Regulation of Swine Growth by Backfat Tissue during Growing and Finishing Stages
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Sample Collection
2.2. RNA Extraction, Library Preparation, and Sequencing
2.3. DEG Profiling
2.4. Functional Enrichment Analyses
3. Results
3.1. DEG Profiling
3.2. Functional Annotations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sans, P.; Combris, P. World meat consumption patterns: An overview of the last fifty years (1961–2011). Meat Sci. 2015, 109, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Knecht, D.; Duziński, K. The effect of sex, carcass mass, back fat thickness and lean meat content on pork ham and loin characteristics. Arch. Anim. Breed. 2016, 59, 51–57. [Google Scholar] [CrossRef]
- Bosi, P.; Russo, V. The production of the heavy pig for high quality processed products. Ital. J. Anim. Sci. 2004, 3, 309–321. [Google Scholar] [CrossRef]
- Liu, Y.; Kong, X.; Jiang, G.; Deng, J.; Yang, X.; Li, F.; Xiong, X.; Yin, Y. Effects of dietary protein/energy ratio on growth performance, carcass trait, meat quality, and plasma metabolites in pigs of different genotypes. J. Anim. Sci. Biotechnol. 2015, 6, 36. [Google Scholar] [CrossRef]
- Ibáñez-Escriche, N.; Magallón, E.; Gonzalez, E.; Tejeda, J.; Noguera, J. Genetic parameters and crossbreeding effects of fat deposition and fatty acid profiles in Iberian pig lines. J. Anim. Sci. 2016, 94, 28–37. [Google Scholar] [CrossRef]
- Maes, D.; Janssens, G.; Delputte, P.; Lammertyn, A.; de Kruif, A. Back fat measurements in sows from three commercial pig herds: Relationship with reproductive efficiency and correlation with visual body condition scores. Livest. Prod. Sci. 2004, 91, 57–67. [Google Scholar] [CrossRef]
- Cho, K.; Kim, M.; Jeon, G.; Chung, H. Association of genetic variants for FABP3 gene with back fat thickness and intramuscular fat content in pig. Mol. Biol. Rep. 2011, 38, 2161–2166. [Google Scholar] [CrossRef]
- Suzuki, K.; Irie, M.; Kadowaki, H.; Shibata, T.; Kumagai, M.; Nishida, A. Genetic parameter estimates of meat quality traits in Duroc pigs selected for average daily gain, longissimus muscle area, backfat thickness, and intramuscular fat content. J. Anim. Sci. 2005, 83, 2058–2065. [Google Scholar] [CrossRef]
- Tummaruk, P.; Lundeheim, N.; Einarsson, S.; Dalin, A.-M. Effect of birth litter size, birth parity number, growth rate, backfat thickness and age at first mating of gilts on their reproductive performance as sows. Anim. Reprod. Sci. 2001, 66, 225–237. [Google Scholar] [CrossRef]
- Fontanesi, L.; Schiavo, G.; Galimberti, G.; Calò, D.G.; Scotti, E.; Martelli, P.L.; Buttazzoni, L.; Casadio, R.; Russo, V. A genome wide association study for backfat thickness in Italian Large White pigs highlights new regions affecting fat deposition including neuronal genes. BMC Genom. 2012, 13, 583. [Google Scholar] [CrossRef]
- Fan, B.; Onteru, S.K.; Du, Z.-Q.; Garrick, D.J.; Stalder, K.J.; Rothschild, M.F. Genome-wide association study identifies loci for body composition and structural soundness traits in pigs. PLoS ONE 2011, 6, e14726. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Bruce, H.; Yang, T.; Charagu, P.; Kemp, R.A.; Boddicker, N.; Miar, Y.; Wang, Z.; Plastow, G. Genome wide association studies (GWAS) identify QTL on SSC2 and SSC17 affecting loin peak shear force in crossbred commercial pigs. PLoS ONE 2016, 11, e0145082. [Google Scholar] [CrossRef]
