated proteolysis: Biological regulation via destruction. Bioessays 2000, 22, 442–451. [Google Scholar] [CrossRef]
- Seger, R.; Krebs, E.G. The MAPK signaling cascade. FASEB J. 1995, 9, 726–735. [Google Scholar] [CrossRef] [PubMed]
- Lind, C.E.; Kilian, A.; Benzie, J.A.H. Development of Diversity Arrays Technology markers as a tool for rapid genomic assessment in Nile tilapia, Oreochromis niloticus. Anim. Genet. 2017, 48, 362–364. [Google Scholar] [CrossRef]
- Landegren, U.; Nilsson, M.; Kwok, P.Y. Reading bits of genetic information: Methods for single-nucleotide polymorphism analysis. Genome Res. 1998, 8, 769–776. [Google Scholar] [CrossRef]
- Houston, R.D.; Taggart, J.B.; Cézard, T.; Bekaert, M.; Lowe, N.R.; Downing, A.; Talbot, R.; Bishop, S.C.; Archibald, A.L.; Bron, J.E. Development and validation of a high density SNP genotyping array for Atlantic salmon (Salmo salar). BMC Genom. 2014, 15, 90. [Google Scholar] [CrossRef] [PubMed]
- Van Bers, N.; Crooijmans, R.; Groenen, M.; Dibbits, B.; Komen, J. SNP marker detection and genotyping in tilapia. Mol. Ecol. Resour. 2012, 12, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Baird, N.A.; Etter, P.D.; Atwood, T.S.; Currey, M.C.; Shiver, A.L.; Lewis, Z.A.; Selker, E.U.; Cresko, W.A.; Johnson, E.A. Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 2008, 3, e3376. [Google Scholar] [CrossRef]
- Xu, J.; Ji, P.; Zhao, Z.; Zhang, Y.; Feng, J.; Wang, J.; Li, J.; Zhang, X.; Zhao, L.; Liu, G. Genome-wide SNP discovery from transcriptome of four common carp strains. PLoS ONE 2012, 7, e48140. [Google Scholar] [CrossRef]
- Xia, J.H.; Wan, Z.Y.; Ng, Z.L.; Wang, L.; Fu, G.H.; Lin, G.; Liu, F.; Yue, G.H. Genome-wide discovery and in silico mapping of gene-associated SNPs in Nile tilapia. Aquaculture 2014, 432, 67–73. [Google Scholar] [CrossRef]
- Peñaloza, C.; Robledo, D.; Barría, A.; Trịnh, T.Q.; Mahmuddin, M.; Wiener, P.; Benzie, J.A.H.; Houston, R.D. Development and validation of an open access SNP array for Nile tilapia (Oreochromis niloticus). G3 2020, 10, 2777–2785. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, J.M.; Joshi, R.; Yoshida, G.M. Genomics to accelerate genetic improvement in tilapia. Anim. Genet. 2020, 51, 658–674. [Google Scholar] [CrossRef] [PubMed]
- Yáñez, J.M.; Yoshida, G.; Barria, A.; Palma-Véjares, R.; Travisany, D.; Díaz, D.; Cáceres, G.; Cádiz, M.I.; López, M.E.; Lhorente, J.P.; et al. High-throughput single nucleotide polymorphism (SNP) discovery and validation through whole-genome resequencing in Nile tilapia (Oreochromis niloticus). Mar. Biotechnol. 2020, 22, 109–117. [Google Scholar] [CrossRef]
