Voisin Rational Grazing as a Sustainable Alternative for Livestock Production
Abstract
:Simple Summary
Abstract
1. Introduction
2. Voisin Rational Grazing and Its Four Principles
3. Voisin Rational Grazing Refinements and Implementation
4. Voisin Rational Grazing Responds to Current Global Challenges
4.1. Climate Change
Reducing Emissions
4.2. Ecosystem Services
4.2.1. Maximising Carbon Sequestration and Storage in VRG
4.2.2. Soil Health and Biodiversity of Swards
4.3. Food Quality
4.4. Animal Productivity
4.5. Farm Net Income
4.6. Environmental Externalities
4.7. Animal Welfare
5. Voisin Rational Grazing Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- O’Neill, D.W.; Fanning, A.L.; Lamb, W.F.; Steinberger, J.K. A good life for all within planetary boundaries. Nat. Sustain. 2018, 1, 88–95. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., Buendia, E.C., Masson-Delmotte, V., Pörtner, H.-O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., Diemen, R., et al., Eds.; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change through Livestock—A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013; ISBN 9789251079201. [Google Scholar]
- Machado Filho, L.C.P.; Hötzel, M.J.; Machado, L.C.P.; Ribas, C.C. Transição para uma Agropecuária Agroecológica. In Proceedings of the Anais do II Simpósio Brasileiro de Agroepecuária Sustentável, Viçosa, Brazil, 25–27 September 2010; pp. 243–258. [Google Scholar]
- Díaz-Pereira, E.; Romero-Díaz, A.; de Vente, J. Sustainable grazing land management to protect ecosystem services. Mitig. Adapt. Strateg. Glob. Chang. 2020, 25, 1461–1479. [Google Scholar] [CrossRef]
- Teague, W.R. Forages and pastures symposium: Cover crops in livestock production: Whole-system approach: Managing grazing to restore soil health and farm livelihoods. J. Anim. Sci. 2018, 96, 1519–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zubieta, Á.S.; Savian, J.V.; de Souza Filho, W.; Wallau, M.O.; Gómez, A.M.; Bindelle, J.; Bonnet, O.J.F.; de Faccio Carvalho, P.C. Does grazing management provide opportunities to mitigate methane emissions by ruminants in pastoral ecosystems? Sci. Total Environ. 2021, 754, 142029. [Google Scholar] [CrossRef] [PubMed]
- Delonge, M.; Basche, A. Managing grazing lands to improve soils and promote climate change adaptation and mitigation: A global synthesis. Renew. Agric. Food Syst. 2018, 33, 267–278. [Google Scholar] [CrossRef] [Green Version]
- Clifford, M.K.E.; McKendree, M.G.S. Beef Producers’ Motivations for Current Management Practices; University of Minnesota Press: Minneapolis, MN, USA, 2020. [Google Scholar]
- Gosnell, H.; Charnley, S.; Stanley, P. Climate change mitigation as a co-benefit of regenerative ranching: Insights from Australia and the United States: CC Mitigation and Regenerative Ranching. Interface Focus 2020, 10, 20200027. [Google Scholar] [CrossRef] [PubMed]
- Mann, C.; Sherren, K. Holistic Management and adaptive grazing: A trainers’ view. Sustainability 2018, 10, 1848. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.C.P. Pastoreio Racional Voisin Tecnologia Agroecológica Para o 3 Milênio; Cinco Continentes: Porto Alegre, RS, Brazil, 2004. [Google Scholar]
- FAO. Food and Agriculture Organization of the United Nations. Available online: http://faostat.fao.org (accessed on 1 September 2021).
- Savory, A. How to Fight Desertification and Reverse Climate Change; TED Talk: Washington, DC, USA, 2013. [Google Scholar]
- Teague, R.; Provenza, F.; Kreuter, U.; Steffens, T.; Barnes, M. Multi-paddock grazing on rangelands: Why the perceptual dichotomy between research results and rancher experience? J. Environ. Manag. 2013, 128, 699–717. [Google Scholar] [CrossRef]
- Murphy, B. Greener Pastures on Your Side of the Fence: Better Farming with Voisin Management-Intensive Grazing, 3rd ed.; Arriba Publishing: Colchester, VT, USA, 1994. [Google Scholar]
- Voisin, A. Productivité de L’Herbe; Flammarion: Paris, France, 1957. [Google Scholar]
- Voisin, A. Dynamique des Herbages; La Maison Rustique: Paris, France, 1960. [Google Scholar]
- Lemaire, G.; Chapman, D. Tissue Flows in Grazed Plants Communities. In The Ecology and Management of Grazing Systems; Hodgson, J., Illius, A.W., Eds.; CABI Int.: Wallingford, UK, 1996; pp. 3–36. [Google Scholar]
- Berton, C.T. Efeito de Diferentes Tempos de Repouso Sobre a Parte Aérea, Sistema Radicular e Comportamento de Pastoreio de Vacas Leiteiras em Uma Pastagem Polifítica; UFSC Repositorio Institucional: Trindade, Brazil, 2010. [Google Scholar]
- Pinheiro Machado, L.C. 14-Conceituando o “tempo ótimo de repouso” em Pastoreio Racional Voisin. Cad. Agroecol. 2011, 6, 180713398. [Google Scholar]
- Pereira, F.C.; Filho, L.C.P.M.; Kazama, D.C.d.S.; Júnior, R.G. Black oat grown with common vetch improves the chemical composition and degradability rate of forage. Acta Sci.—Anim. Sci. 2020, 42, 49951. [Google Scholar] [CrossRef]
- Lemaire, G.; Belanger, G. Allometries in Plants as Drivers of Forage Nutritive Value: A Review. Agriculture 2020, 10, 5. [Google Scholar] [CrossRef] [Green Version]
- Beever, D.; Offer, N.; Gill, M. The Feeding Value of Grass and Grass Products. In Grass, Its Production and Utilization; Blackwell Scientific: Oxford, UK, 2000. [Google Scholar]
- Blaser, R.E.; Hammes, J.P., Jr.; Fontenot, J.P.; Bryant, H.T.; Polan, C.E.; Wolf, D.D.; McClaugherty, F.S.; Kline, R.G.; Moore, S.J. Forage-Animal Management Systems; Holliman, M.C., Ed.; Virginia Agricultural Experiment Station, Virginia Polytechnic Institute and State University: Blacksburg, VA, USA, 1986. [Google Scholar]
- Chapman, D.F.; Lee, J.M.; Waghorn, G.C. Interaction between plant physiology and pasture feeding value: A review. Crop Pasture Sci. 2014, 65, 721–734. [Google Scholar] [CrossRef]
- Heitschmidt, R.K.; Taylor, C.A., Jr. Livestock Production. In Grazingmanagement: An Ecological Perspective; Heitschmidt, R.K., Stuth, J.W., Eds.; Timber Press: Portland, OR, USA, 1991; pp. 161–177. [Google Scholar]