- Will, K.; Kuzinski, J.; Kalbe, C.; Palin, M.; Rehfeldt, C. Effects of leptin and adiponectin on the growth of porcine myoblasts are associated with changes in p44/42 MAPK signaling. Domest. Anim. Endocrinol. 2013, 45, 196–205. [Google Scholar] [CrossRef]
- Pérez-Enciso, M.; Clop, A.; Noguera, J.; Ovilo, C.; Coll, A.; Folch, J.; Babot, D.; Estany, J.; Oliver, M.; Diaz, I. A QTL on pig chromosome 4 affects fatty acid metabolism: Evidence from an Iberian by Landrace intercross. J. Anim. Sci. 2000, 78, 2525–2531. [Google Scholar] [CrossRef] [PubMed]
- Koskinen-Kolasa, A.; Vuolteenaho, K.; Moilanen, T.; Moilanen, E. Adipokines leptin, adiponectin and resistin and their associations to MMPS, IL-6, COMP and radiographic severity of OA. Osteoarthr. Cartil. 2016, 24, S78. [Google Scholar] [CrossRef]
- Takashima, S.; Nishii, N.; Kato, A.; Matsubara, T.; Shibata, S.; Kitagawa, H. Molecular cloning of feline resistin and the expression of resistin, leptin, and adiponectin in the adipose tissue of normal and obese cats. J. Vet. Med. Sci. 2016, 78, 23–28. [Google Scholar] [CrossRef][Green Version]
- Schuster, S.C. Next-generation sequencing transforms today’s biology. Nat. Methods 2008, 5, 16–18. [Google Scholar] [CrossRef]
- Spurlock, M.E.; Ranalletta, M.A.; Cornelius, S.G.; Frank, G.R.; Willis, G.M.; Ji, S.; Grant, A.L.; Bldwell, C.A. Leptin expression in porcine adipose tissue is not increased by endotoxin but is reduced by growth hormone. J. Interferon Cytokine Res. 1998, 18, 1051–1058. [Google Scholar] [CrossRef]
- Hood, R.; Allen, C. Cellularity of porcine adipose tissue: Effects of growth and adiposity. J. Lipid Res. 1977, 18, 275–284. [Google Scholar] [CrossRef]
- Kim, K. Genetic Structure of Korean Native Pig Using Microsatellite Markers. Korean. J. Genet. 2002, 24, 1–7. [Google Scholar]
- Cho, I.-C.; Yoo, C.-K.; Lee, J.-B.; Jung, E.-J.; Han, S.-H.; Lee, S.-S.; Ko, M.-S.; Lim, H.-T.; Park, H.-B. Genome-wide QTL analysis of meat quality-related traits in a large F 2 intercross between Landrace and Korean native pigs. Genet. Sel. Evol. 2015, 47, 7. [Google Scholar] [CrossRef]
- Kim, D.; Seong, P.; Cho, S.; Kim, J.; Lee, J.; Jo, C.; Lim, D. Fatty acid composition and meat quality traits of organically reared Korean native black pigs. Livest. Sci. 2009, 120, 96–102. [Google Scholar] [CrossRef]
- White, B.; Lan, Y.; McKeith, F.; Novakofski, J.; Wheeler, M.; McLaren, D. Growth and body composition of Meishan and Yorkshire barrows and gilts. J. Anim. Sci. 1995, 73, 738–749. [Google Scholar] [CrossRef] [PubMed]
- Hubner, N.; Wallace, C.A.; Zimdahl, H.; Petretto, E.; Schulz, H.; Maciver, F.; Mueller, M.; Hummel, O.; Monti, J.; Zidek, V. Integrated transcriptional profiling and linkage analysis for identification of genes underlying disease. Nat. Genet. 2005, 37, 243–253. [Google Scholar] [CrossRef] [PubMed]