- Majeed, S.R.; Vasudevan, L.; Chen, C.Y.; Luo, Y.; Torres, J.A.; Evans, T.M.; Sharkey, A.; Foraker, A.B.; Wong, N.M.; Esk, C. Clathrin light chains are required for the gyrating-clathrin recycling pathway and thereby promote cell migration. Nat. Commun. 2014, 5, 3891. [Google Scholar] [CrossRef] [PubMed]
- Koštál, V.; Korbelová, J.; Poupardin, R.; Moos, M.; Šimek, P. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. 2016, 219, 2358–2367. [Google Scholar] [CrossRef]
- Fan, L.; Wang, L.; Wang, Z. Proteomic characterization of the hepatopancreas in the Pacific white shrimp Litopenaeus vannamei under cold stress: Revealing the organism homeostasis mechanism. Fish. Shellfish Immunol. 2019, 92, 438–449. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Ghany, H.M.; El-Sayed, A.M.; Ezzat, A.A.; Essa, M.A.; Helal, A.M. Dietary lipid sources affect cold tolerance of Nile tilapia (Oreochromis niloticus). J. Therm. Biol. 2019, 79, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhang, Y.; Liu, N.; Chen, J.; Guo, L.; Dai, Z.; Wang, C.; Wu, Z.; Wu, G. Dietary L-arginine supplementation reduces lipid accretion by regulating fatty acid metabolism in Nile tilapia (Oreochromis niloticus). J. Anim. Sci. Biotechnol. 2020, 11, 82. [Google Scholar] [CrossRef]
- Tian, J.; Wen, H.; Lu, X.; Liu, W.; Wu, F.; Yang, C.G.; Jiang, M.; Yu, L.J. Dietary phosphatidylcholine impacts on growth performance and lipid metabolism in adult Genetically Improved Farmed Tilapia (GIFT) strain of Nile tilapia Oreochromis niloticus. Br. J. Nutr. 2018, 119, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Chi, J.R.; Huang, C.W.; Wu, J.L.; Hu, S.Y. Prolactin I microsatellite as genetic markers for characterization of five Oreochromis tilapia species and two Oreochromis Niloticus strains. J. Aquac. Res. Dev. 2014, 5, 251. [Google Scholar] [CrossRef]
- Lu, J.K.; Chou, H.Y.; Gong, H.Y.; Chiou, P.P.; Huang, C.W.; Chen, L.L.; Wu, J.L. The Marine aquaculture biotechnology status and its sustainability in Taiwan. Curr. Biotechnol. 2015, 4, 311–318. [Google Scholar] [CrossRef]
- Herkenhoff, M.E.; Ribeiro, A.O.; Costa, J.M.; Oliveira, A.C.; Dias, M.A.D.; Reis Neto, R.V.; Hilsdorf, A.W.S.; Pinhal, D. Expression profiles of growth-related genes in two Nile tilapia strains and their crossbred provide insights into introgressive breeding effects. Anim. Genet. 2020, 51, 611–616. [Google Scholar] [CrossRef]
- Wang, J.H.; Lee, S.K.; Lai, Y.C.; Lin, C.C.; Wang, T.Y.; Lin, Y.R.; Hsu, T.H.; Huang, C.W.; Chiang, C.P. Anomalous Behaviors Detection for Underwater Fish Using AI Techniques. IEEE Access 2020, 8, 1–11. [Google Scholar] [CrossRef]
Sample 1 | Clean Reads 2 | Clean Bases 3 | Q20 (%) 4 | Q30 (%) 5 | GC (%) 6 | RL (bp) 7 |
---|---|---|---|---|---|---|
