Growth Performance, Carcass Characteristics and Meat Quality of Organically Reared Broiler Chickens Depending on Sex
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Slaughter Surveys
2.3. Physicochemical Properties
2.4. Histological Evaluation
2.5. Analysis of Fatty Acid Profile
2.6. Measurement of Oxidative Stability (TBARS)
2.7. Statistical Analyses
3. Results and Discussion
3.1. Growth and Slaughter Performances
3.2. Physicochemical Traits and Fiber Diameter
3.3. Fatty Acid Profile and Oxidative Stability (TBARS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Çapan, B.; Bağdatli, A. Investigation of physicochemical, microbiological and sensorial properties for organic and conventional retail chicken meat. Food Sci. Hum. Wellness 2021, 10, 183–190. [Google Scholar] [CrossRef]
- European Commission. Facts and figures on organic agriculture in the European Union. In European Union: Farm Accountancy Data Network, Agriculture and Rural Development, Unit Economic Analysis of EU Agriculture; European Commission: Brussels, Belgium, 2016. [Google Scholar]
- Willer, H.; Schaack, D. Organic farming and market development in Europe. In FiBL & IFOAM: The World of Organic Agriculture, Statistic and Emerging Trends; Frick (Switzerland) & Bonn (Germany), 2015; p. 194. Available online: https://orgprints.org/id/eprint/28706/1/willer-schaack-2015-europe.pdf (accessed on 13 November 2021).
- Commission Regulation (EC) No 889/2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007 on organic production and labelling of organic products with regard to organic production, labelling and control. Official Journal of the European Union L 250, 2008.
- Gálvez, F.; Domínguez, R.; Maggiolino, A.; Pateiro, M.; Carballo, J.; De Palo, P.; Barba, F.; Lorenzo, J. Meat Quality of Commercial Chickens Reared in Different Production Systems: Industrial, Range and Organic. Ann. Anim. Sci. 2020, 20, 263–285. [Google Scholar] [CrossRef] [Green Version]
- Cömert, M.; Şayan, Y.; Kırkpınar, F.; Bayraktar, Ö.H.; Mert, S. Comparison of Carcass Characteristics, Meat Quality, and Blood Parameters of Slow and Fast Grown Female Broiler Chickens Raised in Organic or Conventional Production System. Anim Biosci. 2016, 29, 987–997. [Google Scholar] [CrossRef] [Green Version]
- Cygan-Szczegielniak, D.; Maiorano, G.; Janicki, B.; Buzała, M.; Stasiak, K.; Stanek, M.; Roślewska, A.; Elminowska-Wenda, G.; Bogucka, J.; Tavaniello, S. Influence of rearing system and sex on carcass traits and meat quality of broiler chickens. J. Appl. Anim. Res. 2019, 47, 333–338. [Google Scholar] [CrossRef] [Green Version]
- Fanatico, A.C.; Pilai, P.B.; Emmert, J.L.; Owens, C.M. Meat quality of slow-and fast growing chicken genotypes fed low-nutrient or standard diets and raised indoors or with outdoor access. Poult. Sci. 2007, 86, 2245–2255. [Google Scholar] [CrossRef] [PubMed]
- FAO. 2020. Available online: http://www.fao.org/3/ca9509en/ca9509en.pdf (accessed on 25 March 2021).