- Springer, N.M.; Stupar, R.M. Allelic variation and heterosis in maize: How do two halves make more than a whole? Genome Res. 2007, 17, 264–275. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Langmead, B.; Salzberg, S.L.J.N.M. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 2015, 12, 357–360. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W.J.B. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014, 30, 923–930. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.D.; Oshlack, A.J.G.B. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010, 11, R25. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K.J.B. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Supek, F.; Bošnjak, M.; Škunca, N.; Šmuc, T.J.P.O. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE 2011, 6, e21800. [Google Scholar] [CrossRef] [PubMed]
- Bindea, G.; Mlecnik, B.; Hackl, H.; Charoentong, P.; Tosolini, M.; Kirilovsky, A.; Fridman, W.-H.; Pagès, F.; Trajanoski, Z.; Galon, J.J.B. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 2009, 25, 1091–1093. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Smoot, M.E.; Ono, K.; Ruscheinski, J.; Wang, P.-L.; Ideker, T.J.B. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 2011, 27, 431–432. [Google Scholar] [CrossRef] [PubMed]
- Whittemore, C.T. An approach to pig growth modeling. J. Anim. Sci. 1986, 63, 615–621. [Google Scholar] [CrossRef]
- Kim, S.-C.; Jang, H.-C.; Lee, S.-D.; Jung, H.-J.; Park, J.-C.; Lee, S.-H.; Kim, T.-H.; Choi, B.-H. Changes in expression of insulin signaling pathway genes by dietary fat source in growing-finishing pigs. J. Anim. Sci. Technol. 2014, 56, 12. [Google Scholar] [CrossRef] [PubMed]
- Turman, E.J.; Andrews, F. Some effects of purified anterior pituitary growth hormone on swine. J. Anim. Sci. 1955, 14, 7–18. [Google Scholar] [CrossRef]
- Waltonand, P.E.; Etherton, T.D. Stimulation of lipogenesis by insulin in swine adipose tissue: Antagonism by porcine growth hormone. J. Anim. Sci. 1986, 62, 1584–1595. [Google Scholar] [CrossRef]
- Walton, P.E.; Etherton, T.D.; Evock, C.M. Antagonism of insulin action in cultured pig adipose tissue by pituitary and recombinant porcine growth hormone: Potentiation by hydrocortisone. Endocrinology 1986, 118, 2577–2581. [Google Scholar] [CrossRef] [PubMed]
- Dunshea, F.; Harris, D.; Bauman, D.; Boyd, R.; Bell, A. Effect of porcine somatotropin on in vivo glucose kinetics and lipogenesis in growing pigs. J. Anim. Sci. 1992, 70, 141–151. [Google Scholar] [CrossRef]
- Pelleymounter, M.A.; Cullen, M.J.; Baker, M.B.; Hecht, R.; Winters, D.; Boone, T.; Collins, F.J.S. Effects of the obese gene product on body weight regulation in ob/ob mice. Science 1995, 269, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Lin, J.; Hausman, D.B.; Martin, R.J.; Dean, R.G.; Hausman, G.J. Alterations in fetal adipose tissue leptin expression correlate with the development of adipose tissue. Neonatology 2000, 78, 41–47. [Google Scholar] [CrossRef] [PubMed]
- Park, S.-J.; Ha, J.; Kim, I.-S.; Kwon, S.G.; Hwang, J.H.; Park, D.H.; Kang, D.G.; Kim, T.W.; Kim, S.W.; Kim, C.W. Effects of LEP, GYS1, MYOD1, and MYF5 polymorphisms on pig economic traits. Ann. Anim. Sci. 2015, 15, 629. [Google Scholar] [CrossRef]
