Effects of Dietary Supplementation with 2-Hydroxy-4-(methylthio)-butanoic Acid Isopropyl Ester as a Methionine Supplement on Nitrogen Utilization in Steers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Treatments, and Experimental Design
2.2. Sampling
2.3. Determinations and Chemical Analyses
2.4. Metabolomics Analysis
2.5. Calculations
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, Y.; Bai, Z.; Lesschen, J.P.; Staritsky, I.G.; Sikirica, N.; Ma, L.; Velthof, G.L.; Oenema, O. Feed use and nitrogen excretion of livestock in EU-27. Agric. Ecosyst. Environ. 2016, 218, 232–244. [Google Scholar] [CrossRef]
- Cobellis, G.; Trabalza-Marinucci, M.; Yu, Z. Critical evaluation of essential oils as rumen modifiers in ruminant nutrition: A review. Sci. Total Environ. 2016, 545–546, 556–568. [Google Scholar] [CrossRef]
- López-Aizpún, M.; Horrocks, C.A.; Charteris, A.F.; Marsden, K.A.; Ciganda, V.S.; Evans, J.R.; Chadwick, D.R.; Cárdenas, L.M. Meta-analysis of global livestock urine-derived nitrous oxide emissions from agricultural soils. Glob. Chang. Biol. 2020, 26, 2002–2013. [Google Scholar] [CrossRef] [Green Version]
- Richardson, C.R.; Hatfield, E.E. The limiting amino acids in growing cattle. J. Anim. Sci. 1978, 46, 740–745. [Google Scholar] [CrossRef] [PubMed]
- Cantalapiedra-Hijar, G.; Ortigues-Marty, I.; Sepchat, B.; Titgemeyer, E.; Bahloul, L. Methionine-balanced diets improve cattle performance in fattening young bulls fed high-forage diets through changes in nitrogen metabolism. Br. J. Nutr. 2020, 124, 273–285. [Google Scholar] [CrossRef] [Green Version]
- Feng, X.; White, R.R.; Tucker, H.A.; Hanigan, M.D. Meta-analysis of 2-hydroxy-4-methylthio-butanoic acid supplementation on ruminal fermentation, milk production, and nutrient digestibility. J. Dairy Sci. 2018, 101, 7182–7189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Archibeque, S.L.; Burns, J.C.; Huntington, G.B. Nitrogen metabolism of beef steers fed endophyte-free tall fescue hay: Effects of ruminally protected methionine supplementation. J. Anim. Sci. 2002, 80, 1344–1351. [Google Scholar] [CrossRef]
- Waterman, R.C.; Ujazdowski, V.L.; Petersen, M.K. Effects of rumen-protected methionine on plasma amino acid concentrations during a period of weight loss for late gestating beef heifers. Amino Acids 2012, 43, 2165–2177. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yan, J.; Shen, W.; Song, Y.; Lan, X.; Yi, K.; Muhammad, A.R. Effect of inclusion of HMBi in the ration of goats on feed intake, nutrient digestibility, rumen bacteria community and blood serum parameters. J. Anim. Physiol. Anim. Nutr. 2020, 104, 987–997. [Google Scholar] [CrossRef]
- Fowler, C.M.; Plank, J.E.; Devillard, E.; Bequette, B.J.; Firkins, J.L. Assessing the ruminal action of the isopropyl ester of 2-hydroxy-4-(methylthio) butanoic acid in continuous and batch cultures of mixed ruminal microbes. J. Dairy Sci. 2015, 98, 1167–1177. [Google Scholar] [CrossRef] [Green Version]