- Biesek, J.; Kuźniacka, J.; Banaszak, M.; Kaczmarek, S.; Adamski, M.; Rutkowski, A.; Zmudzińska, A.; Perz, K.; Hejdysz, M. Growth Performance and Carcass Quality in Broiler Chickens Fed on Legume Seeds and Rapeseed Meal. Animals 2020, 10, 846. [Google Scholar] [CrossRef] [PubMed]
- Mikulski, D.; Celej, J.; Jankowski, J.; Majewska, T.; Mikulska, M. Growth performance, carcass traits and meat quality of slower-growing and fast-growing chickens raised with and without outdoor access. Asian Australas. J. Anim. Sci. 2011, 24, 1407–1416. [Google Scholar] [CrossRef]
- Połtowicz, K.; Doktor, J. Effect of slaughter age on performance and meat quality of slow-growing broiler chickens. Ann. Anim. Sci. 2012, 12, 621–631. [Google Scholar] [CrossRef] [Green Version]
- Barbut, S. Recent myopathies in broiler’s breast meat fillets. World’s Poult. Sci. J. 2019, 4, 559–582. [Google Scholar] [CrossRef]
- Maiorano, G.; Sobolewska, A.; Cianciullo, D.; Walasik, K.; Elminowska-Wenda, G.; Slawinska, A.; Tavaniello, S.; Zylinska, J.; Bardowski, J.; Bednarczyk, M. Influence of in ovo prebiotic and synbiotic administration on meat quality of broiler chickens. Poult. Sci. 2012, 91, 2963–2969. [Google Scholar] [CrossRef]
- Elminowska-Wenda, G.; Bogucka, J.; Sobolewska, A.; Paruszewska-Achtel, M. The occurrence of myopathy syndrome type “white fibers” in the pectoral muscle of broilers. In Proceedings of the XXVI International Poultry Symposium PB WPSA, Kazimierz Dolny, Poland, 8–10 September 2014; p. 177. [Google Scholar]
- Sihvo, H.K.; Immonen, K.; Puolanne, E. Myodegeneration with fibrosis and regeneration in the pectoralis major muscle of broilers. Vet. Pathol. 2014, 51, 619–623. [Google Scholar] [CrossRef]
- Mazzoni, M.; Petracci, M.; Meluzzi, A.; Cavani, C.; Clavenzani, P.; Sirri, F. Relationship between pectoralis major muscle histology and quality traits of chicken meat. Poult. Sci. 2015, 94, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Petracci, M. Growth-related breast meat abnormalities in broilers. Lohmann Inf. 2019, 53, 12–18. [Google Scholar]
- Sirri, F.; Maiorano, G.; Tavaniello, S.; Chen, J.; Petracci, M.; Meluzzi, A. Effect of different levels of dietary zinc, manganese, and copper from organic or inorganic sources on performance, bacterial chondronecrosis, intramuscular collagen characteristics, and occurrence of meat quality defects of broiler chickens. Poult. Sci. 2016, 95, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Tůmová, E.; Chodová, D.; Skřivanová, E.; Laloučková, K.; Šubrtová-Salmonová, H.; Ketta, M.; Machander, V.; Cotozzolo, E. The effects of genotype, sex, and feeding regime on performance, carcasses characteristic, and microbiota in chickens. Poult. Sci. 2021, 100, 760–764. [Google Scholar] [CrossRef]
- Goo, D.; Kim, J.H.; Choi, H.S.; Park, G.H.; Han, G.P.; Kil, D.Y. Effect of stocking density and sex on growth performance, meat quality, and intestinal barrier function in broiler chickens. Poult. Sci. 2019, 98, 1153–1160. [Google Scholar] [CrossRef]
- Milićević, D.; Vranić, D.; Mašić, Z.; Parunović, N.; Trbović, D.; Nedeljković-Trailović, J.; Petrović, Z. The role of total fats, saturated/unsaturated fatty acids and cholesterol content in chicken meat as cardiovascular risk factors. Lipids Health Dis. 2014, 13, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Biesek, J.; Kuźniacka, J.; Banaszak, M.; Maiorano, G.; Grabowicz, M.; Adamski, M. The effect of various protein sources in goose diets on meat quality, fatty acid composition, and cholesterol and collagen content in breast muscles. Poult. Sci. 2020, 99, 6278–6286. [Google Scholar] [CrossRef] [PubMed]
- Cartoni Mancinelli, A.; Silletti, E.; Mattioli, S.; Dal Bosco, A.; Sebastiani, B.; Menchetti, L.; Koot, A.; van Ruth, S.; Castellini, C. Fatty acid profile, oxidative status, and content of volatile organic compounds in raw and cooked meat of different chicken strains. Poult. Sci. 2021, 100, 1273–1282. [Google Scholar] [CrossRef]
- Wołoszyn, J.; Haraf, G.; Okruszek, A.; Wereńska, M.; Goluch, