Histidine Promotes the Glucose Synthesis through Activation of the Gluconeogenic Pathway in Bovine Hepatocytes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation and Cultivation of Primary Bovine Hepatocytes
2.2. Cell Viability Assay
2.3. Quantitative RT-PCR
2.4. Quantification of Hepatic Glucose Output
2.5. Statistics
3. Results
3.1. Assessment of Cell Growth
3.2. Effects of Increasing His Concentration and Time Point on the Expression of Key Genes Encoding Gluconeogenic Pathway
3.3. Histidine Enhances Glucose Production in Bovine Hepatocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vanhatalo, A.; Huhtanen, P.; Toivonen, V.; Varvikko, T. Response of Dairy Cows Fed Grass Silage Diets to Abomasal Infusions of Histidine Alone or in Combinations with Methionine and Lysine. J. Dairy Sci. 1999, 82, 2674–2685. [Google Scholar] [CrossRef]
- Giallongo, F.; Harper, M.; Oh, J.; Parys, C.; Shinzato, I.; Hristov, A. Histidine deficiency has a negative effect on lactational performance of dairy cows. J. Dairy Sci. 2017, 100, 2784–2800. [Google Scholar] [CrossRef]
- Linzell, J.L. Mechanism of secretion of the aqueous phase of milk. J. Dairy Sci. 1972, 55, 1316–1322. [Google Scholar] [CrossRef]
- Korhonen, M.; Vanhatalo, A.; Varvikko, T.; Huhtanen, P. Responses to Graded Postruminal Doses of Histidine in Dairy Cows Fed Grass Silage Diets. J. Dairy Sci. 2000, 83, 2596–2608. [Google Scholar] [CrossRef]
- Doelman, J.; Purdie, N.; Osborne, V.; Cant, J. Short Communication: The Effects of Histidine-Supplemented Drinking Water on the Performance of Lactating Dairy Cows. J. Dairy Sci. 2008, 91, 3998–4001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bickerstaffe, R.; Annison, E.F.; Linzell, J.L. Metabolism of glucose, acetate, lipids and aminoacids in lactation dairy cows. J. Agric. Sci. 1974, 82, 71–85. [Google Scholar] [CrossRef]
- Aschenbach, J.R.; Kristensen, N.B.; Donkin, S.; Hammon, H.M.; Penner, G.B. Gluconeogenesis in dairy cows: The secret of making sweet milk from sour dough. IUBMB Life 2010, 62, 869–877. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Koser, S.L.; Donkin, S.S. Propionate induces mRNA expression of gluconeogenic genes in bovine calf hepatocytes. J. Dairy Sci. 2016, 99, 3908–3915. [Google Scholar] [CrossRef] [Green Version]
- Greenfield, R.; Cecava, M.; Donkin, S. Changes in mRNA Expression for Gluconeogenic Enzymes in Liver of Dairy Cattle During the Transition to Lactation. J. Dairy Sci. 2000, 83, 1228–1236. [Google Scholar] [CrossRef]
- Agca, C.; Greenfield, R.B.; Hartwell, J.R.; Donkin, S. Cloning and characterization of bovine cytosolic and mitochondrial PEPCK during transition to lactation. Physiol. Genom. 2002, 11, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Wallace, J.C.; Jitrapakdee, S.; Chapman-Smith, A. Pyruvate carboxylase. Int. J. Biochem. Cell Biol. 1998, 30, 1–5. [Google Scholar] [CrossRef]
- Wang, L.F.; Yang, G.Q.; Yang, S.; Li, M.; Zhu, H.S.; Wang, Y.Y.; Han, L.Q.; Liu, R.Y.; Jia, S.D.; Song, F. Alteration of factors associated with hepatic gluconeogenesis in response to acute lipopolysaccharide in dairy goat. J. Anim. Sci. 2015, 93, 2767–2777. [Google Scholar] [CrossRef]
- Tanaka, A.; Urabe, S.; Takeguchi, A.; Mizutani, H.; Sako, T.; Imai, S.; Yoshimura, I.; Kimura, N.; Arai, T. Comparison of Activities of Enzymes Related to Energy Metabolism in Peripheral Leukocytes and Livers between Holstein Dairy Cows and ICR Mice. Vet. Res. Commun. 2006, 30, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Nordlie, R.C.; Foster, J.D. A retrospective review of the roles of multifunctional glucose-6-phosphatase in blood glucose homeostasis: Genesis of the tuning/retuning hypothesis. Life Sci. 2010, 87, 339–349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauman, D.E. Regulation of nutrient partitioning during lactation: Homeostasis and homeorhesis revisited. In Ruminant Physiology: Digestion, Metabolism, Growth, and Reproduction; Cronje, P.B., Ed.; CABI Publishing: New York, NY, USA, 2000; pp. 311–327. [Google Scholar]