- Pedreira, C.G.S.; Silva, V.J.; Pedreira, B.C.; Sollenberger, L.E. Herbage Accumulation and Organic Reserves of Palisadegrass in Response to Grazing Management based on Canopy Targets. Crop Sci. 2017, 57, 2283–2293. [Google Scholar] [CrossRef]
- Fulkerson, W.J.; Slack, K. Leaf number as a criterion for determining defoliation time for Lolium perenne: Effect of defoliation frequency and height. Grass Forage Sci. 1995, 50, 16–20. [Google Scholar] [CrossRef]
- Guitian, R.; Bardgett, R.D. Plant and soil microbial responses to defoliation in temperate semi-natural grassland. Plant Soil 2000, 220, 271–277. [Google Scholar] [CrossRef]
- Norton, B. The application of grazing management to increase sustainable livestock production. Anim. Prod. Aust. 1998, 22, 15–26. [Google Scholar]
- Savory, A.; Butterfield, J. Holistic Management: A New Framework for Decision Making; Revised ed.; Island Press: Washington, DC, USA, 1998; ISBN 9781559634878. [Google Scholar]
- Wagner, P.M.; Abagandura, G.O.; Mamo, M.; Weissling, T.; Wingeyer, A.; Bradshaw, J.D. Abundance and Diversity of Dung Beetles (Coleoptera: Scarabaeoidea) as Affected by Grazing Management in the Nebraska Sandhills Ecosystem. Environ. Entomol. 2021, 50, 222–231. [Google Scholar] [CrossRef]
- Allen, V.G.; Batello, C.; Berretta, E.J.; Hodgson, J.; Kothmann, M.; Li, X.; McIvor, J.; Milne, J.; Morris, C.; Peeters, A.; et al. An international terminology for grazing lands and grazing animals. Grass Forage Sci. 2011, 66, 2–28. [Google Scholar] [CrossRef]
- Welch, J.G.; Hooper, A.P. Ingestion of feed and water. In The Ruminant Animal: Digestive Physiology and Nutrition; Englewood Cliffs: Reston, WV, USA, 1988; pp. 108–116. [Google Scholar]
- Tuñon, G.; Kennedy, E.; Horan, B.; Hennessy, D.; Lopez-Villalobos, N.; Kemp, P.; Brennan, A.; O’Donovan, M. Effect of grazing severity on perennial ryegrass herbage production and sward structural characteristics throughout an entire grazing season. Grass Forage Sci. 2014, 69, 104–118. [Google Scholar] [CrossRef]
- Azevedo, M.M.; Carrilli, A.L.; Trevisan, R.; Machado Filho, L.C.P. Floristic Diversity in a Naturalized Prairie with Anthropic Intervention in Southern Brazil (Bom-Retiro-SC). In Proceedings of the VI CLAA, X CBA e V SEMDF. Cadernos de Agroecologia, Brasília, Brazil, 18 October 2018. [Google Scholar]
- Teixeira, D.L.; Pinheiro Machado Filho, L.C.; Hötzel, M.J.; Enríquez-Hidalgo, D. Effects of instantaneous stocking rate, paddock shape and fence with electric shock on dairy cows’ behaviour. Livest. Sci. 2017, 198, 170–173. [Google Scholar] [CrossRef]
- Bica, G.S.; Pinheiro Machado Filho, L.C.; Teixeira, D.L. Beef Cattle on Pasture Have Better Performance When Supplied with Water Trough Than Pond. Front. Vet. Sci. 2021, 8, 271. [Google Scholar] [CrossRef] [PubMed]
- Daros, R.R.; Bran, J.A.; Hötzel, M.J.; von Keyserlingk, M.A.G. Readily Available Water Access is Associated with Greater Milk Production in Grazing Dairy Herds. Animals 2019, 9, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coimbra, P.A.D.; Machado Filho, L.C.P.; Hötzel, M.J. Effects of social dominance, water trough location and shade availability on drinking behaviour of cows on pasture. Appl. Anim. Behav. Sci. 2012, 139, 175–182. [Google Scholar] [CrossRef]
- Deniz, M.; Schmitt Filho, A.L.; Farley, J.; de Quadros, S.F.; Hötzel, M.J. High biodiversity silvopastoral system as an alternative to improve the thermal environment in the dairy farms. Int. J. Biometeorol. 2019, 63, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Battisti, L.F.Z.; Schmitt Filho, A.L.; Loss, A.; Sinisgalli, P.A.d.A. Soil chemical attributes in a high biodiversity silvopastoral system. Acta Agronómica 2018, 67, 486–493. [Google Scholar] [CrossRef]
- De Silva, A.A.; Schmitt Filho, A.L.; Kazama, D.C.d.S.; Loss, A.; Souza, M.; de Cássia Piccolo, M.; Farley, J.; de Almeida Sinisgalli, P.A. Estoques de carbono e nitrogênio no Sistema Silvipastoril com Núcleos: A nucleação aplicada viabilizando a pecuária de baixo carbono. Res. Soc. Dev. 2020, 9, e2799108589. [Google Scholar] [CrossRef]
- Heck, A.C. Diversidade e Composição de Formigas no Sistema Silvipastoril com Núcleos: A Reabilitação Ecológica de Agroecossistemas Inspirada na Nucleação Aplicada; UFSC Repositorio Institucional: Trindade, Brazil, 2020. [Google Scholar]
- Simioni, G.F.; Schmitt Filho, A.L.; Joner, F.; Fantini, A.C.; Farley, J.; Moreira, A.T. Variação da assembleia de aves em áreas pastoris e remanescentes florestais adjacentes. Rev. Ciências Agrárias 2019, 42, 884–895. [Google Scholar]
- Simioni, G.F.; Schmitt Filho, A.L.; Fantini, A.C.; Moreira, A.P.T.; Rostirolla, T.H.; Cazella, A.A. Monitoramento Bioacústico Automatizado da Avifauna em Sistema Voisin Silvipastoril com Núcleos (PRVSnúcleo) no Brasil. In Proceedings of the 4th Convención Internacional Agrodesarrollo 2016 & 11th International Workshop ’Trees and Shrubs in Livestock Production, Varadeiro, Cuba, 23–30 October 2016. [Google Scholar]
- IPCC. Good Practical Guidance and Uncertainty Management in National GHG Inventories. In IPCC Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories; Mosier, A., Kroeze, C., Hiraishi, T., Minxing, W., Gibbs, M., Ruiz-Suarez, L., Eds.; IPCC: Geneva, Switzerland, 2006. [Google Scholar]
- IPCC. Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories; Houghton, J.T., Meira Filho, L.G., Lim, B., Treanton, K., Mamaty, I., Bonduki, Y., Griggs, D.J., Callender, B.A., Eds.; IPCC/OECD/IEA—UK Meteorological Office: Bracknell, UK, 1996. [Google Scholar]
- Ricard, M.F.; Viglizzo, E.F. Improving carbon sequestration estimation through accounting carbon stored in grassland soil. MethodsX 2020, 7, 100761. [Google Scholar] [CrossRef]
- Viglizzo, E.F.; Ricard, M.F.; Taboada, M.A.; Vázquez-Amábile, G. Reassessing the role of grazing lands in carbon-balance estimations: Meta-analysis and review. Sci. Total Environ. 2019, 661, 531–542. [Google Scholar] [CrossRef]