- Ordway, R.S.; Boucher, S.E.; Whitehouse, N.L.; Schwab, C.G.; Sloan, B.K. Effects of providing two forms of supplemental methionine to periparturient Holstein dairy cows on feed intake and lactational performance. J. Dairy Sci. 2009, 92, 5154–5166. [Google Scholar] [CrossRef] [PubMed]
- Osorio, J.S.; Ji, P.; Drackley, J.K.; Luchini, D.; Loor, J.J. Supplemental Smartamine M or Metasmart during the transition period benefits postpartal cow performance and blood neutrophil function. J. Dairy Sci. 2013, 96, 6248–6263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noftsger, S.; St-Pierre, N.R.; Sylvester, J.T. Determination of rumen degradability and ruminal effects of three sources of methionine in lactating cows. J. Dairy Sci. 2005, 88, 223–237. [Google Scholar] [CrossRef] [Green Version]
- Han, Z.; Yang, B.; Yang, Z.; Xi, Y. Effects of 2-hydroxy-4-(methylthio) butanoic acid isopropyl ester on growth and blood components in growing Holstein steers. Anim. Sci. J. 2017, 88, 286–293. [Google Scholar] [CrossRef]
- Dalbach, K.F.; Larsen, M.; Raun, B.M.L.; Kristensen, N.B. Effects of supplementation with 2-hydroxy-4-(methylthio)-butanoic acid isopropyl ester on splanchnic amino acid metabolism and essential amino acid mobilization in postpartum transition Holstein cows. J. Dairy Sci. 2011, 94, 3913–3927. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.H.; Broderick, G.A.; Luchini, N.D.; Sloan, B.K.; Devillard, E. Effect of feeding different sourc1es of rumen-protected methionine on milk production and N-utilization in lactating dairy cows. J. Dairy Sci. 2011, 94, 1978–1988. [Google Scholar] [CrossRef]
- Whelan, S.J.; Mulligan, F.J.; Flynn, B.; McCarney, C.; Pierce, K.M. Effect of forage source and a supplementary methionine hydroxy analog on nitrogen balance in lactating dairy cows offered a low crude protein diet. J. Dairy Sci. 2011, 94, 5080–5089. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y. The Nutrient Requirements and Feeding Standards of Beef Cattle; China Agricultural University Press: Beijing, China, 2000. [Google Scholar]
- AOAC International. Official Methods of Analysis, 18th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Chen, X.B.; Gomes, M.J. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives: An Overview of Technical Details; International Feed Research Unit; Rowett Research Institute: Aberdeen, UK, 1992. [Google Scholar]
- China Hygienic Standard, WS/T 52–1996. Urine-Determination of Hippuric Acid-Spectrophotometric Method; National Standards Press of China: Beijing, China, 1996. [Google Scholar]
- Liu, C.; Wu, H.; Liu, S.; Chai, S.; Meng, Q.; Zhou, Z. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front. Microbiol. 2019, 10, 1116. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Soufan, O.; Li, C.; Caraus, I.; Li, S.; Bourque, G.; Wishart, D.S.; Xia, J. MetaboAnalyst 4.0: Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018, 46, W486–W494. [Google Scholar] [CrossRef] [Green Version]
- St-Pierre, N.R.; Sylvester, J.T. Effects of 2-hydroxy-4-(methylthio) butanoic acid (HMB) and its isopropyl ester on milk production and composition by Holstein cows. J. Dairy Sci. 2005, 88, 2487–2497. [Google Scholar] [CrossRef] [Green Version]
- Graulet, B.; Richard, C.; Robert, J.C. Methionine availability in plasma of dairy cows supplemented with methionine hydroxy analog isopropyl ester. J. Dairy Sci. 2005, 88, 3640–3649. [Google Scholar] [CrossRef] [Green Version]
- Lapierre, H.; Vázquez-Añón, M.; Parker, D.; Dubreuil, P.; Holtrop, G.; Lobley, G.E. Metabolism of 2-hydroxy-4-(methylthio) butanoate (HMTBA) in lactating dairy cows. J. Dairy Sci. 2011, 218, 232–244. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle, 8th ed.; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Čermáková, J.; Kudrna, V.; Illek, J.; Blažková, K.; Haman, J. Effects of a rumen-protected form of methionine and a methionine analogue on the lactation performance of dairy cows. Czech. J. Anim. Sci. 2012, 57, 410–419. [Google Scholar] [CrossRef] [Green Version]
- Breves, G.; Schröder, B.; Heimbeck, W.; Patton, R.A. Short communication: Transport of 2-hydroxy-4-methyl-thio-butanoic isopropyl ester by rumen epithelium in vitro. J. Dairy Sci. 2010, 93, 260–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharman, E.D.; Lancaster, P.A.; McMurphy, C.P.; Garmyn, A.J.; Pye, B.J.; Mafi, G.G.; Goad, C.L.; Phillips, W.A.; Starkey, J.D.; Krehbiel, C.R.; et al. Effect of rate of body weight gain in steers during the stocker phase. I. Growth, partitioning of fat among depots, and carcass characteristics of growing-finishing beef cattle. J. Anim. Sci. 2013, 91, 4322–4335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Items | Contents |
---|---|
Ingredients, % DM | |
Corn silage | 49.21 |
Corn grain | 36.07 |
Soybean meal | 6.58 |
Wheat bran | 4.16 |
Corn gluten meal | 3.96 |
Sodium bicarbonate | 0.01 |
Sodium chloride | 0.01 |
Nutrient composition, % DM | |
OM | 93.30 |
CP | 12.53 |
RDP 1, % CP | 61.85 |
RUP 1, % CP | 38.15 |
aNDF | 41.28 |
ADF | 23.08 |
Met | 0.15 |
Lys | 0.43 |
Gross energy, MJ kg−1 DM | 19.32 |
NEmf 2, MJ kg−1 DM | 6.40 |
Items | HMBi Supplemented, g d−1 | ||
---|---|---|---|
0 | 12 | 24 | |
Sources of metabolizable Met supply, g d−1 | |||
RUP 1 | 3.20 | 3.20 | 3.20 |
MCP 2 | 8.15 | 7.50 | 7.97 |
HMBi 3 | 0 | 2.66 | 5.33 |
Total | 11.35 | 13.36 | 16.50 |
Metabolizable Met requirement 4, g d−1 | |||
Pre-trial, 593 ± 23 kg BW | 11.74 | 11.74 | 11.74 |
Post-trial, 622 ± 20 kg BW | 11.94 | 11.94 | 11.94 |
Item | HMBi Supplemented, g d−1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 12 | 24 | Treatment | Linear | Quadratic | ||
DMI, kg d−1 | 6.99 | 6.99 | 6.99 | - | - | - | - |
N intake, g d−1 | 140.19 | 140.19 | 140.19 | - | - | - | - |
Fecal N | |||||||
g d−1 | 51.08 | 53.67 | 53.37 | 1.579 | 0.811 | 0.710 | 0.614 |
% N intake | 36.43 | 38.29 | 38.08 | 1.126 | 0.811 | 0.614 | 0.710 |
