Probiotics in Rabbit Farming: Growth Performance, Health Status, and Meat Quality
Abstract
:Simple Summary
Abstract
1. Introduction
2. Probiotics
3. Effects of Probiotics on Rabbits
3.1. Live Performance
3.2. Health Status and Gastrointestinal Tract Microbiota
3.3. Carcass and Meat Quality
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Lebas, F.; Coudert, P.; de Rochambeau, H.; Thébault, R.; Rouvier, R.; Rochambeau, H. de The Rabbit: Husbandry, Health, and Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 1997; ISBN 92-5-103441-9. [Google Scholar]
- Cullere, M.; Dalle Zotte, A. Rabbit Meat Production and Consumption: State of Knowledge and Future Perspectives. Meat Sci. 2018, 143, 137–146. [Google Scholar] [CrossRef]
- Petracci, M.; Soglia, F.; Leroy, F. Rabbit Meat in Need of a Hat-Trick: From Tradition to Innovation (and Back). Meat Sci. 2018, 146, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Trocino, A.; Cotozzolo, E.; Zomeño, C.; Petracci, M.; Xiccato, G.; Castellini, C. Rabbit Production and Science: The World and Italian Scenarios from 1998 to 2018. Ital. J. Anim. Sci. 2019, 18, 1361–1371. [Google Scholar] [CrossRef] [Green Version]
- Dalle Zotte, A.; Szendrő, Z. The Role of Rabbit Meat as Functional Food. Meat Sci. 2011, 88, 319–331. [Google Scholar] [CrossRef]
- Mancini, S.; Mattioli, S.; Nuvoloni, R.; Pedonese, F.; Dal Bosco, A.; Paci, G. Effects of Garlic Powder and Salt Additions on Fatty Acids Profile, Oxidative Status, Antioxidant Potential and Sensory Properties of Raw and Cooked Rabbit Meat Burgers. Meat Sci. 2020, 169, 108226. [Google Scholar] [CrossRef]
- Mancini, S.; Mattioli, S.; Nuvoloni, R.; Pedonese, F.; Bosco, A.D.; Paci, G. Effects of Garlic Powder and Salt on Meat Quality and Microbial Loads of Rabbit Burgers. Foods 2020, 9, 1022. [Google Scholar] [CrossRef] [PubMed]
- McNitt, J.I.; Lukefahr, S.D.; Cheeke, P.R.; Patton, N.M. Rabbit Production; McNitt, J.I., Lukefahr, S.D., Cheeke, P.R., Patton, N.M., Eds.; CABI: Wallingford, UK, 2013; ISBN 9781780640129. [Google Scholar]
- Carabaño, R.; Badiola, I.; Licois, D.; Gidenne, T. The Digestive Ecosystem and Its Control through Nutritional or Feeding Strategies. In Recent Advances in Rabbit Sciences; Maertens, L., Coudert, P., Eds.; ILVO: Melle, Belgium, 2006; pp. 211–228. [Google Scholar]
- Marlier, D.; Dewrée, R.; Lassence, C.; Licois, D.; Mainil, J.; Coudert, P.; Meulemans, L.; Ducatelle, R.; Vindevogel, H. Infectious Agents Associated with Epizootic Rabbit Enteropathy: Isolation and Attempts to Reproduce the Syndrome. Vet. J. 2006, 172, 493–500. [Google Scholar] [CrossRef]
- Gasbarrini, G.; Bonvicini, F.; Gramenzi, A. Probiotics History. J. Clin. Gastroenterol. 2016, 50, S116–S119. [Google Scholar] [CrossRef] [PubMed]
- Soccol, C.R.; Vandenberghe, L.P.; Spier, M.R.; Medeiros, A.B.P.; Yamaguishi, C.T.; De Dea Lindner, J.; Pandey, A.; Thomaz-Soccol, V. The Potential of Probiotics: A Review. Food Technol. Biotechnol. 2010, 48, 413–434. [Google Scholar]
- Vilà, B.; Esteve-Garcia, E.; Brufau, J. Probiotic Micro-Organisms: 100 Years of Innovation and Efficacy; Modes of Action. World’s Poult. Sci. J. 2010, 66, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Tissier, H. The Treatment of Intestinal Infections by the Method of Transformation of Bacterial Intestinal Flora. CR Soc. Biol. 1906, 60, 359–361. [Google Scholar]
