Effects of Manganese Hydroxychloride on Growth Performance, Antioxidant Capacity, Tibia Parameters and Manganese Deposition of Broilers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Material
2.2. Animals, Experimental Design and Management
2.3. Growth Performance
2.4. Sample Collection
2.5. Sample Analysis
2.5.1. Nutrients Level of Diets
2.5.2. Antioxidant Capacity
2.5.3. Tibia Indicator
2.5.4. Manganese Contents
2.6. Statistical Analysis
3. Results
3.1. Mn Contents in Experimental Diets
3.2. Growth Performance
3.3. Carcass Characteristics
3.4. Antioxidant Capacity
3.5. Tibial Parameters
3.6. Mn Contents in Tissues
3.7. The Optimal Supplementation Level
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spears, J.W. Boron, chromium, manganese, and nickel in agricultural animal production. Biol. Trace Elem. Res. 2019, 188, 35–44. [Google Scholar] [CrossRef]
- Hassan, S.; Hassan, F.U.; Rehman, M.S.U. Nano-particles of trace minerals in poultry nutrition: Potential applications and future prospects. Biol. Trace Elem. Res. 2020, 195, 591–612. [Google Scholar] [CrossRef] [PubMed]
- Mwangi, S.; Timmons, J.; Ao, T.; Paul, M.; Macalintal, L.; Pescatore, A.; Cantor, A.; Dawson, K.A. Effect of manganese preconditioning and replacing inorganic manganese with organic manganese on performance of male broiler chicks. Poult. Sci. 2018, 98, 2105–2113. [Google Scholar] [CrossRef]
- Patra, A.; Lalhriatpuii, M. progress and prospect of essential mineral nanoparticles in poultry nutrition and feeding—A review. Biol. Trace Elem. Res. 2020, 197, 233–253. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Guan, Y.; Lv, M.; Zhang, R.; Guo, Z.; Wei, X.; Du, X.; Yang, J.; Li, T.; Wan, Y.; et al. Manganese increases the sensitivity of the cGAS-STING pathway for double-stranded DNA and is required for the host defense against DNA viruses. Immunity 2018, 48, 675–687. [Google Scholar] [CrossRef] [Green Version]
- Pan, S.; Zhang, K.; Ding, X.; Wang, J.; Peng, H.; Zeng, Q.; Xuan, Y.; Su, Z.; Wu, B.; Bai, S. Effect of high dietary manganese on the immune responses of broilers following oral salmonella typhimurium inoculation. Biol. Trace Elem. Res. 2018, 181, 347–360. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Poultry, 9th ed.; National Academy Press: Washington, DC, USA, 1994; pp. 57–63. [Google Scholar]
- Halpin, K.M.; Chausow, D.G.; Baker, D.H. Efficiency of manganese absorption in chicks fed corn-soy and casein diets. J. Nutr. 1986, 116, 1747–1751. [Google Scholar] [CrossRef]
- Tufarelli, V.; Laudadio, V. Manganese and its role in poultry nutrition: An overview. J. Exp. Biol. Agr. Sci. 2017, 5, 749–754. [Google Scholar] [CrossRef]