CT-B | 29,473,122 | 4,420,968,300 | 98.88 | 96.28 | 49.36 | 150 |
CT-G | 29,944,552 | 4,491,682,800 | 98.69 | 95.63 | 51.22 | 150 |
CT-L | 29,536,538 | 4,430,480,700 | 98.76 | 95.83 | 50.54 | 150 |
CT-M | 29,268,400 | 4,390,260,000 | 98.9 | 96.27 | 52.25 | 150 |
CS-B | 29,547,582 | 4,432,137,300 | 98.72 | 95.85 | 49.57 | 150 |
CS-G | 28,697,764 | 4,304,664,600 | 98.8 | 96.04 | 49.92 | 150 |
CS-L | 29,117,880 | 4,367,682,000 | 99.05 | 96.72 | 50.07 | 150 |
CS-M | 29,179,716 | 4,376,957,400 | 98.81 | 96.02 | 52.11 | 150 |
Transcriptome Dataset | Unigene Number | Percentage (%) |
---|---|---|
NR 1 | 74,656 | 58.26 |
NT 2 | 97,575 | 76.14 |
Swiss-Prot 3 | 61,098 | 47.68 |
COG 4 | 26,342 | 20.56 |
CO 5 | 7154 | 5.58 |
KEGG 6 | 59,699 | 46.59 |
Overall (total annotation) 7 | 100,108 | 78.12 |
Total | 128,147 | 100 |
No. | Unigene ID | SSR | Length | Position | LG 1 | Location | Gene Annotation 2 |
---|---|---|---|---|---|---|---|
1 | CL138_1 | (A)n | 2492 | 1902 | LG7 | 3′-UTR | CTD small phosphatase-like protein 2-A |
2 | CL1487_25 | (GT)n | 8664 | 1862 | LG16 | 5′-UTR | Nuclear pore complex protein Nup98-Nup96 isoform X6 |
3 | CL1876_16 | (TTC)n | 7751 | 7251 | LG4 | 3′-UTR | Myosin-10 isoform X3 |
4 | CL5902_1 | (G)n | 2572 | 569 | LG12 | 3′-UTR | Ubiquitin-conjugating enzyme E2 G1 |
5 | CL9541_2 | (CAG)n | 5825 | 2164 | LG17 | Exon | AT-rich interactive domain-containing protein 2 |
6 | CL10781_10 | (A)n | 9102 | 8403 | LG8 | 3′-UTR | Fatty acid synthase isoform X1 |
7 | CL279_7 | (GCA)n | 4772 | 2266 | LG23 | Exon | R3H domain-containing protein 1 |
8 | CL2262_1 | (T)n | 3105 | 3083 | LG2 | 3′-UTR | TNFAIP3-interacting protein 1 isoform X1 |
9 | Unigene7071 | (GT)n | 2729 | 1722 | LG14 | Intron | Protein IWS1 homolog isoform X3 |
10 | Unigene196 | (CA)n | 5125 | 5073 | LG14 | 3′-UTR | Serine/threonine-protein kinase SIK3 isoform X3 |
11 | CL2061_8 | (TC)n | 1393 | 102 | LG7 | 5′-UTR | Glucose-6-phosphate isomerase-like |
12 | CL9318_1 | (ATT)n | 706 | 530 | LG12 | 3′-UTR | Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial-like |
13 | CL241_10 | (GAG)n | 5371 | 3079 | LG8 | Exon | Rho GTPase-activating protein 17 isoform X1 |
SNP | Unigene ID | Length | LG 1 | Allele | Location | Change 2 | Gene Annotation 3 |
---|---|---|---|---|---|---|---|
1 | CL4970 | 3236 | 2 | T/C | UTR | - | pre-mRNA-splicing factor RBM22 |
2 | CL6296_2 | 3447 | 23 | d/A | UTR | - | lipoamide acyltransferase component of branched-chain alpha-keto acid dehydrogenase complex, mitochondrial |
3 | CL2980_2 | 1540 | 3 | G/C | Exon | P/P | NADH dehydrogenase |
4 | CL6447_4 | 3573 | ND | C/T | Intron | - | WD repeat domain phosphoinositide-interacting protein 2 isoform X1 |