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef] [Green Version]
- Cain, M.; Lynch, J.; Allen, M.R.; Fuglestvedt, J.S.; Frame, D.J.; Macey, A.H. Improved calculation of warming-equivalent emissions for short-lived climate pollutants. Clim. Atmos. Sci. 2019, 2, 29. [Google Scholar] [CrossRef] [Green Version]
- Peters, G.M.; Rowley, H.V.; Wiedemann, S.; Tucker, R.; Short, M.D.; Schulz, M. Red meat production in Australia: Life cycle assessment and comparison with overseas studies. Environ. Sci. Technol. 2010, 44, 1327–1332. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, N.; Pirog, R.; Rasmussen, R. Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States. Agric. Syst. 2010, 103, 380–389. [Google Scholar] [CrossRef]
- De Léis, C.M.; Cherubini, E.; Ruviaro, C.F.; Prudêncio da Silva, V.; do Nascimento Lampert, V.; Spies, A.; Soares, S.R. Carbon footprint of milk production in Brazil: A comparative case study. Int. J. Life Cycle Assess. 2014, 20, 46–60. [Google Scholar] [CrossRef] [Green Version]
- Heflin, K.R.; Parker, D.B.; Marek, G.W.; Auvermann, B.W.; Marek, T.H. Greenhouse-gas emissions of beef finishing systems in the Southern High PLAINS. Agric. Syst. 2019, 176, 102674. [Google Scholar] [CrossRef]
- Swain, M.; Blomqvist, L.; McNamara, J.; Ripple, W.J. Reducing the environmental impact of global diets. Sci. Total Environ. 2018, 610, 1207–1209. [Google Scholar] [CrossRef]
- Stanley, P.L.; Rowntree, J.E.; Beede, D.K.; DeLonge, M.S.; Hamm, M.W. Impacts of soil carbon sequestration on life cycle greenhouse gas emissions in Midwestern USA beef finishing systems. Agric. Syst. 2018, 162, 249–258. [Google Scholar] [CrossRef]
- Mosier, S.; Apfelbaum, S.; Byck, P.; Calderon, F.; Teague, R.; Thompson, R.; Cotrufo, M.F. Adaptive multi-paddock grazing enhances soil carbon and nitrogen stocks and stabilization through mineral association in southeastern U.S. grazing lands. J. Environ. Manag. 2021, 288, 112409. [Google Scholar] [CrossRef]
- Seó, H.L.S.; Machado Filho, L.C.P.; Brugnara, D. Rationally Managed Pastures Stock More Carbon than No-Tillage Fields. Front. Environ. Sci. 2017, 5, 87. [Google Scholar] [CrossRef] [Green Version]
- MacHmuller, M.B.; Kramer, M.G.; Cyle, T.K.; Hill, N.; Hancock, D.; Thompson, A. Emerging land use practices rapidly increase soil organic matter. Nat. Commun. 2015, 6, 6995. [Google Scholar] [CrossRef]
- Torres, C.M.M.E.; Jacovine, L.A.G.; Nolasco De Olivera Neto, S.; Fraisse, C.W.; Soares, C.P.B.; De Castro Neto, F.; Ferreira, L.R.; Zanuncio, J.C.; Lemes, P.G. Greenhouse gas emissions and carbon sequestration by agroforestry systems in southeastern Brazil. Sci. Rep. 2017, 7, 16738. [Google Scholar] [CrossRef] [Green Version]
- Ramachandran Nair, P.K.; Nair, V.D.; Mohan Kumar, B.; Showalter, J.M. Carbon sequestration in agroforestry systems. Adv. Agron. 2010, 108, 237–307. [Google Scholar] [CrossRef]
- Wang, T.; Richard Teague, W.; Park, S.C.; Bevers, S. GHG mitigation potential of different grazing strategies in the United States Southern Great Plains. Sustainability 2015, 7, 13500–13521. [Google Scholar] [CrossRef] [Green Version]
- Smith, P. Do grasslands act as a perpetual sink for carbon? Glob. Chang. Biol. 2014, 20, 2708–2711. [Google Scholar] [CrossRef] [PubMed]
- Godde, C.M.; de Boer, I.J.M.; zu Ermgassen, E.; Herrero, M.; van Middelaar, C.E.; Muller, A.; Röös, E.; Schader, C.; Smith, P.; van Zanten, H.H.E.; et al. Soil carbon sequestration in grazing systems: Managing expectations. Clim. Chang. 2020, 161, 385–391. [Google Scholar] [CrossRef]
- Abdullahi, A.C.; Siwar, C.; Shaharudin, M.I.; Anizan, I. Carbon Sequestration in Soils: The Opportunities and Challenges. In Carbon Capture, Utilization and Sequestration; Intech Open: London, UK, 2018. [Google Scholar]
- Elbehri, A.; Challinor, A.; Verchot, L.; Angelsen, A.; Hess, T.; Ouled Belgacem, A.; Clark, H.; Badraoui, M.; Cowie, A.; De Silva, S.; et al. FAO-IPCC Expert Meeting on Climate Change, Land Use and Food Security: Final Meeting Report; IPCC: Geneva, Switzerland, 2017; Volume 23, p. 156. [Google Scholar]
- Rajão, R.; Soares-Filho, B.; Nunes, F.; Börner, J.; Machado, L.; Assis, D.; Oliveira, A.; Pinto, L.; Ribeiro, V.; Rausch, L.; et al. The rotten apples of Brazil’s agribusiness. Science 2020, 369, 246–248. [Google Scholar] [CrossRef] [PubMed]
- Gollnow, F.; Hissa, L.d.B.V.; Rufin, P.; Lakes, T. Property-level direct and indirect deforestation for soybean production in the Amazon region of Mato Grosso, Brazil. Land Use Policy 2018, 78, 377–385. [Google Scholar] [CrossRef]
- Belflower, J.B.; Bernard, J.K.; Gattie, D.K.; Hancock, D.W.; Risse, L.M.; Alan Rotz, C. A case study of the potential environmental impacts of different dairy production systems in Georgia. Agric. Syst. 2012, 108, 84–93. [Google Scholar] [CrossRef]
- Capper, J.L. The environmental impact of beef production in the United States: 1977 compared with 2007. J. Anim. Sci. 2011, 89, 4249–4261. [Google Scholar] [CrossRef] [Green Version]
- Davis, H.; Stergiadis, S.; Chatzidimitriou, E.; Sanderson, R.; Leifert, C.; Butler, G. Meeting Breeding Potential in Organic and Low-Input Dairy Farming. Front. Vet. Sci. 2020, 7, 805. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Kreuzer, M.; O’Mara, F.; McAllister, T.A. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 2008, 48, 21–27. [Google Scholar] [CrossRef]
- Song, X.-P.; Hansen, M.C.; Potapov, P.; Adusei, B.; Pickering, J.; Adami, M.; Lima, A.; Zalles, V.; Stehman, S.V.; Di Bella, C.M.; et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat. Sustain. 2021, 4, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Kuschnig, N.; Cuaresma, J.C.; Krisztin, T. Unveiling Drivers of Deforestation: Evidence from the Brazilian Amazon. 2019. Available online: http://pure.iiasa.ac.at/id/eprint/16593/ (accessed on 1 September 2021).