- Rettger, L.F.; Cheplin, H.A. Therapeutic Application of Bacillus Acidophilus. Proc. Soc. Exp. Biol. Med. 1921, 19, 72–76. [Google Scholar] [CrossRef] [Green Version]
- Rusch, V. Probiotics and Definitions: A Short Overview. In Probiotics: Bacteria and Bacterial Fragments as Immunomodulatory Agents; Old Hernorn University: Herborn-Dill, Germany, 2002. [Google Scholar]
- Parker, R.B. Probiotics, the Other Half of the Antibiotic Story. Anim. Nutr. Health 1974, 29, 4–8. [Google Scholar]
- Sharma, K.G.; Vidyarthi, V.K.; Archana, K.; Zuyie, R. Probiotic Supplementation in the Diet of Rabbits—A Review. Livest. Res. Int. 2016, 4, 1–10. [Google Scholar]
- Fuller, R. Probiotics in Man and Animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar]
- Brufau, J.; Esteve, E.; Tarradas, J. Review of Immune Stimulator Substances/Agents That Are Susceptible of Being Used as Feed Additives: Mode of Action and Identification of End-points for Efficacy Assessment. EFSA Supporting Publ. 2015, 12. [Google Scholar] [CrossRef]
- Havenaar, R.; ten Brink, B.; Huis, J.H.J. Selection of Strains for Probiotic Use. In Probiotics; Springer: Berlin/Heidelberg, Germany, 1992; pp. 209–224. [Google Scholar]
- Turchi, B.; Mancini, S.; Fratini, F.; Pedonese, F.; Nuvoloni, R.; Bertelloni, F.; Ebani, V.V.; Cerri, D. Preliminary Evaluation of Probiotic Potential of Lactobacillus Plantarum Strains Isolated from Italian Food Products. World J. Microbiol. Biotechnol. 2013, 29, 1913–1922. [Google Scholar] [CrossRef]
- Cotozzolo, E.; Cremonesi, P.; Curone, G.; Menchetti, L.; Riva, F.; Biscarini, F.; Marongiu, M.L.; Castrica, M.; Castiglioni, B.; Miraglia, D.; et al. Characterization of Bacterial Microbiota Composition along the Gastrointestinal Tract in Rabbits. Animals 2020, 11, 31. [Google Scholar] [CrossRef]
- Abdel-Wareth, A.A.A.; Elkhateeb, F.S.O.; Ismail, Z.S.H.; Ghazalah, A.A.; Lohakare, J. Combined Effects of Fenugreek Seeds and Probiotics on Growth Performance, Nutrient Digestibility, Carcass Criteria, and Serum Hormones in Growing Rabbits. Livest. Sci. 2021, 251, 104616. [Google Scholar] [CrossRef]
- Fathi, M.; Abdelsalam, M.; Al-Homidan, I.; Ebeid, T.; El-Zarei, M.; Abou-Emera, O. Effect of Probiotic Supplementation and Genotype on Growth Performance, Carcass Traits, Hematological Parameters and Immunity of Growing Rabbits under Hot Environmental Conditions. Anim. Sci. J. 2017, 88, 1644–1650. [Google Scholar] [CrossRef]
- Lam Phuoc, T.; Jamikorn, U. Effects of Probiotic Supplement (Bacillus Subtilis and Lactobacillus Acidophilus) on Feed Efficiency, Growth Performance, and Microbial Population of Weaning Rabbits. Asian-Australas. J. Anim. Sci. 2016, 30, 198–205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, A.F.; El-Sayiad, G.A.; Reda, F.M.; Ashour, E.A. Effects of Breed, Probiotic and Their Interaction on Growth Performance, Carcass Traits and Blood Profile of Growing Rabbits. Zagazig J. Agric. Res. 2017, 44, 215–227. [Google Scholar] [CrossRef]
- Liu, L.; Zeng, D.; Yang, M.; Wen, B.; Lai, J.; Zhou, Y.; Sun, H.; Xiong, L.; Wang, J.; Lin, Y.; et al. Probiotic Clostridium Butyricum Improves the Growth Performance, Immune Function, and Gut Microbiota of Weaning Rex Rabbits. Probiotics Antimicrob. Proteins 2019, 11, 1278–1292. [Google Scholar] [CrossRef]
- Tag El Din, N. Effect of Dry Live Yeast Inclusion in Fattening Rabbit Diets on Productive Performance and Digestibility of Nutrients. Egypt. J. Rabbit Sci. 2019, 29, 219–233. [Google Scholar] [CrossRef]
- Lauková, A.; Simonová, M.P.; Chrastinová, Ľ.; Plachá, I.; Čobanová, K.; Formelová, Z.; Chrenková, M.; Ondruška, Ľ.; Strompfová, V. Benefits of Combinative Application of Probiotic, Enterocin M-Producing Strain Enterococcus Faecium AL41 and Eleutherococcus Senticosus in Rabbits. Folia Microbiol. 2016, 61, 169–177. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Chrastinová, Ľ.; Lauková, A. Effect of Beneficial Strain Enterococcus Faecium EF9a Isolated from Pannon White Rabbit on Growth Performance and Meat Quality of Rabbits. Ital. J. Anim. Sci. 2020, 19, 650–655. [Google Scholar] [CrossRef]
- Pogány Simonová, M.; Lauková, A.; Chrastinová, Ľ.; Plachá, I.; Szabóová, R.; Kandričáková, A.; Žitňan, R.; Chrenková, M.; Ondruška, Ľ.; Bónai, A.; et al. Beneficial Effects of Enterococcus Faecium EF9a Administration in Rabbit Diet. World Rabbit Sci. 2020, 28, 169. [Google Scholar] [CrossRef]
- Wlazło, Ł.; Kowalska, D.; Bielański, P.; Chmielowiec-Korzeniowska, A.; Ossowski, M.; Łukaszewicz, M.; Czech, A.; Nowakowicz-Dębek, B. Effect of Fermented Rapeseed Meal on the Gastrointestinal Microbiota and Immune Status of Rabbit (Oryctolagus Cuniculus). Animals 2021, 11, 716. [Google Scholar] [CrossRef]
- Cunha, S.; Mendes, Â.; Rego, D.; Meireles, D.; Fernandes, R.; Carvalho, A.; da Costa, P.M. Effect of Competitive Exclusion in Rabbits Using an Autochthonous Probiotic. World Rabbit Sci. 2017, 25, 123. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.M.; Cui, H.X.; Xu, X.R. Orally Administered Lactobacillus Casei Exhibited Several Probiotic Properties in Artificially Suckling Rabbits. Asian-Australas. J. Anim. Sci. 2020, 33, 1352–1359. [Google Scholar] [CrossRef] [Green Version]
- Beshara, M.; Alazab, A.; Fahim, H.; el Desoky, A.; Ragab, M.; el Shahat, A.E.G.; El-Gamal, A. Effect of Early Dietary Supplementation of Probiotic and Feed Restriction Post Weaning on Productive and Economical Performance of Growing Rabbits. Egypt. J. Rabbit Sci. 2018, 28, 195–222. [Google Scholar] [CrossRef]
- El-Shafei, A.A.; Younis, T.M.; Al-Gamal, M.A.; Hesham, A.M. Impact of Probiotic (Lactobacillus Planterium L) Supplementation on Productive and Physiological Performance of Growing Rabbits under Egyptian Conditions. Egypt. J. Rabbit Sci. 2019, 29, 125–148. [Google Scholar] [CrossRef]
- Islamov, E.; Shauenov, S.; Brzozowski, M.; Burshakbaeva, L. Effectiveness of “Rescue Kit” Probiotic Substance Used for White Giant Rabbits Breed Fattening. Her. Sci. S Seifullin Kazakh Agro Tech. Univ. 2016, 3, 47–51. [Google Scholar]
- Emmanuel, D.; Amaka, A.; Okezie, E.; Sunday, U.; Ethelbert, O. Epididymal Sperm Characteristics, Testicular Morphometric Traits and Growth Parameters of Rabbit Bucks Fed Dietary Saccharomyces Cerevisiae and/or Zinc Oxide. Braz. J. Poult. Sci. 2019, 21. [Google Scholar] [CrossRef]
- El-Badawi, A.Y.; Helal, F.I.S.; Yacout, M.H.M.; Hassan, A.A.; El-Naggar, S.; Elsabaawy, E.H. Growth Performance of Male NZW Rabbits Fed Diets Supplemented with Beneficial Bacteria or Live Yeast. Agric. Eng. Int. CIGR J. 2017, 220–226. [Google Scholar]
- Abdel-Azeem, A.; Hassan, A.; Basyony, M.; Abu Hafsa, S. Rabbit Growth, Carcass Characteristic, Digestion, Caecal Fermentation, Microflora, and Some Blood Biochemical Components Affected by Oral Administration of Anaerobic Probiotic (ZAD®). Egypt. J. Nutr. Feed. 2018, 21, 693–710. [Google Scholar] [CrossRef] [Green Version]
- Dimova, N.; Laleva, S.; Slavova, P.; Popova, Y.; Mihaylova, M.; Pacinovski, N. Effect of Probiotic “Zoovit” on Productivity of Rabbits. Maced. J. Anim. Sci. 2017, 7, 123–127. [Google Scholar]
- Rotolo, L.; Gai, F.; Peiretti, P.G.; Ortoffi, M.; Zoccarato, I.; Gasco, L. Live Yeast (Saccharomyces Cerevisiae Var. Boulardii) Supplementation in Fattening Rabbit Diet: Effect on Productive Performance and Meat Quality. Livest. Sci. 2014, 162, 178–184. [Google Scholar] [CrossRef]
- Kimsé, M.; Bayourthe, C.; Monteils, V.; Fortun-Lamothe, L.; Cauquil, L.; Combes, S.; Gidenne, T. Live Yeast Stability in Rabbit Digestive Tract: Consequences on the Caecal Ecosystem, Digestion, Growth and Digestive Health. Anim. Feed Sci. Technol. 2012, 173, 235–243. [Google Scholar] [CrossRef]
- Oso, A.O.; Idowu, O.M.O.; Haastrup, A.S.; Ajibade, A.J.; Olowonefa, K.O.; Aluko, A.O.; Ogunade, I.M.; Osho, S.O.; Bamgbose, A.M. Growth Performance, Apparent Nutrient Digestibility, Caecal Fermentation, Ileal Morphology and Caecal Microflora of Growing Rabbits Fed Diets Containing Probiotics and Prebiotics. Livest. Sci. 2013, 157, 184–190. [Google Scholar] [CrossRef]
- Lauková, A.; Strompfová, V.; Szabóová, R.; Bónai, A.; Matics, Z.S.; Kovács, M.; Pogány Simonová, M. Enterococci from Pannon White Rabbits: Detection, Identification, Biofilm and Screening for Virulence Factors. World Rabbit Sci. 2019, 27, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Singh, K.P.; Nair, B.; Ch, P.; Naidu, A.K. Contribution of Fenugreek (Trigonella Foenum Graecum L.) Seeds towards the Nutritional Characterization. J. Med. Plants Res. 2013, 7, 3052–3058. [Google Scholar] [CrossRef]
Ref. | Probiotic | Probiotic Diets | Breed | Total Animals | Start Age, Days | Diet Length, Days | Climate |
---|---|---|---|---|---|---|---|
[24] | AmPhi-Bact a | -5 g/kg of dry fenugreek seeds and 150 mg/kg probiotic -10 g/kg dry fenugreek seeds and 300 mg/kg probiotic -15 g/kg dry fenugreek seeds and 450 mg/kg probiotic | NZW | 128 | 45 | 42 | 22 °C |
[25] | Bacillus subtilis | -200 g of probiotic */t feed -400 g of probiotic */t feed * Bacillus subtilis 4 × 109 CFU/g | Jabali Spanish breed (V-Line) crossbreds ¼J¾V crossbreds ¾J¼V | 20 20 20 20 | 56 | 56 | 20–35 °C |
[26] | Bacillus subtilis Lactobacillus acidophilus | -Bacillus subtilis 1 × 106 CFU/g feed -Lactobacillus acidophilus 1 × 107 CFU/g feed -Bacillus subtilis 0.5 × 106 CFU/g feed + Lactobacillus acidophilus 0.5 × 107 CFU/g feed | NZW | 64 | 28 | 42 | 26.6–33.8 °C |
[27] | Bifidobacterium bifidum Lactobacillus acidophilus Saccharomyces cerevisiae | -1 mL of Bifidobacterium bifidum 1 × 107 CFU/day/rabbit -1 mL of Lactobacillus acidophilus 7 × 106 CFU/day/rabbit -1 mL of Bifidobacterium bifidum + Lactobacillus acidophilus 3.5 × 107 CFU/day/rabbit -1 mL of Saccharomyces cerevisiae/day/rabbit (CFU not reported) | NZW Baladi Black | 75 75 | 35 | 56 | 20–27 °C |
[28] | Clostridium butyricum CCTCC AB: 2017089 | -1.0 × 103 CFU/g -1.0 × 104 CFU/g -1.0 × 105 CFU/g | Sichuan white rex | 60 (120) b | 35 | 28 | - |
[29] | Dry live yeast (RUMI YEAST-Saccharomyces cerevisiae Sc 47-Neovia-France) | -0.5% dry live yeast inclusion of 10 CFU/g -1.0% dry live yeast inclusion of 10 CFU/g -1.5% dry live yeast inclusion of 10 CFU/g -2.0% dry live yeast inclusion of 10 CFU/g | Californian × NZW | 60 | 42 | 35 | - |
[30] | Enterococcus faecium AL41(Czech Culture Collection of Microorganisms number CCM8558) | -Eleutherococcus senticosus (Siberian ginseng) -500 μL Enterococcus faecium AL41 109 CFU/mL/animal/day in the water -Siberian ginseng + 500 μL Enterococcus faecium AL41 109 CFU/mL/animal/day in the water | Hyplus | 96 | 35 | 21 | 16 °C |
[31,32] | Enterococcus faecium EF9a bacteriocin-producing strain | -Ringer solution with Enterococcus faecium EF9a 1.0 × 109 CFU/mL, in a dose 500 µL/animal/day into drinking water | Hyplus | 48 | 35 | 28 (42) c | 16 ± 4 °C |
[33] | Fermented rapeseed meal with Bacillus subtilis (87Y strain collection of InventionBio Ltd., Bydgoszcz, Poland) | -4% of fermented rapeseed meal -8% of fermented rapeseed meal -12% of fermented rapeseed meal | NZW × Popielno White | 40 | 35 | 85 | climate-controlled building |
[34] | Four strains of Enterococcus spp. Three strains of Escherichia coli | -1 mL/kg Enterococcus spp. at 5.0 log CFU/mL every 72 h -1 mL/kg Escherichia coli at 5.0 log CFU/mL every 72 h | NZW | 12 | 38 | 25 | 22 °C |
[35] | Lactobacillus casei RABX1 (accession number: KT944253) | -Resuspended in the milk (5–6 × 108 CFU/mL) and orally administered | NZW | 24 | 5 | 8 (10) d | 30 °C |
[36] | Lactobacillus lactis Bacillus subtilis | -0.4 g/kg of Lactobacillus lactis 2.5 × 108 CFU/g + Bacillus subtilis 1.8 × 109 CFU/g e | Black Baladi | 54 | 42 | 42 | - |
[37] | Lactobacillus plantarum | -0.25 g of probiotic */kg -0.5 g of probiotic */kg * Lactobacillus plantarum 1 × 106 CFU/g | NZW | 36 | 28 | 56 | Egyptian environmental conditions (December–January) |
[38] | Rescue Kit f | -10 g Rescue Kit/kg feed | White Giant | 28 | 70 | 50 | - |
[39] | Saccharomyces cerevisiae | -0.12 g/kg Saccharomyces cerevisiae -150 mg/kg zinc oxide -0.12 g/kg Saccharomyces cerevisiae + 150 mg/kg zinc oxide | NZW | 16 | 112 | 84 | - |
[40] | Saccharomyces cerevisiae Bacillus subtilisg | -0.1% Bacillus subtilis * -0.1% Saccharomyces cerevisiae ** -0.05% Bacillus subtilis * + 0.05% Saccharomyces cerevisiae ** * Bacillus subtilis 3 × 107 CFU/g ** Saccharomyces cerevisiae 108 CFU/g | NZW | 60 | 56 | 70 | - |
[41] | ZAD h | oral gavage -0.25 mL/rabbit/day -0.5 mL/rabbit/day -1.0 mL/rabbit/day | NZW | 180 | 42 | 56 | - |
[42] | ZOOVIT i | -0.5% probiotic | NZW | 36 j | 14 | 87 | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mancini, S.; Paci, G. Probiotics in Rabbit Farming: Growth Performance, Health Status, and Meat Quality. Animals 2021, 11, 3388. https://doi.org/10.3390/ani11123388
Mancini S, Paci G. Probiotics in Rabbit Farming: Growth Performance, Health Status, and Meat Quality. Animals. 2021; 11(12):3388. https://doi.org/10.3390/ani11123388
Chicago/Turabian StyleMancini, Simone, and Gisella Paci. 2021. "Probiotics in Rabbit Farming: Growth Performance, Health Status, and Meat Quality" Animals 11, no. 12: 3388. https://doi.org/10.3390/ani11123388
APA StyleMancini, S., & Paci, G. (2021). Probiotics in Rabbit Farming: Growth Performance, Health Status, and Meat Quality. Animals, 11(12), 3388. https://doi.org/10.3390/ani11123388