- Yenice, E.; Mızrak, C.; Gültekin, M.; Atik, Z.; Tunca, M. Effects of organic and inorganic forms of manganese, zinc, copper, and chromium on bioavailability of these minerals and calcium in late-phase laying hens. Biol. Trace Elem. Res. 2015, 167, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Lu, L.; Li, S.; Liu, S.; Zhang, L.; Yao, J.; Luo, X. Relative bioavailability of manganese proteinate for broilers fed a conventional corn–soybean meal diet. Biol. Trace Elem. Res. 2012, 146, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Brooks, M.A.; Grimes, J.L.; Lloyd, K.E.; Valdez, F.; Spears, J.W. Relative bioavailability in chicks of manganese from manganese propionate. J. Appl. Poult. Res. 2012, 21, 126–130. [Google Scholar] [CrossRef]
- Wang, Y.S.; Zhang, J.P.; Gang, Y. Solubility and phase diagrams of hydroxyl manganese chloride. Trans. Nonferrous Met. Soc. 2011, 21, 1136–1140. [Google Scholar] [CrossRef]
- European Food Safety Authority. Safety and efficacy of manganese hydroxychloride as feed additive for all animal species. EFSA J. 2016, 14, e04474. [Google Scholar]
- Jasek, A.; Parr, T.; Coufal, C.; Lee, J. Research note: Evaluation of manganese hydroxychloride in 45-wk-old white leghorn layers using yolk and shell manganese content. Poult. Sci. 2020, 99, 1084–1087. [Google Scholar] [CrossRef]
- Jasek, A.; Coufal, C.; Parr, T.; Lee, J. Evaluation of Increasing Manganese Hydroxychloride Level on Male Broiler Growth Performance and Tibia Strength. J. Appl. Poult. Res. 2019, 28, 1039–1047. [Google Scholar] [CrossRef]
- Kerkaert, H.; Woodworth, J.; DeRouchey, J.; Dritz, S.; Tokach, M.; Goodband, R.; Manzke, N. Determining the effects of manganese source and level in diets containing high levels of copper on growth performance of growing-finishing pigs. Kans. Agric. Exp. Stn. Res. Rep. 2020, 6, 19. [Google Scholar] [CrossRef]
- Ghazalah, A.; Abd-Elsamee, M.; Ibrahim, M.; Abdelgayed, S.S.; Abdelkader, M.; Gonzalez-Sanchez, D.; Wealleans, A. Effects of a combination of lysolecithin, synthetic emulsifier, and monoglycerides on growth performance, intestinal morphology, and selected carcass traits in broilers fed low-energy diets. Animals 2021, 11, 3037. [Google Scholar] [CrossRef]
- Riahi, I.; Ramos, A.J.; Raj, J.; Jakovčević, Z.; Farkaš, H.; Vasiljević, M.; Pérez-Vendrell, A.M. Effect of a mycotoxin binder (MMDA) on the growth performance, blood and carcass characteristics of broilers fed ochratoxin a and t-2 mycotoxin contaminated diets. Animals 2021, 11, 3205. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Huo, H.; Zhang, Y.; Bai, S.; Wang, R.; Zhang, K.; Ding, X.; Wang, J.; Zeng, Q.; Peng, H.; et al. effects of dietary glucose oxidase supplementation on the performance, apparent ileal amino acids digestibility, and ileal microbiota of broiler chickens. Animals 2021, 11, 2909. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Negrete, A.; Gómez-Rosales, S.; Angeles, M.d.L.; López-Hernández, L.H.; Reis de Souza, T.C.; Latorre-Cárdenas, J.D.; Téllez-Isaias, G. Addition of different levels of humic substances extracted from worm compost in broiler feeds. Animals 2021, 11, 3199. [Google Scholar] [CrossRef]