5 | CL4350_5 | 3286 | 23 | G/A | UTR | - | protein Jade-3 |
6 | CL4943_1 | 2166 | 2 | A/G | UTR | - | NEDD4 family-interacting protein 1 isoform X2 |
7 | CL179_6 | 5803 | 5 | G/A | Exon | V/I | period circadian protein homolog 3-like isoform X4 |
8 | CL4788_1 | 1945 | 4 | d/G | UTR | - | hsc70-interacting protein isoform X2 |
9 | CL4788_1 | 1945 | 4 | d/A | UTR | - | |
10 | CL5212_1 | 1774 | 2 | d/A | UTR | - | clathrin light chain B-like isoform X4 |
11 | CL11264_1 | 2075 | 2 | G/A | UTR | - | cyclin-G1-like |
12 | CL11264_1 | 2075 | 2 | C/T | UTR | - | |
13 | CL11264_1 | 2075 | 2 | C/A | UTR | - | |
14 | CL11264_1 | 2075 | 2 | T/C | UTR | - | |
15 | CL11264_1 | 2075 | 2 | G/A | Exon | I/V | |
16 | CL3637_1 | 10,003 | 23 | T/A | UTR | - | protein PRRC2C |
17 | CL715_12 | 5227 | 13 | d/A | Exon | S/K | adipocyte plasma membrane-associated protein isoform X2 |
18 | CL715_12 | 5227 | 13 | d/C | UTR | - | |
19 | CL715_12 | 5227 | 13 | d/C | UTR | - | |
20 | CL715_12 | 5227 | 13 | d/G | UTR | - | |
21 | CL8349_2 | 3478 | 7 | T/C | UTR | - | ATP-dependent Clp protease ATP-binding subunit clpX-like, mitochondrial isoform X1 |
22 | CL4663_1 | 3831 | ND | A/T | UTR | - | bone morphogenetic protein receptor type-1A |
23 | CL11264_2 | 2074 | 2 | A/G | UTR | - | cyclin-G1-like |
24 | CL11264_2 | 2074 | 2 | C/T | UTR | - | |
25 | CL11264_2 | 2074 | 2 | G/T | UTR | - | |
26 | CL4356_2 | 1809 | ND | d/G | UTR | - | bone morphogenetic protein receptor type-1A |
27 | CL1248_2 | 3831 | 2 | C/T | Intron | - | dynactin subunit 4 isoform X2 |
28 | CL2394_12 | 8460 | 13 | G/A | Exon | R/H | spectrin beta chain, non-erythrocytic 1 |
29 | CL2394_12 | 8460 | 13 | C/T | Exon | V/I | |
30 | CL4788_2 | 2157 | 4 | A/G | Exon | A/A | hsc70-interacting protein isoform X2 |
31 | CL144_1 | 1772 | 13 | d/G | UTR | - | E3 ubiquitin-protein ligase UBR2 isoform X3 |
32 | CL4659_4 | 3929 | 13 | d/T | Exon | F/F | echinoderm microtubule-associated protein-like 4 isoform X3 |
33 | CL179_13 | 1906 | 5 | d/T | UTR | - | period circadian protein homolog 3-like isoform X4 |
34 | CL569_1 | 3529 | 13 | d/A | Exon | P/P | cullin-9 isoform X1 |
35 | CL2216_1 | 1929 | 8 | T/C | Exon | S/T | dynamin-binding protein isoform X3 |
36 | CL4659_13 | 4077 | 13 | d/T | Exon | D/D | echinoderm microtubule-associated protein-like 4 isoform X3 |
37 | CL4659_13 | 4077 | 13 | d/A | Exon | T/N |
Locus 1 | Ho | He | PIC | FIS | p Value 2 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | YH | NT | RF | YH | NT | RF | YH | NT | RF | YH | NT | ||
UNH916 | 0.722 | 0.480 | 0.532 | 0.775 | 0.485 | 0.395 | 0.769 | 0.483 | 0.390 | 0.061 | 0.004 | −0.362 | 0.345 |