- Barb, C.; Hausman, G.; Houseknecht, K.J.D.A.E. Biology of leptin in the pig. Domest. Anim. Endocrinol. 2001, 21, 297–317. [Google Scholar] [CrossRef]
- Sparrow, J.C.; Nowak, K.J.; Durling, H.J.; Beggs, A.H.; Wallgren-Pettersson, C.; Romero, N.; Nonaka, I.; Laing, N.G. Muscle disease caused by mutations in the skeletal muscle alpha-actin gene (ACTA1). Neuromuscul. Disord. 2003, 13, 519–531. [Google Scholar] [CrossRef]
- Nowak, K.J.; Wattanasirichaigoon, D.; Goebel, H.H.; Wilce, M.; Pelin, K.; Donner, K.; Jacob, R.L.; Hübner, C.; Oexle, K.; Anderson, J.R. Mutations in the skeletal muscle α-actin gene in patients with actin myopathy and nemaline myopathy. Nat. Genet. 1999, 23, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Stratil, A.; Horák, P.; Nesvadbová, M.; Van Poucke, M.; Dvořáková, V.; Stupka, R.; Čítek, J.; Zadinová, K.; Peelman, L.J.; Knoll, A. Genomic structure and expression of the porcine ACTC1 gene. Czech J. Anim. Sci. 2018, 63, 371–378. [Google Scholar]
- Kim, D.-Y.; Kim, J.-M. Multi-omics integration strategies for animal epigenetic studies. Asian Australas. J. Anim. Sci. 2021, 34, 1271–1282. [Google Scholar] [CrossRef]
Group | Sample Name | Raw | After Trimming | After Mapping | ||||
---|---|---|---|---|---|---|---|---|
Total | GC (%) | Remaining Reads after Trimming | Trimmed GC (%) | Trimming Rate (%) | Uniquely Mapped Rate (%) | Overall Mapped Rate (%) | ||
10 weeks | Y5-1l | 36,025,628 | 51 | 35,762,755 | 51 | 0.73 | 79.27 | 95.77 |
Y5-5l | 31,917,774 | 51 | 31,628,028 | 51 | 0.91 | 77.28 | 94.94 | |
Y5-7l | 29,776,194 | 50 | 29,565,748 | 50 | 0.71 | 73.81 | 91.95 | |
Y5-8l | 31,526,567 | 52 | 31,270,069 | 52 | 0.81 | 72.46 | 93.22 | |
Y5-10l | 31,661,523 | 58 | 31,332,164 | 58 | 1.04 | 44.99 | 88.17 | |
Y5-11l | 32,965,477 | 54 | 32,684,669 | 54 | 0.85 | 64.63 | 94.07 | |
26 weeks | Y5-2l | 35,158,741 | 48 | 34,906,703 | 48 | 0.72 | 82.01 | 95.30 |
Y5-3l | 37,475,105 | 48 | 37,264,232 | 48 | 0.56 | 78.73 | 94.05 | |
Y5-4l | 49,961,237 | 51 | 49,411,205 | 51 | 1.10 | 65.19 | 94.86 | |
Y5-6l | 29,944,115 | 48.49 | 29,593,083 | 48.49 | 1.17 | 63.47 | 84.46 | |
Y5-9l | 33,926,962 | 47 | 33,652,163 | 47 | 0.81 | 78.71 | 93.10 | |
Y5-12l | 38,740,925 | 49 | 38,469,448 | 49 | 0.70 | 71.37 | 94.58 | |
Average | 34,923,354 | 50.82 | 34,628,356 | 50.8 | 0.84 | 70.99 | 92.87 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, Y.-J.; Lim, B.; Kim, D.-Y.; Lim, K.-S.; Kim, J.-M. Regulation of Swine Growth by Backfat Tissue during Growing and Finishing Stages. Animals 2021, 11, 3511. https://doi.org/10.3390/ani11123511
Seo Y-J, Lim B, Kim D-Y, Lim K-S, Kim J-M. Regulation of Swine Growth by Backfat Tissue during Growing and Finishing Stages. Animals. 2021; 11(12):3511. https://doi.org/10.3390/ani11123511
Chicago/Turabian StyleSeo, Young-Jun, Byeonghwi Lim, Do-Young Kim, Kyu-Sang Lim, and Jun-Mo Kim. 2021. "Regulation of Swine Growth by Backfat Tissue during Growing and Finishing Stages" Animals 11, no. 12: 3511. https://doi.org/10.3390/ani11123511
APA StyleSeo, Y.-J., Lim, B., Kim, D.-Y., Lim, K.-S., & Kim, J.-M. (2021). Regulation of Swine Growth by Backfat Tissue during Growing and Finishing Stages. Animals, 11(12), 3511. https://doi.org/10.3390/ani11123511