- Sarker, M.T.; Wan, X.; Yang, H.; Wang, Z. Dietary lycopene supplementation could alleviate aflatoxin b1 induced intestinal damage through improving immune function and anti-oxidant capacity in broilers. Animals 2021, 11, 3165. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Luo, X.; Liu, B.; Crenshaw, T.D.; Kuang, X.; Shao, G.; Yu, S. Use of chemical characteristics to predict the relative bioavailability of supplemental organic manganese sources for broilers. J. Anim. Sci. 2004, 82, 2352. [Google Scholar] [CrossRef] [PubMed]
- Olgun, O. Manganese in poultry nutrition and its effect on performance and eggshell quality. Worlds Poult. Sci. J. 2017, 73, 45–56. [Google Scholar] [CrossRef]
- Lu, L.; Ji, C.; Luo, X.; Liu, B.; Yu, S. The effect of supplemental manganese in broiler diets on abdominal fat deposition and meat quality. Anim. Feed Sci. 2006, 129, 49–59. [Google Scholar] [CrossRef]
- Berta, E.; Andrásofszky, E.; Bersényi, A.; Glavits, R.; Gaspardy, A.; Fekete, S.G. Effect of inorganic and organic manganese supplementation on the performance and tissue manganese content of broiler chicks. Acta Vet. Hung. 2004, 52, 199–209. [Google Scholar] [CrossRef]
- Pacheco, B.; Nakagi, V.; Kobashigawa, E.; Caniatto, A.; Faria, D.; Faria Filho, D. Dietary levels of zinc and manganese on the performance of broilers between 1 to 42 days of age. Braz. J. Poult. Sci. 2017, 19, 171–178. [Google Scholar] [CrossRef] [Green Version]
- Meng, T.; Gao, L.; Xie, C.; Xiang, Y.; Huang, Y.; Zhang, Y.; Wu, X. Manganese methionine hydroxy analog chelated affects growth performance, trace element deposition and expression of related transporters of broilers. Anim. Nutr. 2021, 7, 481–487. [Google Scholar] [CrossRef]
- Ognik, K.; Kozłowski, K.; Stępniowska, A.; Szlązak, R.; Tutaj, K.; Zduńczyk, Z.; Jankowski, J. The effect of manganese nanoparticles on performance, redox reactions and epigenetic changes in turkey tissues. Animal 2019, 13, 1137–1144. [Google Scholar] [CrossRef]
- Conly, A.; Poureslami, R.; Koutsos, E.; Batal, A.; Jung, B.; Beckstead, R.; Peterson, D. Tolerance and efficacy of tribasic manganese chloride in growing broiler chickens. Poult. Sci. 2012, 91, 1633–1640. [Google Scholar] [CrossRef] [PubMed]
- Jankowski, J.; Ognik, K.; Stępniowska, A.; Zduńczyk, Z.; Kozłowski, K. The effect of the source and dose of manganese on the performance, digestibility and distribution of selected minerals, redox, and immune status of turkeys. Poult. Sci. 2019, 98, 1379–1389. [Google Scholar] [CrossRef]
- Lu, L.; Luo, X.; Ji, C.; Liu, B.; Yu, S. Effect of manganese supplementation and source on carcass traits, meat quality, and lipid oxidation in broilers. J. Anim. Sci. 2007, 85, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Mandal, G.; Roy, A.; Patra, A. Effects of supplementation of manganese with or without phytase on growth performance, carcass traits, muscle and tibia composition, and immunity in broiler chickens. Livest. Sci. 2016, 191, 80–85. [Google Scholar] [CrossRef]
- Matuszewski, A.; Łukasiewicz, M.; Łozicki, A.; Niemiec, J.; Zielińska-Górska, M.; Scott, A.; Chwalibog, A.; Sawosz, E. The effect of manganese oxide nanoparticles on chicken growth and manganese content in excreta. Anim. Feed Sci. Technol. 2020, 268, 114597. [Google Scholar] [CrossRef]