- Drackley, J.K.; Overton, T.R.; Douglas, G.N. Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. J. Dairy Sci. 2001, 84, E100–E112. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Li, Y.; Guan, Y.; Song, Y.; Yin, L.; Chen, H.; Lei, L.; Liu, J.; Li, X.; et al. Effects of nonesterified fatty acids on the synthesis and assembly of very low density lipoprotein in bovine hepatocytes in vitro. J. Dairy Sci. 2014, 97, 1328–1335. [Google Scholar] [CrossRef] [Green Version]
- Gong, X.; Su, X.; Zhan, K.; Zhao, G. The protective effect of chlorogenic acid on bovine mammary epithelial cells and neutrophil function. J. Dairy Sci. 2018, 101, 10089–10097. [Google Scholar] [CrossRef] [Green Version]
- Xu, T.; Ma, N.; Wang, Y.; Shi, X.; Chang, G.; Loor, J.J.; Shen, X. Response to inflammation and modulates fatty acid metabolism in lipopolysaccharide-stimulated bovine hepatocytes. J. Agric. Food Chem. 2018, 66, 6281–6290. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCTmethod. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Huhtanen, P. Supply of nutrients and productive responses in dairy cows given diets based on restrictively fermented silage. Agric. Food Sci. 1998, 7, 219–250. [Google Scholar] [CrossRef]
- Gao, H.N.; Zhao, S.G.; Zheng, N.; Zhang, Y.D.; Wang, S.S.; Zhou, X.Q.; Wang, J.Q. Combination of histidine, lysine, methionine, and leucine promotes β-casein synthesis via the mechanistic target of rapamycin signaling pathway in bovine mammary epithelial cells. J. Dairy Sci. 2017, 100, 7696–7709. [Google Scholar] [CrossRef]
- Herdt, T.H. Ruminant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 215–230. [Google Scholar] [CrossRef]
- Lin, B.; Morris, A.D.W.; Chou, J.Y. The Role of HNF1α, HNF3γ, and Cyclic AMP in Glucose-6-phosphatase Gene Activation. Biochemistry 1997, 36, 14096–14106. [Google Scholar] [CrossRef] [PubMed]
- Van Schaftingen, E.; Gerin, I. The glucose-6-phosphatase system. Biochem. J. 2002, 362, 513–532. [Google Scholar] [CrossRef] [PubMed]
Gene | Primer Sequence, 5′ to 3′ | Accession Number | Source |
---|---|---|---|
PCK1 | F: 5 AGGGAAATAGCAGGCTCCAGGAAA 3 R: 5 CACACGCATGTGCACACACACATA 3 | NM_174737.2 | Zhang et al., 2016 [8] |
PCK2 | F: 5 TGACTGGGCAAGGGGAGCCG 3 R: 5 GGGGCCACCCCAAAGAAGCC 3 | NM_001205594.1 | Zhang et al., 2016 [8] |
PC | F: 5 CCACGAGTTCTCCAACACCT 3 R: 5 TTCTCCTCCAGCTCCTCGTA 3 | NM_177946.4 | Zhang et al., 2016 [8] |
G6PC | F: 5 TGATGGACCAAGAAAGATCCAGGC 3 R: 5 TATGGATTGACCTCACTGGCCCTCTT 3 | NM_001076124.2 | Zhang et al., 2016 [8] |
FBP1 | F: 5 ATAGAGAAGGCAGGAGGAAT 3 R: 5 CAGGAACTCAGTCACATCTT 3 | NM_001034447 | Zhang et al., 2016 [8] |
GAPDH | F: 5 GGGTCATCATCTCTGCACCT 3 R: 5 GGTCATAAGTCCCTCCACGA 3 | NM_001034034 | Gong et al., 2018 [18] |
Treatment 1 | ||||||
---|---|---|---|---|---|---|
Symbol | Control | 0.15 mM | 0.6 mM | 1.2 mM | SEM | p-Value |
PCK1 | 1.00 c | 1.44 c | 2.38 b | 3.11 a | 0.19 | <0.001 |
PCK2 | 1.01 d | 1.86 c | 4.00 b | 5.73 a | 0.40 | <0.001 |
G6PC | 1.00 b | 1.34 ab | 1.67 a | 1.78 a | 0.10 | 0.021 |
FBP1 | 1.00 b | 1.32 b | 3.73 ab | 6.47 a | 0.64 | 0.002 |
PC | 1.00 | 1.27 | 1.24 | 0.91 | 0.51 | 0.34 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, T.; Cheng, Z.; Jiang, M.; Ma, X.; Datsomor, O.; Zhao, G.; Zhan, K. Histidine Promotes the Glucose Synthesis through Activation of the Gluconeogenic Pathway in Bovine Hepatocytes. Animals 2021, 11, 3295. https://doi.org/10.3390/ani11113295
Yang T, Cheng Z, Jiang M, Ma X, Datsomor O, Zhao G, Zhan K. Histidine Promotes the Glucose Synthesis through Activation of the Gluconeogenic Pathway in Bovine Hepatocytes. Animals. 2021; 11(11):3295. https://doi.org/10.3390/ani11113295
Chicago/Turabian StyleYang, Tianyu, Zhiqiang Cheng, Maocheng Jiang, Xiaoyu Ma, Osmond Datsomor, Guoqi Zhao, and Kang Zhan. 2021. "Histidine Promotes the Glucose Synthesis through Activation of the Gluconeogenic Pathway in Bovine Hepatocytes" Animals 11, no. 11: 3295. https://doi.org/10.3390/ani11113295
APA StyleYang, T., Cheng, Z., Jiang, M., Ma, X., Datsomor, O., Zhao, G., & Zhan, K. (2021). Histidine Promotes the Glucose Synthesis through Activation of the Gluconeogenic Pathway in Bovine Hepatocytes. Animals, 11(11), 3295. https://doi.org/10.3390/ani11113295