% total N excretion | 51.45 | 52.95 | 50.94 | 1.548 | 0.890 | 0.909 | 0.654 |
Urinary N | |||||||
g d−1 | 48.35 | 47.60 | 51.68 | 2.059 | 0.747 | 0.570 | 0.633 |
Urinary/N intake, % | 33.49 | 33.95 | 36.87 | 1.469 | 0.747 | 0.570 | 0.633 |
Total N excretion/N intake, % | 48.54 | 47.04 | 48.21 | 1.548 | 0.890 | 0.909 | 0.654 |
Fecal N/urinary N | 1.08 | 1.14 | 1.05 | 0.067 | 0.883 | 0.487 | 0.574 |
Total N excretion, g d−1 | 99.43 | 101.28 | 105.06 | 1.969 | 0.577 | 0.308 | 0.834 |
N retention | |||||||
g d−1 | 40.76 | 38.90 | 35.12 | 1.969 | 0.577 | 0.308 | 0.834 |
NRR, % | 29.07 | 27.75 | 25.05 | 0.205 | 0.577 | 0.308 | 0.834 |
Item | HMBi Supplemented, g d−1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 12 | 24 | Treatment | Linear | Quadratic | ||
Urea, mmol d−1 | 1072.10 | 1013.13 | 1022.38 | 67.412 | 0.472 | 0.415 | 0.370 |
Urea-N/urinary N | 62.43 | 59.12 | 65.65 | 1.840 | 0.401 | 0.499 | 0.249 |
Allantoin, mmol d−1 | 121.21 | 111.75 | 116.74 | 9.724 | 0.942 | 0.875 | 0.769 |
Allantoin-N/urinary N | 13.99 | 13.05 | 12.53 | 0.839 | 0.819 | 0.549 | 0.919 |
Uric acid, mmol d−1 | 6.34 | 8.07 | 8.97 | 0.632 | 0.245 | 0.112 | 0.745 |
Uric acid-N/urinary N | 0.71 | 0.94 | 0.97 | 0.058 | 0.131 | 0.069 | 0.376 |
Creatinine, mmol d−1 | 105.12 | 98.84 | 117.73 | 5.663 | 0.438 | 0.401 | 0.338 |
Creatinine-N/urinary N | 9.20 | 8.70 | 9.53 | 0.263 | 0.495 | 0.640 | 0.291 |
Hippuric acid, mmol d−1 | 144.73 | 153.46 | 170.44 | 9.868 | 0.622 | 0.357 | 0.860 |
Hippuric acid-N/urinary N | 4.13 | 4.50 | 4.71 | 0.263 | 0.717 | 0.438 | 0.905 |
Urinary PD, mmol d−1 | 127.55 | 119.82 | 125.71 | 3.090 | 0.161 | 0.262 | 0.944 |
Urinary PD-N/urinary N | 14.70 | 13.99 | 13.50 | 0.409 | 0.651 | 0.373 | 0.360 |
Rumen microbial N flow, g d−1 | 78.36 | 72.07 | 76.59 | 2.416 | 0.144 | 0.354 | 0.787 |
Item | HMBi Supplemented, g d−1 | SEM | p-Value | ||||
---|---|---|---|---|---|---|---|
0 | 12 | 24 | Treatment | Linear | Quadratic | ||
Total protein, g L−1 | 72.97 | 73.25 | 73.73 | 1.255 | 0.864 | 0.629 | 0.847 |
Albumin, g L−1 | 28.50 | 26.26 | 28.21 | 0.851 | 0.572 | 0.896 | 0.314 |
Glucose, mmol L−1 | 4.18 | 4.29 | 4.69 | 0.125 | 0.241 | 0.120 | 0.567 |
Total cholesterol, mmol L−1 | 2.73 | 2.26 | 2.06 | 0.177 | 0.317 | 0.154 | 0.731 |
Triglyceride, mmol L−1 | 1.19 | 1.21 | 1.19 | 0.018 | 0.937 | 0.946 | 0.735 |
Urea, mmol L−1 | 4.01 | 3.79 | 4.14 | 0.228 | 0.857 | 0.844 | 0.620 |
Uric acid, μmol L−1 | 33.96 | 33.05 | 31.97 | 0.816 | 0.672 | 0.393 | 0.965 |
Creatinine, μmol L−1 | 152.61 | 143.11 | 125.31 | 6.814 | 0.281 | 0.131 | 0.769 |
Super Class | Metabolites | VIP | FDR |
---|---|---|---|
Upregulated | |||
Organic acids and derivatives | Betaine | 1.26 | <0.05 |
Organic acids and derivatives | L-methionine | 1.75 | <0.05 |
Organic acids and derivatives | L-isoleucine | 1.42 | <0.05 |
Organic acids and derivatives | Methionine sulfoxide | 1.38 | <0.05 |
Organic acids and derivatives | Taurine | 1.71 | <0.05 |