- Li, S.; Lin, L.; Liao, X.; Gao, T.; Wang, F.; Zhang, L.; Lin, X.; Liu, S.; Luo, X. Manganese elevates manganese superoxide dismutase protein level through protein kinase C and protein tyrosine kinase. Biometals 2016, 29, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.Z.; Liao, X.D.; Lin, L.; Zhang, L.Y.; Lin, X.; Guo, Y.L.; Luo, X.G. Manganese enhances the expression of the manganese superoxide dismutase in cultured primary chick embryonic myocardial cells. J. Integr. Agric. 2017, 16, 2038–2046. [Google Scholar] [CrossRef] [Green Version]
- Bozkurt, Z.; Bulbul, T.; Bozkurt, M.F.; Bulbul, A.; Maralcan, G.; Qeukeloglu, K. Effects of organic and inorganic manganese supplementation on bone characteristics, immune response to vaccine and oxidative stress status in broiler reared under high stocking density. Kafkas Univ. Vet. Fak. Derg. 2015, 21, 623–630. [Google Scholar]
- Li, S.F.; Lu, L.; Hao, S.; Wang, Y.; Zhang, L.; Liu, S.; Liu, B.; Li, K.; Luo, X. Dietary manganese modulates expression of the manganese-containing superoxide dismutase gene in chickens. J. Nutr. 2011, 141, 189–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, W.D.; Wu, P.; Tang, R.J.; Liu, Y.; Kuang, S.Y.; Jiang, J.; Tang, L.; Tang, W.N.; Zhang, Y.A.; Zhou, X.Q. Nutritive values, flavor amino acids, healthcare fatty acids and flesh quality improved by manganese referring to up-regulating the antioxidant capacity and signaling molecules TOR and Nrf2 in the muscle of fish. Food Res. Int. 2016, 89, 670–678. [Google Scholar] [CrossRef]
- Liu, R.; Jin, C.; Wang, Z.; Wang, Z.; Wang, J.; Wang, L. Effects of manganese deficiency on the microstructure of proximal tibia and OPG/RANKL gene expression in chicks. Vet. Res. Commun. 2015, 39, 31–37. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.Y.; Wang, Z.J.; Liu, R.; Liu, S.Q.; Wang, L. Effects of manganese deficiency on chondrocyte development in tibia growth plate of Arbor Acres chicks. J. Bone Miner. Metab. 2015, 33, 23–29. [Google Scholar] [CrossRef]
- Zhaojun, W.; Lin, W.; Zhenyong, W.; Jian, W.; Ran, L. Effects of manganese deficiency on serum hormones and biochemical markers of bone metabolism in chicks. J. Bone Miner. Metab. 2013, 31, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Lotfi, L.; Zaghari, M.; Zeinoddini, S.; Shivazad, M.; Davoodi, D. Comparison dietary nano and micro manganese on broilers performance. In Proceedings of the 5th International Conference on Nanotechnology: Fundamentals and Applications, Prague, Czech Republic, 11–13 August 2014; p. 293. [Google Scholar]
- Wang, Y.; Gou, Z.; Lin, X.; Fan, Q.; Ye, J.; Jiang, S. Optimal Level of Supplemental Manganese for Yellow-Feathered Broilers during the Growth Phase. Animals 2021, 11, 1389. [Google Scholar] [CrossRef] [PubMed]
- Mirzavandi Chegeni, M.; Mottaghitalab, M.; Hosseini Moghaddam, S.H.; Golshekan, M. Broiler intestine DMT1 gene expression and bone characteristics, as affected by in ovo injection of different forms of manganese. Ital. J. Anim. Sci. 2019, 18, 1215–1222. [Google Scholar] [CrossRef] [Green Version]