UNH999 | 0.778 | 0.686 | 0.447 | 0.767 | 0.671 | 0.395 | 0.761 | 0.668 | 0.390 | −0.022 | −0.028 | −0.144 | 0.103 |
CL1487_25 | 0.472 | 0.726 | 0.000 | 0.624 | 0.676 | 0.000 | 0.620 | 0.672 | 0.000 | 0.239 | −0.079 | — | 0.537 |
CL1876_16 | 0.181 | 0.000 | 0.000 | 0.289 | 0.000 | 0.000 | 0.287 | 0.000 | 0.000 | 0.371 | — | — | 0.004 ** |
CL5902_1 | 0.903 | 0.441 | 0.000 | 0.753 | 0.658 | 0.000 | 0.747 | 0.655 | 0.000 | −0.208 | 0.326 | — | 0.456 |
CL9541_2 | 0.472 | 0.598 | 0.447 | 0.523 | 0.472 | 0.351 | 0.520 | 0.470 | 0.347 | 0.091 | −0.273 | −0.288 | 0.217 |
CL10781_10 | 0.278 | 0.559 | 0.489 | 0.412 | 0.592 | 0.599 | 0.410 | 0.589 | 0.593 | 0.322 | 0.051 | 0.175 | 0.178 |
CL279_7 | 0.000 | 0.000 | 0.000 | 0.130 | 0.000 | 0.000 | 0.129 | 0.000 | 0.000 | 1.000 | — | — | 0.017 * |
CL2262_1 | 0.722 | 0.784 | 0.894 | 0.798 | 0.728 | 0.678 | 0.793 | 0.725 | 0.671 | 0.089 | −0.082 | −0.332 | 0.257 |
Unigene7071 | 0.694 | 0.196 | 0.575 | 0.749 | 0.201 | 0.431 | 0.744 | 0.200 | 0.427 | 0.066 | 0.021 | −0.346 | 0.011 * |
Unigene196 | 0.750 | 0.686 | 0.553 | 0.776 | 0.710 | 0.454 | 0.771 | 0.706 | 0.449 | 0.027 | 0.028 | −0.232 | 0.098 |
CL9318_1 | 0.667 | 0.284 | 0.000 | 0.759 | 0.283 | 0.000 | 0.754 | 0.282 | 0.000 | 0.116 | −0.010 | — | 0.010 * |
CL241_10 | 0.319 | 0.382 | 0.575 | 0.383 | 0.367 | 0.505 | 0.381 | 0.365 | 0.499 | 0.161 | −0.048 | −0.151 | 0.255 |
Mean | 0.535 | 0.448 | 0.347 | 0.595 | 0.449 | 0.293 | 0.591 | 0.447 | 0.290 | 0.178 | −0.008 | −0.210 | |
SD | 0.272 | 0.264 | 0.306 | 0.225 | 0.260 | 0.256 | 0.223 | 0.259 | 0.253 | 0.277 | 0.135 | 0.165 |
Unigene | SNP | High Mass Allele Calls | Heterozygous Calls | Low Mass Allele Calls | Homozygous freq | Heterozygous freq | HW ChiSquare | HW p-Value | Trait p-Value | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RF | YH | NT | RF | YH | NT | RF | YH | NT | RF | YH | NT | RF | YH | NT | |||||
CL4970 | C/T | 0 | 0 | 0 | 0 | 2 | 0 | 72 | 94 | 22 | 1.000 | 0.979 | 1.000 | 0.000 | 0.021 | 0.000 | 0.01 | 0.940 | 0.879 |
CL6296_2 | A/d | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 96 | 22 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | - | - | - |
CL2980_2 | C/G | 13 | 13 | 0 | 31 | 35 | 0 | 27 | 45 | 22 | 0.563 | 0.624 | 1.000 | 0.437 | 0.376 | 0.000 | 6.08 | 0.010 | 0.148 |
CL6447_4 | C/T | 25 | 49 | 0 | 28 | 36 | 22 | 15 | 10 | 0 | 0.588 | 0.621 | 0.000 | 0.412 | 0.379 | 1.000 | 0.00 | 1.000 | 0.056 |
CL4350_5 | A/G | 11 | 0 | 0 | 23 | 0 | 13 | 38 | 96 | 9 | 0.681 | 1.000 | 0.409 | 0.319 | 0.000 | 0.591 | 13.60 | 0.000 | 0.589 |
CL4943_1 | A/G | 37 | 73 | 22 | 28 | 20 | 0 | 2 | 3 | 0 | 0.582 | 0.792 | 1.000 | 0.418 | 0.208 | 0.000 | 0.06 | 0.800 | 0.919 |