- Thomassen, M.A.; van Calker, K.J.; Smits, M.C.J.; Iepema, G.L.; de Boer, I.J.M. Life cycle assessment of conventional and organic milk production in the Netherlands. Agric. Syst. 2008, 96, 95–107. [Google Scholar] [CrossRef]
- Beauchemin, K.A.; Janzen, H.H.; Little, S.M.; McAllister, T.A.; McGinn, S.M. Mitigation of greenhouse gas emissions from beef production in western Canada—Evaluation using farm-based life cycle assessment. Anim. Feed Sci. Technol. 2011, 166, 663–677. [Google Scholar] [CrossRef]
- Pereira, F.C.; Machado Filho, L.C.P.; Kazama, D.C.S.; Guimarães Júnior, R.; Pereira, L.G.R.; Enríquez-Hidalgo, D. Effect of recovery period of mixture pasture on cattle behaviour, pasture biomass production and pasture nutritional value. Animal 2020, 14, 1961–1968. [Google Scholar] [CrossRef]
- De Ramus, H.A.; Clement, T.C.; Giampola, D.D.; Dickison, P.C. Methane Emissions of Beef Cattle on Forages. J. Environ. Qual. 2003, 32, 269–277. [Google Scholar] [CrossRef]
- Bava, L.; Sandrucci, A.; Zucali, M.; Guerci, M.; Tamburini, A. How can farming intensification affect the environmental impact of milk production? J. Dairy Sci. 2014, 97, 4579–4593. [Google Scholar] [CrossRef]
- Nguyen, K.D. Astaxanthin: A Comparative Case of Synthetic vs. Natural Production; TRACE: Tennessee Research and Creative Exchange: Knoxville, TN, USA, 2013. [Google Scholar]
- Boland, T.M.; Pierce, K.M.; Kelly, A.K.; Kenny, D.A.; Lynch, M.B.; Waters, S.M.; Whelan, S.J.; McKay, Z.C. Feed Intake, Methane Emissions, Milk Production and Rumen Methanogen Populations of Grazing Dairy Cows Supplemented with Various C 18 Fatty Acid Sources. Animals 2020, 10, 2380. [Google Scholar] [CrossRef]
- Roque, B.M.; Venegas, M.; Kinley, R.D.; De Nys, R.; Duarte, T.L.; Yang, X.; Kebreab, E. Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PLoS ONE 2021, 16, e0247820. [Google Scholar] [CrossRef]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- Kim, S.-H.; Lee, C.; Pechtl, H.A.; Hettick, J.M.; Campler, M.R.; Pairis-Garcia, M.D.; Beauchemin, K.A.; Celi, P.; Duval, S.M. Effects of 3-nitrooxypropanol on enteric methane production, rumen fermentation, and feeding behavior in beef cattle fed a high-forage or high-grain diet. J. Anim. Sci. 2019, 97, 2687–2699. [Google Scholar] [CrossRef]
- Kavanagh, I.; Fenton, O.; Healy, M.G.; Burchill, W.; Lanigan, G.J.; Krol, D.J. Mitigating ammonia and greenhouse gas emissions from stored cattle slurry using agricultural waste, commercially available products and a chemical acidifier. J. Clean. Prod. 2021, 294, 126251. [Google Scholar] [CrossRef]
- Forrestal, P.J.; Harty, M.; Carolan, R.; Lanigan, G.J.; Watson, C.J.; Laughlin, R.J.; Mcneill, G.; Chambers, B.J.; Richards, K.G. Ammonia emissions from urea, stabilized urea and calcium ammonium nitrate: Insights into loss abatement in temperate grassland. Soil Use Manag. 2016, 32, 92–100. [Google Scholar] [CrossRef] [Green Version]
- Harty, M.A.; Forrestal, P.J.; Watson, C.J.; McGeough, K.L.; Carolan, R.; Elliot, C.; Krol, D.; Laughlin, R.J.; Richards, K.G.; Lanigan, G.J. Reducing nitrous oxide emissions by changing N fertiliser use from calcium ammonium nitrate (CAN) to urea based formulations. Sci. Total Environ. 2016, 563, 576–586. [Google Scholar] [CrossRef] [Green Version]
- Di, H.J.; Cameron, K.C. Inhibition of nitrification to mitigate nitrate leaching and nitrous oxide emissions in grazed grassland: A review. J. Soils Sediments 2016, 16, 1401–1420. [Google Scholar] [CrossRef]
- Resende, L.d.O.; Müller, M.D.; Kohmann, M.M.; Pinto, L.F.G.; Cullen Junior, L.; de Zen, S.; Rego, L.F.G. Silvopastoral management of beef cattle production for neutralizing the environmental impact of enteric methane emission. Agrofor. Syst. 2020, 94, 893–903. [Google Scholar] [CrossRef]
- Doran, J.W. Soil health and global sustainability: Translating science into practice. Agric. Ecosyst. Environ. 2002, 88, 119–127. [Google Scholar] [CrossRef] [Green Version]
- Abberton, M.; Conant, R.; Batello, C. Others Grassland Carbon Sequestration: Management, Policy and Economics; Food and Agriculture of the United Nations: Rome, Italy, 2010. [Google Scholar]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Bell, L.W.; Sparling, B.; Tenuta, M.; Entz, M.H. Soil profile carbon and nutrient stocks under long-term conventional and organic crop and alfalfa-crop rotations and re-established grassland. Agric. Ecosyst. Environ. 2012, 158, 156–163. [Google Scholar] [CrossRef]
- Steinbeiss, S.; Beßler, H.; Engels, C.; Temperton, V.M.; Buchmann, N.; Roscher, C.; Kreutziger, Y.; Baade, J.; Habekost, M.; Gleixner, G. Plant diversity positively affects short-term soil carbon storage in experimental grasslands. Glob. Chang. Biol. 2008, 14, 2937–2949. [Google Scholar] [CrossRef]
- Tilman, D. Effects of Diversity and Composition on Grassland Stability and Productivity. In Ecology: Achievement and Challenge; Press, M.C., Huntly, N., Levin, S.A., Eds.; Blackwell Science: Hoboken, NJ, USA, 2001; pp. 183–207. [Google Scholar]
- Crawford, M. Maximising Soil Carbon Storage in Food Forests. In Proceedings of the Soil Regen Summit 2021, Online Meeting, 15–18 March 2021. [Google Scholar]
- Briat, J.-F.; Gojon, A.; Plassard, C.; Rouached, H.; Lemaire, G. Reappraisal of the central role of soil nutrient availability in nutrient management in light of recent advances in plant nutrition at crop and molecular levels. Eur. J. Agron. 2020, 116, 126069. [Google Scholar] [CrossRef]
- Bardgett, R.D.; van der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef] [PubMed]
- White, J.; Kingsley, K.; Verma, S.; Kowalski, K. Rhizophagy Cycle: An Oxidative Process in Plants for Nutrient Extraction from Symbiotic Microbes. Microorganisms 2018, 6, 95. [Google Scholar] [CrossRef] [Green Version]
- Hamilton, E.W.; Frank, D.A. Can plants stimulate soil microbes and their own nutrient supply? Evidence from a grazing tolerant grass. Ecology 2001, 82, 2397–2402. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Snapp, S.S. Nutrients in Agroecosystems: Rethinking the Management Paradigm. Adv. Agron. 2007, 92, 163–186. [Google Scholar] [CrossRef]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2013, 2, 587. [Google Scholar] [CrossRef] [Green Version]
- Briones, M.J.I.; Schmidt, O. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Glob. Chang. Biol. 2017, 23, 4396–4419. [Google Scholar] [CrossRef] [Green Version]
- Brink, G.E.; Pederson, G.A.; Sistani, K.R.; Fairbrother, T.E. Uptake of Selected Nutrients by Temperate Grasses and Legumes. Agron. J. 2001, 93, 887–890. [Google Scholar] [CrossRef]
- Enriquez-Hidalgo, D.; Gilliland, T.J.; Hennessy, D. Herbage and nitrogen yields, fixation and transfer by white clover to companion grasses in grazed swards under different rates of nitrogen fertilization. Grass Forage Sci. 2016, 71, 559–574. [Google Scholar] [CrossRef]
- Parsons, A.J.; Chapman, D.F.; Hopkins, A. Grass: Its Production and Utilization; Institute of Grassland and Environmental Research: Devon, UK, 2000; ISBN 06320501799780632050178. [Google Scholar]
- Phelan, P.; Moloney, A.P.; McGeough, E.J.; Humphreys, J.; Bertilsson, J.; O’Riordan, E.G.; O’Kiely, P. Forage Legumes for Grazing and Conserving in Ruminant Production Systems. CRC Crit. Rev. Plant Sci. 2015, 34, 281–326. [Google Scholar] [CrossRef]
- Suter, M.; Huguenin-Elie, O.; Lüscher, A. Multispecies for multifunctions: Combining four complementary species enhances multifunctionality of sown grassland. Sci. Rep. 2021, 11, 3835. [Google Scholar] [CrossRef]
- Spehn, E.M.; Joshi, J.; Schmid, B.; Alphei, J.; Körner, C. Plant diversity effects on soil heterotrophic activity in experimental grassland ecosystems. Plant Soil 2000, 224, 217–230. [Google Scholar] [CrossRef]
- Connolly, J.; Finn, J.; Black, A.; Kirwan, L.C.B.; Lüscher, A. Effects of multi-species swards on dry matter production and the incidence of unsown species at three Irish sites. Irish J. Agric. Food Res. 2009, 48, 243–260. [Google Scholar]
- Sanderson, M.A.; Archer, D.; Hendrickson, J.; Kronberg, S.; Liebig, M.; Nichols, K.; Schmer, M.; Tanaka, D.; Aguilar, J. Diversification and ecosystem services for conservation agriculture: Outcomes from pastures and integrated crop–livestock systems. Renew. Agric. Food Syst. 2013, 28, 129–144. [Google Scholar] [CrossRef] [Green Version]
- Mommer, L.; Van Ruijven, J.; De Caluwe, H.; Smit-Tiekstra, A.E.; Wagemaker, C.A.M.; Joop Ouborg, N.; Bögemann, G.M.; Van Der Weerden, G.M.; Berendse, F.; De Kroon, H. Unveiling below-ground species abundance in a biodiversity experiment: A test of vertical niche differentiation among grassland species. J. Ecol. 2010, 98, 1117–1127. [Google Scholar] [CrossRef]
- Oram, N.J.; Ravenek, J.M.; Barry, K.E.; Weigelt, A.; Chen, H.; Gessler, A.; Gockele, A.; de Kroon, H.; van der Paauw, J.W.; Scherer-Lorenzen, M.; et al. Below-ground complementarity effects in a grassland biodiversity experiment are related to deep-rooting species. J. Ecol. 2018, 106, 265–277. [Google Scholar] [CrossRef]
- Husse, S.; Lüscher, A.; Buchmann, N.; Hoekstra, N.J.; Huguenin-Elie, O. Effects of mixing forage species contrasting in vertical and temporal nutrient capture on nutrient yields and fertilizer recovery in productive grasslands. Plant Soil 2017, 420, 505–521. [Google Scholar] [CrossRef]
- Tilman, D.; Wedin, D.; Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 1996, 379, 718–720. [Google Scholar] [CrossRef]
- Von Felten, S.; Schmid, B. Complementarity among species in horizontal versus vertical rooting space. J. Plant Ecol. 2008, 1, 33–41. [Google Scholar] [CrossRef]
- Piotrowska, K.; Connolly, J.; Finn, J.; Black, A.; Bolger, T. Evenness and plant species identity affect earthworm diversity and community structure in grassland soils. Soil Biol. Biochem. 2013, 57, 713–719. [Google Scholar] [CrossRef]
- Cardinale, B.J.; Wright, J.P.; Cadotte, M.W.; Carroll, I.T.; Hector, A.; Srivastava, D.S.; Loreau, M.; Weis, J.J. Impacts of plant diversity on biomass production increase through time because of species complementarity. Proc. Natl. Acad. Sci. USA 2007, 104, 18123–18128. [Google Scholar] [CrossRef] [Green Version]
- Barry, T.N. The feeding value of chicory (Cichorium intybus) for ruminant livestock. J. Agric. Sci. 1998, 131, 251–257. [Google Scholar] [CrossRef]
- Grace, C.; Lynch, M.B.; Sheridan, H.; Lott, S.; Fritch, R.; Boland, T.M. Grazing multispecies swards improves ewe and lamb performance. Animal 2019, 13, 1721–1729. [Google Scholar] [CrossRef]