- Sunder, G.S.; Panda, A.K.; Gopinath, N.C.S.; Raju, M.V.L.N.; Rao, S.V.R.; Kumar, C.V. Effect of supplemental manganese on mineral uptake by tissues and immune response in broiler chickens. J. Poult. Sci. 2006, 43, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Wang, R.L.; Zhang, Z.J.; Steward, F.A.; Luo, X.G.; Liu, B. Effect of dietary supplementation with copper sulfate or tribasic copper chloride on the growth performance, liver copper concentrations of broilers fed in floor pens, and stabilities of vitamin E and phytase in feeds. Biol. Trace Elem. Res. 2010, 138, 181–189. [Google Scholar] [CrossRef]
Item | Starter Diets (0~21 Days of Age) | Grower Diets (22~42 Days of Age) |
---|---|---|
Ingredient | ||
Corn | 60.13 | 61.53 |
Soybean meal | 32.50 | 31.70 |
Fish meal | 2.00 | 0.00 |
Soybean oil | 1.50 | 3.00 |
Dicalcium phosphate | 1.50 | 1.70 |
Limestone | 1.34 | 1.15 |
DL-Methionine (98%) | 0.23 | 0.12 |
NaCl | 0.30 | 0.30 |
Premix 1 | 0.50 | 0.50 |
Total | 100.00 | 100.00 |
Nutrient composition 2 | ||
Metabolizable energy (MJ/kg) | 12.59 | 13.22 |
Crude protein | 21.75 | 20.27 |
Calcium | 0.98 | 0.88 |
Total phosphorus | 0.68 | 0.63 |
Total lysine | 1.10 | 0.95 |
Total methionine + cysteine | 0.85 | 0.73 |
Mn (mg/kg) | 34.4 | 37.0 |
Item | Added Mn, mg/kg | Analyzed Mn Contents, mg/kg | |
---|---|---|---|
Day 0 to 21 | Day 22 to 42 | ||
Mn as MnSO4 | 100 | 150.4 | 151.1 |
Mn as manganese hydroxychloride | 0 | 34.4 | 37.0 |
20 | 53.3 | 60.8 | |
40 | 73.1 | 77.1 | |
60 | 91.7 | 99.6 | |
80 | 110.5 | 119.0 | |
100 | 139.9 | 142.5 |
Item 2 | Mn as MnSO4 (mg/kg) | Mn as Manganese Hydroxychloride (mg/kg) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 | 0 | 20 | 40 | 60 | 80 | 100 | ANOVA | Linear | Quadratic | ||
Day 0~21 | |||||||||||
ADG (g) | 32.60 | 31.96 | 33.01 | 32.37 | 33.37 | 32.05 | 33.25 | 0.478 | 0.241 | 0.235 | 0.638 |
ADFI (g) | 43.97 | 43.27 | 44.18 | 43.66 | 44.52 | 43.42 | 44.33 | 0.575 | 0.674 | 0.396 | 0.644 |
F:G | 1.35 | 1.36 | 1.34 | 1.35 | 1.34 | 1.35 | 1.33 | 0.011 | 0.650 | 0.374 | 0.857 |
Day 22~42 | |||||||||||
ADG (g) | 71.58 | 68.86 | 69.83 | 69.46 | 72.01 | 71.71 | 70.48 | 1.357 | 0.559 | 0.145 | 0.373 |
ADFI (g) | 136.48 | 134.34 | 135.92 | 134.45 | 138.72 | 136.03 | 135.71 | 1.596 | 0.549 | 0.380 | 0.314 |
F:G | 1.91 | 1.95 | 1.95 | 1.94 | 1.93 | 1.90 | 1.93 | 0.028 | 0.800 | 0.245 | 0.748 |
Day 0~42 | |||||||||||
ADG (g) | 52.09 | 50.41 | 51.42 | 50.91 | 52.69 | 51.88 | 51.86 | 0.835 | 0.552 | 0.128 | 0.389 |
ADFI (g) | 90.23 | 88.81 | 90.05 | 89.06 | 91.62 | 89.73 | 90.02 | 0.941 | 0.475 | 0.299 | 0.301 |
F:G | 1.73 | 1.76 | 1.75 | 1.75 | 1.74 | 1.73 | 1.74 | 0.019 | 0.891 | 0.227 | 0.780 |
Item | Mn as MnSO4 (mg/kg) | Mn as Manganese Hydroxychloride (mg/kg) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 | 0 | 20 | 40 | 60 | 80 | 100 | ANOVA | Linear | Quadratic | ||
Carcass weight/body weight | 92.24 | 91.09 | 91.57 | 91.18 | 91.74 | 91.60 | 92.54 | 0.454 | 0.296 | 0.048 | 0.442 |