CL179_6 | G/A | 58 | 89 | 22 | 13 | 7 | 0 | 1 | 0 | 0 | 0.819 | 0.927 | 1.000 | 0.181 | 0.073 | 0.000 | 0.23 | 0.630 | 0.591 |
CL4788_1_1 | G/d | 16 | 10 | 0 | 29 | 37 | 22 | 27 | 48 | 0 | 0.597 | 0.611 | 0.000 | 0.403 | 0.389 | 1.000 | 0.00 | 0.980 | 0.094 |
CL4788_1_2 | A/d | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 96 | 22 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | - | - | - |
CL5212_1 | A/d | 11 | 0 | 0 | 30 | 13 | 0 | 31 | 83 | 22 | 0.583 | 0.865 | 1.000 | 0.417 | 0.135 | 0.000 | 7.75 | 0.010 | 0.001 ** |
CL11264_1_1 | G/A | 38 | 95 | 22 | 28 | 1 | 0 | 6 | 0 | 0 | 0.611 | 0.990 | 1.000 | 0.389 | 0.010 | 0.000 | 8.15 | 0.000 | 0.378 |
CL11264_1_2 | C/T | 38 | 95 | 22 | 27 | 1 | 0 | 7 | 0 | 0 | 0.625 | 0.990 | 1.000 | 0.375 | 0.010 | 0.000 | 11.92 | 0.000 | 0.602 |
CL11264_1_3 | C/A | 37 | 95 | 22 | 27 | 1 | 0 | 7 | 0 | 0 | 0.620 | 0.990 | 1.000 | 0.380 | 0.010 | 0.000 | 11.81 | 0.000 | 0.599 |
CL11264_1_4 | T/C | 1 | 0 | 0 | 25 | 1 | 0 | 46 | 95 | 22 | 0.653 | 0.990 | 1.000 | 0.347 | 0.010 | 0.000 | 0.00 | 0.970 | 0.650 |
CL11264_1_5 | G/A | 7 | 0 | 0 | 26 | 1 | 0 | 38 | 95 | 22 | 0.634 | 0.990 | 1.000 | 0.366 | 0.010 | 0.000 | 12.91 | 0.000 | 0.490 |
CL3637_1 | T/A | 38 | 96 | 22 | 25 | 0 | 0 | 9 | 0 | 0 | 0.653 | 1.000 | 1.000 | 0.347 | 0.000 | 0.000 | 22.54 | 0.000 | 0.473 |
CL715_12_1 | A/d | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 96 | 22 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | - | - | - |
CL715_12_2 | C/d | 28 | 7 | 0 | 35 | 43 | 22 | 9 | 46 | 0 | 0.514 | 0.552 | 0.000 | 0.486 | 0.448 | 1.000 | 242.63 | 0.000 | 0.099 |
CL715_12_3 | C/d | 9 | 0 | 0 | 24 | 0 | 22 | 38 | 96 | 0 | 0.662 | 1.000 | 0.000 | 0.338 | 0.000 | 1.000 | 200.20 | 0.000 | 0.488 |
CL715_12_4 | G/d | 0 | 0 | 0 | 0 | 0 | 0 | 67 | 96 | 22 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | - | - | - |
CL8349_2 | C/T | 0 | 28 | 12 | 6 | 50 | 10 | 66 | 18 | 0 | 0.917 | 0.479 | 0.545 | 0.083 | 0.521 | 0.455 | 13.43 | 0.000 | 0.366 |
CL4663_1 | T/A | 4 | 0 | 0 | 21 | 0 | 22 | 38 | 95 | 0 | 0.667 | 1.000 | 0.000 | 0.333 | 0.000 | 1.000 | 0.06 | 0.810 | 0.769 |
CL11264_2_1 | G/A | 2 | 0 | 0 | 27 | 1 | 0 | 43 | 95 | 22 | 0.625 | 0.990 | 1.000 | 0.375 | 0.010 | 0.000 | 0.38 | 0.540 | 0.650 |
CL11264_2_2 | C/T | 46 | 95 | 22 | 25 | 1 | 0 | 1 | 0 | 0 | 0.653 | 0.990 | 1.000 | 0.347 | 0.010 | 0.000 | 0.00 | 0.970 | 0.650 |
CL11264_2_3 | G/T | 41 | 95 | 22 | 25 | 1 | 0 | 1 | 0 | 0 | 0.627 | 0.990 | 1.000 | 0.373 | 0.010 | 0.000 | 0.00 | 0.950 | 0.650 |
CL4356_2 | G/d | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 96 | 22 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | - | - | - |
CL1248_2 | T/C | 4 | 0 | 0 | 27 | 3 | 0 | 40 | 93 | 22 | 0.620 | 0.969 | 1.000 | 0.380 | 0.031 | 0.000 | 2.83 | 0.090 | 0.581 |