Organic acids and derivatives | Tyrosine | 1.12 | <0.05 |
Lipids and lipidlike molecules | Phytanic acid | 1.44 | <0.05 |
Lipids and lipidlike molecules | Tocopherol | 1.68 | <0.05 |
Lipids and lipidlike molecules | Epiandrosterone | 1.37 | <0.05 |
Lipids and lipidlike molecules | Retinol | 1.63 | <0.05 |
Lipids and lipidlike molecules | LysoPC(18:1(9Z)) | 1.55 | <0.05 |
Organoheterocyclic compounds | Xanthine | 1.27 | <0.05 |
Organoheterocyclic compounds | Hypoxanthine | 1.12 | <0.05 |
Organoheterocyclic compounds | Guanine | 1.28 | <0.05 |
Organoheterocyclic compounds | Guanine | 1.46 | <0.05 |
Organoheterocyclic compounds | Riboflavin | 1.52 | <0.05 |
Organic nitrogen compounds | Sphingosine | 1.56 | <0.05 |
Organic nitrogen compounds | Thiamine pyrophosphate | 1.62 | <0.05 |
Phenylpropanoids and polyketides | Cinnamic acids | 1.76 | <0.05 |
Downregulated | |||
Organic acids and derivatives | L-serine | 1.56 | <0.05 |
Organic acids and derivatives | Glycine | 1.42 | <0.05 |
Organic acids and derivatives | Diaminopimelic acid | 1.50 | <0.05 |
Organic acids and derivatives | 3-Methylhistidine | 1.62 | <0.05 |
Organic acids and derivatives | L-pipecolic acid | 1.70 | <0.05 |
Lipids and lipidlike molecules | LysoPC(18:3(9Z,12Z,15Z)) | 1.41 | <0.05 |
Lipids and lipidlike molecules | Fucoxanthin | 1.25 | <0.05 |
Benzenoids | Phenylacetic acid | 1.63 | <0.05 |
Organic nitrogen compounds | Putrescine | 1.48 | <0.05 |
Organic nitrogen compounds | Acetylcholine | 1.39 | <0.05 |
Organoheterocyclic compounds | 4,5-Dimethyloxazole | 1.28 | <0.05 |
Organoheterocyclic compounds | Serotonin | 1.46 | <0.05 |
Organic oxygen compounds | Validamycin B | 1.62 | <0.05 |
Organic oxygen compounds | Gluconic lactone | 1.37 | <0.05 |
Phenylpropanoids and polyketides | Naringenin | 1.19 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Rahman, M.S.; Li, M.; Zhao, G. Effects of Dietary Supplementation with 2-Hydroxy-4-(methylthio)-butanoic Acid Isopropyl Ester as a Methionine Supplement on Nitrogen Utilization in Steers. Animals 2021, 11, 3311. https://doi.org/10.3390/ani11113311
Zhao Y, Rahman MS, Li M, Zhao G. Effects of Dietary Supplementation with 2-Hydroxy-4-(methylthio)-butanoic Acid Isopropyl Ester as a Methionine Supplement on Nitrogen Utilization in Steers. Animals. 2021; 11(11):3311. https://doi.org/10.3390/ani11113311
Chicago/Turabian StyleZhao, Yuchao, Md Sazzadur Rahman, Mengmeng Li, and Guangyong Zhao. 2021. "Effects of Dietary Supplementation with 2-Hydroxy-4-(methylthio)-butanoic Acid Isopropyl Ester as a Methionine Supplement on Nitrogen Utilization in Steers" Animals 11, no. 11: 3311. https://doi.org/10.3390/ani11113311
APA StyleZhao, Y., Rahman, M. S., Li, M., & Zhao, G. (2021). Effects of Dietary Supplementation with 2-Hydroxy-4-(methylthio)-butanoic Acid Isopropyl Ester as a Methionine Supplement on Nitrogen Utilization in Steers. Animals, 11(11), 3311. https://doi.org/10.3390/ani11113311