Eviscerated weight/body weight | 69.72 | 69.04 | 70.21 | 70.14 | 71.45 | 70.82 | 70.58 | 0.639 | 0.101 | 0.057 | 0.130 |
Breast weight/eviscerated weight | 25.04 | 25.76 | 25.42 | 25.08 | 25.90 | 24.27 | 25.98 | 0.622 | 0.473 | 0.777 | 0.382 |
Leg weight/eviscerated weight | 22.31 | 22.21 | 21.74 | 21.35 | 21.65 | 21.73 | 22.26 | 0.632 | 0.927 | 0.921 | 0.261 |
Abdominal fat weight/eviscerated weight | 1.34 | 1.53 | 1.43 | 1.31 | 1.40 | 1.38 | 1.42 | 0.143 | 0.925 | 0.589 | 0.376 |
Item 2 | Mn as MnSO4 (mg/kg) | Mn as Manganese Hydroxychloride (mg/kg) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 | 0 | 20 | 40 | 60 | 80 | 100 | ANOVA | Linear | Quadratic | ||
Day 21 | |||||||||||
CAT (U/mL) | 67.21 a | 48.37 b | 61.12 a | 64.13 a | 64.33 a | 64.12 a | 64.52 a | 2.823 | 0.001 | <0.001 | 0.052 |
MnSOD (U/mL) | 54.19 a | 29.23 b | 34.79 b | 39.87 b | 40.29 b | 56.05 a | 57.44 a | 4.589 | <0.001 | <0.001 | 0.610 |
MDA (nmol/mL) | 4.24 | 5.26 | 5.22 | 4.63 | 4.49 | 4.22 | 4.08 | 0.299 | 0.055 | 0.002 | 0.782 |
T-AOC (U/mL) | 11.04 | 10.75 | 10.60 | 11.03 | 10.67 | 10.72 | 10.69 | 0.217 | 0.369 | 0.894 | 0.666 |
Day 42 | |||||||||||
CAT (U/mL) | 66.65 b | 52.89 c | 66.08 b | 66.98 b | 67.29 b | 78.28 a | 75.89 a | 1.755 | <0.001 | <0.001 | 0.027 |
MnSOD (U/mL) | 25.59 b | 24.14 c | 30.12 b | 32.93 ab | 33.13 ab | 36.88 a | 32.86 ab | 1.431 | <0.001 | <0.001 | 0.002 |
MDA (nmol/mL) | 4.11 c | 5.75 a | 5.16 b | 4.67 bc | 4.78 bc | 4.60 bc | 4.15 c | 0.196 | <0.001 | <0.001 | 0.233 |
T-AOC (U/mL) | 11.68 b | 8.71 d | 10.09 c | 11.11 b | 11.12 b | 12.92 a | 12.02 ab | 0.275 | <0.001 | <0.001 | 0.012 |
Item 2 | Mn as MnSO4 (mg/kg) | Mn as Manganese Hydroxychloride (mg/kg) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 | 0 | 20 | 40 | 60 | 80 | 100 | ANOVA | Linear | Quadratic | ||
Day 21 | |||||||||||
CAT (U/mg protein) | 4.17 | 3.02 | 3.30 | 3.45 | 3.26 | 3.59 | 3.93 | 0.332 | 0.220 | 0.057 | 0.723 |
MnSOD (U/mg protein) | 4.94 ab | 2.68 c | 3.38 bc | 4.05 abc | 4.33 abc | 4.46 ab | 5.58 a | 0.537 | 0.013 | <0.001 | 0.995 |
MDA (nmol/mg protein) | 0.36 | 0.49 | 0.49 | 0.47 | 0.44 | 0.48 | 0.40 | 0.037 | 0.145 | 0.097 | 0.675 |
T-AOC (U/mg protein) | 1.46 | 1.39 | 1.46 | 1.44 | 1.48 | 1.25 | 1.39 | 0.075 | 0.355 | 0.313 | 0.432 |
Day 42 | |||||||||||
CAT (U/mg protein) | 4.48 bc | 3.96 c | 4.50 bc | 4.56 bc | 5.22 a | 4.74 ab | 4.66 ab | 0.199 | 0.008 | 0.007 | 0.084 |
MnSOD (U/mg protein) | 4.11 a | 2.87 b | 4.48 a | 4.27 a | 4.77 a | 4.14 a | 4.05 a | 0.290 | 0.004 | 0.021 | 0.002 |
MDA (nmol/mg protein) | 0.47 ab | 0.55 a | 0.49 ab | 0.48 ab | 0.42 b | 0.41 b | 0.44 b | 0.028 | 0.018 | 0.001 | 0.103 |
T-AOC (U/mg protein) | 1.24 b | 1.07 c | 1.54 ab | 1.64 a | 1.73 a | 1.61 a | 1.53 ab | 0.113 | 0.002 | 0.015 | 0.003 |
Item | Mn as MnSO4 (mg/kg) | Mn as Manganese Hydroxychloride (mg/kg) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 | 0 | 20 | 40 | 60 | 80 | 100 | ANOVA | Linear | Quadratic | ||
Day 21 | |||||||||||
Weight (g) | 6.81 | 6.33 | 6.35 | 6.54 | 6.60 | 6.56 | 6.55 | 0.231 | 0.806 | 0.369 | 0.628 |