- Marley, C.L.; Cook, R.; Keatinge, R.; Barrett, J.; Lampkin, N.H. The effect of birdsfoot trefoil (Lotus corniculatus) and chicory (Cichorium intybus) on parasite intensities and performance of lambs naturally infected with helminth parasites. Vet. Parasitol. 2003, 112, 147–155. [Google Scholar] [CrossRef]
- Van Coller, H.; Siebert, F.; Scogings, P.F.; Ellis, S. Herbaceous responses to herbivory, fire and rainfall variability differ between grasses and forbs. S. Afr. J. Bot. 2018, 119, 94–103. [Google Scholar] [CrossRef]
- Hofer, D.; Suter, M.; Haughey, E.; Finn, J.A.; Hoekstra, N.J.; Buchmann, N.; Lüscher, A. Yield of temperate forage grassland species is either largely resistant or resilient to experimental summer drought. J. Appl. Ecol. 2016, 53, 1023–1034. [Google Scholar] [CrossRef] [Green Version]
- Komainda, M.; Küchenmeister, F.; Küchenmeister, K.; Kayser, M.; Wrage-Mönnig, N.; Isselstein, J. Drought tolerance is determined by species identity and functional group diversity rather than by species diversity within multi-species swards. Eur. J. Agron. 2020, 119, 126116. [Google Scholar] [CrossRef]
- Haughey, E.; McElwain, J.C.; Finn, J.A. Variability of water supply affected shoot biomass and root depth distribution of four temperate grassland species in monocultures and mixtures. J. Plant Ecol. 2020, 13, 554–562. [Google Scholar] [CrossRef]
- Calder, P.C. Functional roles of fatty acids and their effects on human health. J. Parenter. Enter. Nutr. 2015, 39, 18S–32S. [Google Scholar] [CrossRef] [PubMed]
- Couvreur, S.; Hurtaud, C.; Lopez, C.; Delaby, L.; Peyraud, J.-L. The linear relationship between the proportion of fresh grass in the cow diet, milk fatty acid composition, and butter properties. J. Dairy Sci. 2006, 89, 1956–1969. [Google Scholar] [CrossRef]
- Nozière, P.; Grolier, P.; Durand, D.; Ferlay, A.; Pradel, P.; Martin, B. Variations in Carotenoids, Fat-Soluble Micronutrients, and Color in Cows’ Plasma and Milk Following Changes in Forage and Feeding Level. J. Dairy Sci. 2006, 89, 2634–2648. [Google Scholar] [CrossRef] [Green Version]
- Prache, S.; Cornu, A.; Berdagué, J.L.; Priolo, A. Traceability of animal feeding diet in the meat and milk of small ruminants. Small Rumin. Res. 2005, 59, 157–168. [Google Scholar] [CrossRef]
- Tavazzi, L.; Maggioni, A.P.; Marchioli, R.; Barlera, S.; Franzosi, M.G.; Latini, R.; Lucci, D.; Nicolosi, G.L.; Porcu, M.; Tognoni, G. Effect of n-3 polyunsaturated fatty acids in patients with chronic heart failure (the GISSI-HF trial): A randomised, double-blind, placebo-controlled trial. Lancet 2008, 372, 1223–1230. [Google Scholar] [CrossRef]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; Tobin, J.; Fenelon, M.A.; O’Callaghan, T.F. The “Grass-Fed” Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Provenza, F.D.; Kronberg, S.L.; Gregorini, P. Is Grassfed Meat and Dairy Better for Human and Environmental Health? Front. Nutr. 2019, 6, 26. [Google Scholar] [CrossRef] [PubMed]
- Kuhnen, S.; Moacyr, J.R.; Trevisan, R.; Filho, L.C.P.M.; Maraschin, M. Carotenoid content in cow milk from organic and conventional farms in Southern Brazil. J. Food Agric. Environ. 2013, 11, 221–224. [Google Scholar]
- Kuhnen, S.; Holz, D.T.; Moacyr, J.R.; Piccinin, I.N.; Pinheiro Machado Filho, L.C. Effect of pasture management on bioactive compounds of Lolium multiflorum and Avena strigosa for dairy cows and its effect on milk quality. Agroecol. Sustain. Food Syst. 2021, 1–20, in press. [Google Scholar] [CrossRef]
- Kuhnen, S.; Moacyr, J.R.; Mayer, J.K.; Navarro, B.B.; Trevisan, R.; Honorato, L.A.; Maraschin, M.; Machado Filho, L.C.P. Phenolic content and ferric reducing-antioxidant power of cow’s milk produced in different pasture-based production systems in southern Brazil. J. Sci. Food Agric. 2014, 94, 3110–3117. [Google Scholar] [CrossRef]
- Kuhnen, S.; Stibuski, R.B.; Honorato, L.A.; Machado Filho, L.C.P. Farm management in organic and conventional dairy production systems based on pasture in Southern Brazil and its consequences on production and milk quality. Animals 2015, 5, 479–494. [Google Scholar] [CrossRef]
- Balcão, L.F.; Longo, C.; Costa, J.H.C.; Uller-Gómez, C.; Filho, L.C.P.M.; Hötzel, M.J. Characterisation of smallholding dairy farms in southern Brazil. Anim. Prod. Sci. 2017, 57, 735. [Google Scholar] [CrossRef]
- BRASIL. Anuários Estatísticos do Brasil, Vol. 74; Instituto Brasileiro de Geografia e Estatística (IBGE): Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Dillon, E.; Moran, B.; Lennon, J.; Donnellan, T. Teagasc National Farm Survey 2018 Results; Teagasc: Athenry, Ireland, 2019. [Google Scholar]
- DairyNZ. New Zealand Dairy Statistics 2019–2020; DairyNZ Ltd.: Hamilton, UK, 2020. [Google Scholar]
- Lenzi, A.; Pinheiro Machado, L.C.; de Quadros, F.L.F.; Pinheiro Machado Filho, L.C.; Vincenzi, M.L.; Roma, C.; Barbero, L. Animal performance and forage production in continuous stocking or rotational stocking. Rev. Bras. Agroecol. 2009, 4, 29–35. [Google Scholar]
- Clark, C.E.F.; Kaur, R.; Millapan, L.O.; Golder, H.M.; Thomson, P.C.; Horadagoda, A.; Islam, M.R.; Kerrisk, K.L.; Garcia, S.C. The effect of temperate or tropical pasture grazing state and grain-based concentrate allocation on dairy cattle production and behavior. J. Dairy Sci. 2018, 101, 5454–5465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garnett, T.; Godde, C.; Müller, A.; Röös, E.; Smith, P.; de Boer, I.J.M.; zu Ermgassen, E.; Herrero, M.; van Middelaar, C.E.; Schader, C.; et al. Grazed and Confused? Ruminating on Cattle, Grazing Systems, Methane, Nitrous Oxide, the Soil Carbon Sequestration Question and What It All Means for Greenhouse Gas Emissions; FCRN: Oxford, UK, 2017. [Google Scholar]