CL2394_12_1 | T/C | 4 | 0 | 0 | 24 | 9 | 22 | 44 | 87 | 0 | 0.667 | 0.906 | 0.000 | 0.333 | 0.094 | 1.000 | 0.41 | 0.520 | 0.888 |
CL2394_12_2 | A/G | 4 | 0 | 0 | 24 | 0 | 22 | 44 | 96 | 0 | 0.667 | 1.000 | 0.000 | 0.333 | 0.000 | 1.000 | 0.01 | 0.920 | 0.888 |
CL4788_2 | G/A | 23 | 80 | 14 | 35 | 15 | 8 | 14 | 1 | 0 | 0.514 | 0.844 | 0.636 | 0.486 | 0.156 | 0.364 | 3.85 | 0.050 | 0.104 |
CL144_1 | G/d | 0 | 0 | 0 | 0 | 0 | 0 | 70 | 96 | 22 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | - | - | - |
CL4659_4 | T/d | 4 | 0 | 0 | 23 | 0 | 22 | 44 | 96 | 0 | 0.676 | 1.000 | 0.000 | 0.324 | 0.000 | 1.000 | 199.71 | 0.000 | 0.926 |
CL179_13 | T/d | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 96 | 22 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | - | - | - |
CL569_1 | A/d | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 96 | 22 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | - | - | - |
CL2216_1 | T/C | 70 | 96 | 12 | 1 | 0 | 10 | 0 | 0 | 0 | 0.986 | 1.000 | 0.545 | 0.014 | 0.000 | 0.455 | 0.17 | 0.680 | 0.478 |
CL4659_13_1 | T/d | 0 | 0 | 0 | 0 | 0 | 0 | 72 | 96 | 22 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | - | - | - |
CL4659_13_2 | A/d | 0 | 0 | 0 | 0 | 0 | 0 | 66 | 95 | 22 | 1.000 | 1.000 | 1.000 | 0.000 | 0.000 | 0.000 | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, P.-Y.; Li, J.-X.; Hsu, T.-H.; Gong, H.-Y.; Lin, C.-Y.; Wang, J.-H.; Huang, C.-W. Identification of Genes Related to Cold Tolerance and Novel Genetic Markers for Molecular Breeding in Taiwan Tilapia (Oreochromis spp.) via Transcriptome Analysis. Animals 2021, 11, 3538. https://doi.org/10.3390/ani11123538
Chu P-Y, Li J-X, Hsu T-H, Gong H-Y, Lin C-Y, Wang J-H, Huang C-W. Identification of Genes Related to Cold Tolerance and Novel Genetic Markers for Molecular Breeding in Taiwan Tilapia (Oreochromis spp.) via Transcriptome Analysis. Animals. 2021; 11(12):3538. https://doi.org/10.3390/ani11123538
Chicago/Turabian StyleChu, Pei-Yun, Jia-Xian Li, Te-Hua Hsu, Hong-Yi Gong, Chung-Yen Lin, Jung-Hua Wang, and Chang-Wen Huang. 2021. "Identification of Genes Related to Cold Tolerance and Novel Genetic Markers for Molecular Breeding in Taiwan Tilapia (Oreochromis spp.) via Transcriptome Analysis" Animals 11, no. 12: 3538. https://doi.org/10.3390/ani11123538
APA StyleChu, P.-Y., Li, J.-X., Hsu, T.-H., Gong, H.-Y., Lin, C.-Y., Wang, J.-H., & Huang, C.-W. (2021). Identification of Genes Related to Cold Tolerance and Novel Genetic Markers for Molecular Breeding in Taiwan Tilapia (Oreochromis spp.) via Transcriptome Analysis. Animals, 11(12), 3538. https://doi.org/10.3390/ani11123538