Length (mm) | 76.07 a | 71.96 c | 72.35 bc | 74.43 ab | 75.29 a | 76.12 a | 75.17 a | 0.754 | 0.001 | <0.001 | 0.172 |
Diameter (mm) | 6.08 | 5.76 | 5.85 | 6.14 | 6.27 | 6.21 | 6.18 | 0.172 | 0.297 | 0.141 | 0.235 |
Strength (N) | 132.72 | 124.19 | 123.30 | 129.78 | 128.11 | 130.02 | 132.31 | 2.865 | 0.159 | 0.025 | 0.932 |
Density index (g/cm2) | 0.21 a | 0.19 b | 0.19 b | 0.20 ab | 0.20 ab | 0.20 ab | 0.21 a | 0.005 | 0.035 | 0.006 | 0.965 |
Day 42 | |||||||||||
Weight (g) | 19.37 | 18.82 | 18.40 | 18.40 | 17.86 | 19.68 | 18.19 | 0.609 | 0.358 | 0.975 | 0.739 |
Length (mm) | 111.40 | 109.25 | 109.16 | 108.25 | 108.89 | 111.21 | 108.61 | 0.976 | 0.169 | 0.635 | 0.961 |
Diameter (mm) | 9.59 | 10.37 | 9.08 | 9.54 | 9.19 | 9.87 | 9.66 | 0.417 | 0.398 | 0.678 | 0.136 |
Strength (N) | 316.65 | 295.13 | 295.77 | 301.15 | 307.36 | 309.22 | 317.97 | 7.460 | 0.181 | 0.017 | 0.706 |
Density index (g/cm2) | 0.30 | 0.29 | 0.28 | 0.29 | 0.29 | 0.29 | 0.29 | 0.005 | 0.807 | 0.829 | 0.769 |
Item | Mn as MnSO4 (mg/kg) | Mn as Manganese Hydroxychloride (mg/kg) | SEM | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
100 | 0 | 20 | 40 | 60 | 80 | 100 | ANOVA | Linear | Quadratic | ||
Serum | 4.30 | 4.25 | 5.40 | 5.16 | 5.11 | 5.82 | 5.24 | 0.511 | 0.305 | 0.293 | 0.185 |
Heart | 1.06 a | 0.64 b | 0.71 b | 0.70 b | 0.77 b | 0.79 b | 1.05 a | 0.065 | <0.001 | <0.001 | 0.131 |
Liver | 10.40 ab | 9.16 b | 9.43 b | 9.59 b | 10.55 ab | 11.60 a | 11.66 a | 0.577 | 0.015 | 0.001 | 0.668 |
Breast muscle | 0.42 | 0.37 | 0.38 | 0.40 | 0.41 | 0.41 | 0.39 | 0.023 | 0.703 | 0.371 | 0.205 |
Kidney | 7.80 a | 5.68 d | 6.36 c | 6.76 bc | 6.80 bc | 6.83 bc | 7.24 ab | 0.230 | <0.001 | <0.001 | 0.008 |
Tibia | 10.22 a | 4.74 c | 5.75 c | 5.90 c | 8.24 b | 8.36 ab | 8.39 ab | 0.619 | <0.001 | <0.001 | 0.375 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Y.; Geng, S.; Yuan, T.; Liu, Y.; Zhang, Y.; Di, Y.; Li, J.; Zhang, L. Effects of Manganese Hydroxychloride on Growth Performance, Antioxidant Capacity, Tibia Parameters and Manganese Deposition of Broilers. Animals 2021, 11, 3470. https://doi.org/10.3390/ani11123470
Sun Y, Geng S, Yuan T, Liu Y, Zhang Y, Di Y, Li J, Zhang L. Effects of Manganese Hydroxychloride on Growth Performance, Antioxidant Capacity, Tibia Parameters and Manganese Deposition of Broilers. Animals. 2021; 11(12):3470. https://doi.org/10.3390/ani11123470
Chicago/Turabian StyleSun, Yongbo, Shixia Geng, Tianyao Yuan, Ying Liu, Yuxin Zhang, Yuting Di, Juntao Li, and Liying Zhang. 2021. "Effects of Manganese Hydroxychloride on Growth Performance, Antioxidant Capacity, Tibia Parameters and Manganese Deposition of Broilers" Animals 11, no. 12: 3470. https://doi.org/10.3390/ani11123470
APA StyleSun, Y., Geng, S., Yuan, T., Liu, Y., Zhang, Y., Di, Y., Li, J., & Zhang, L. (2021). Effects of Manganese Hydroxychloride on Growth Performance, Antioxidant Capacity, Tibia Parameters and Manganese Deposition of Broilers. Animals, 11(12), 3470. https://doi.org/10.3390/ani11123470