- Hanrahan, L.; McHugh, N.; Hennessy, T.; Moran, B.; Kearney, R.; Wallace, M.; Shalloo, L. Factors associated with profitability in pasture-based systems of milk production. J. Dairy Sci. 2018, 101, 5474–5485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wendling, A.V.; Ribas, C.C.E. Indice de conformidade do pastoreio racional Voisin (IC-PRV)—Voisin’s rational grazing—Conformity indices (CI-VRG). Rev. Bras. Agroecol. 2013, 8, 26–38. [Google Scholar]
- Wendling, A.V.; Ribas, C.C.E. Avaliação do Índice de Conformidade de PRV (IC-PRV) e seus Resultados em Propriedades Familiares do Oeste de Santa Catarina. In Proceedings of the IV Congreso Internacional de Agroecoloxía e Agricultura Ecolóxica, Fundacion Juana de Vega, Vigo, Spain, 21–23 June 2012; pp. 770–775. [Google Scholar]
- Conneman, G.; Staehr, A.E.; Benson, A.F. Dairy Farm Business Summary, Intensive Grazing Farms, New York, 2010; College of Agriculture and Life Sciences Cornell University: Ithaca, NY, USA, 2011; ISBN 6072558429. [Google Scholar]
- Kriegl, T.; Frank, G. An Eight Year Economic Look at Wisconsin Dairy Systems; Center for Dairy Profitability, University of Wisconsin: Madison, WI, USA, 2004. [Google Scholar]
- Murphy, W.M.; Rice, J.R.; Dugdale, D.T. Dairy farm feeding and income effects of using Voisin grazing management of permanent pastures. Am. J. Altern. Agric. 1986, 1, 147–152. [Google Scholar] [CrossRef]
- Rust, J.W.; Sheaffer, C.C.; Eidman, V.R.; Moon, R.D.; Mathison, R.D. Intensive rotational grazing for dairy cattle feeding. Am. J. Altern. Agric. 1995, 10, 147–151. [Google Scholar] [CrossRef]
- Horn, M.; Knaus, W.; Kirner, L.; Steinwidder, A. Economic evaluation of longevity in organic dairy cows. Org. Agric. 2012, 2, 127–143. [Google Scholar] [CrossRef]
- Hanson, J.C.; Johnson, D.M.; Lichtenberg, E.; Minegishi, K. Competitiveness of management-intensive grazing dairies in the mid-Atlantic region from 1995 to 2009. J. Dairy Sci. 2013, 96, 1894–1904. [Google Scholar] [CrossRef]
- Milanez, D.F.; Ribas, C.E.D.C. PRV e Produção Convencional: Análise Comparativa de Custos de Produção. In Proceedings of the III Encontro Pan-Americano Sobre Manejo Agroecológico De Pastagens: Prv Nas Américas, Cadernos de Agroecologia, Santa Fé, Argentina, 13–15 November 2018; p. 10. [Google Scholar]
- Heiberg, E.J.; Syse, K.L. Farming autonomy: Canadian beef farmers reclaiming the grass through management-intensive grazing practices. Org. Agric. 2020, 10, 471–486. [Google Scholar] [CrossRef]
- Giannadaki, D.; Giannakis, E.; Pozzer, A.; Lelieveld, J. Estimating health and economic benefits of reductions in air pollution from agriculture. Sci. Total Environ. 2018, 622, 1304–1316. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J.N.; Brett, C.; Gee, D.; Hine, R.E.; Mason, C.F.; Morison, J.I.L.; Raven, H.; Rayment, M.D.; Bijl, G. van der An assessment of the total external costs of UK agriculture. Agric. Syst. 2000, 65, 113–136. [Google Scholar] [CrossRef]
- Foote, K.J.; Joy, M.K.; Death, R.G. New Zealand Dairy Farming: Milking Our Environment for All Its Worth. Environ. Manag. 2015, 56, 709–720. [Google Scholar] [CrossRef] [PubMed]
- Smith, P.; Soussana, J.F.; Angers, D.; Schipper, L.; Chenu, C.; Rasse, D.P.; Batjes, N.H.; van Egmond, F.; McNeill, S.; Kuhnert, M.; et al. How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Glob. Chang. Biol. 2020, 26, 219–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraser, D.; Weary, D.M.; Pajor, E.A.; Milligan, B.N. A scientific conception of animal welfare that reflects ethical concerns. Anim. Welf. 1997, 6, 187–205. [Google Scholar]
- Mellor, D.; Beausoleil, N. Extending the “Five Domains” model for animal welfare assessment to incorporate positive welfare states. Anim. Welf. 2015, 24, 241–253. [Google Scholar] [CrossRef]
- Von Keyserlingk, M.A.G.; Amorim Cestari, A.; Franks, B.; Fregonesi, J.A.; Weary, D.M. Dairy cows value access to pasture as highly as fresh feed. Sci. Rep. 2017, 7, 44953. [Google Scholar] [CrossRef] [PubMed]
- Crump, A.; Jenkins, K.; Bethell, E.J.; Ferris, C.P.; Kabboush, H.; Weller, J.; Arnott, G. Optimism and pasture access in dairy cows. Sci. Rep. 2021, 11, 4882. [Google Scholar] [CrossRef]
- Pinheiro Machado, T.M.; Machado Filho, L.C.P.; Daros, R.R.; Pinheiro Machado, G.T.B.; Hötzel, M.J. Licking and agonistic interactions in grazing dairy cows as indicators of preferential companies. Appl. Anim. Behav. Sci. 2020, 227, 104994. [Google Scholar] [CrossRef]
- De Freslon, I.; Peralta, J.M.; Strappini, A.C.; Monti, G. Understanding Allogrooming Through a Dynamic Social Network Approach: An Example in a Group of Dairy Cows. Front. Vet. Sci. 2020, 7, 535. [Google Scholar] [CrossRef]
- McConnachie, E.; Smid, A.M.C.; Thompson, A.J.; Weary, D.M.; Gaworski, M.A.; von Keyserlingk, M.A.G. Cows are highly motivated to access a grooming substrate. Biol. Lett. 2018, 14, 20180303. [Google Scholar] [CrossRef]
- Almeida, F.A.; Albuquerque, A.C.A.; Bassetto, C.C.; Starling, R.Z.C.; Lins, J.G.G.; Amarante, A.F.T. Long spelling periods are required for pasture to become free of contamination by infective larvae of Haemonchus contortus in a humid subtropical climate of São Paulo state, Brazil. Vet. Parasitol. 2020, 279, 109060. [Google Scholar] [CrossRef]
- Nicholls, C.I.; Altieri, M.A. Pathways for the amplification of agroecology. Agroecol. Sustain. Food Syst. 2018, 42, 1170–1193. [Google Scholar] [CrossRef]
- Villalba, J.J.; Provenza, F.D.; Hall, J.O.; Lisonbee, L.D. Selection of tannins by sheep in response to gastrointestinal nematode infection. J. Anim. Sci. 2010, 88, 2189–2198. [Google Scholar] [CrossRef] [PubMed]
- Špinka, M. Animal agency, animal awareness and animal welfare. Anim. Welf. 2019, 28, 11–20. [Google Scholar] [CrossRef]
- Broom, D.M.; Galindo, F.A.; Murgueitio, E. Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc. R. Soc. B Biol. Sci. 2013, 280, 20132025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosnell, H.; Gill, N.; Voyer, M. Transformational adaptation on the farm: Processes of change and persistence in transitions to ‘climate-smart’ regenerative agriculture. Glob. Environ. Chang. 2019, 59, 101965. [Google Scholar] [CrossRef]
- Stinner, D.H.; Stinner, B.R.; Martsolf, E. Biodiversity as an organizing principle in agroecosystem management: Case studies of holistic resource management practitioners in the USA. Agric. Ecosyst. Environ. 1997, 62, 199–213. [Google Scholar] [CrossRef]
- Mier y Terán Giménez Cacho, M.; Giraldo, O.F.; Aldasoro, M.; Morales, H.; Ferguson, B.G.; Rosset, P.; Khadse, A.; Campos, C. Bringing agroecology to scale: Key drivers and emblematic cases. Agroecol. Sustain. Food Syst. 2018, 42, 637–665. [Google Scholar] [CrossRef]
- De Longe, M.S.; Miles, A.; Carlisle, L. Investing in the transition to sustainable agriculture. Environ. Sci. Policy 2016, 55, 266–273. [Google Scholar] [CrossRef] [Green Version]
- Pimbert, M.P.; Moeller, N.I. Absent agroecology aid: On UK agricultural development assistance since 2010. Sustainability 2018, 10, 505. [Google Scholar] [CrossRef] [Green Version]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite remote sensing of grasslands: From observation to management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef] [Green Version]
- Borra-Serrano, I.; De Swaef, T.; Muylle, H.; Nuyttens, D.; Vangeyte, J.; Mertens, K.; Saeys, W.; Somers, B.; Roldán-Ruiz, I.; Lootens, P. Canopy height measurements and non-destructive biomass estimation of Lolium perenne swards using UAV imagery. Grass Forage Sci. 2019, 74, 356–369. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Knight, C.H. Review: Sensor techniques in ruminants: More than fitness trackers. Animal 2020, 14, s187–s195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Principle (Law) | Goal(s) | Description/Management |
---|---|---|
(1) Recovery period | Maximum pasture productivity and restoration of reserves | Observe the correct ORP 1 in order to allow maximum herbage productivity, high forage quality and reserve storage for following regrowth. The period of rest of the grass between two successive cuts will be variable according to the plant species, season of the year, climatic conditions, soil potential, and other environmental factors. |
(2) Occupation | Avoid cutting early regrowth, promote soil biocenosis and grazing efficiency | Observe high stocking densities for a short period of time to prevent grazing of plants in early regrowth and to deposit large amounts of manure. Apart from exceptional situations, occupation time should not exceed 3 days, and ideally it would be 12 h for dairy or 1 day for beef. |
(3) Maximum performance | Increase animal productivity | Allow animals to graze pastures of nutritive value that match their nutritional needs. Split the herd according to the nutritional needs of the animals into 2 or 3 groups, moving firsts, seconds, and thirds in sequence in all paddocks. |
(4) Regular performance | Ensure regularity in animal productivity | Observe short periods of occupation per group to provide regular pasture allowance according to the animals needs and constant nutrient intake. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pinheiro Machado Filho, L.C.; Seó, H.L.S.; Daros, R.R.; Enriquez-Hidalgo, D.; Wendling, A.V.; Pinheiro Machado, L.C. Voisin Rational Grazing as a Sustainable Alternative for Livestock Production. Animals 2021, 11, 3494. https://doi.org/10.3390/ani11123494
Pinheiro Machado Filho LC, Seó HLS, Daros RR, Enriquez-Hidalgo D, Wendling AV, Pinheiro Machado LC. Voisin Rational Grazing as a Sustainable Alternative for Livestock Production. Animals. 2021; 11(12):3494. https://doi.org/10.3390/ani11123494
Chicago/Turabian StylePinheiro Machado Filho, Luiz C., Hizumi L. S. Seó, Ruan R. Daros, Daniel Enriquez-Hidalgo, Adenor V. Wendling, and Luiz C. Pinheiro Machado. 2021. "Voisin Rational Grazing as a Sustainable Alternative for Livestock Production" Animals 11, no. 12: 3494. https://doi.org/10.3390/ani11123494
APA StylePinheiro Machado Filho, L. C., Seó, H. L. S., Daros, R. R., Enriquez-Hidalgo, D., Wendling, A. V., & Pinheiro Machado, L. C. (2021). Voisin Rational Grazing as a Sustainable Alternative for Livestock Production. Animals, 11(12), 3494. https://doi.org/10.3390/ani11123494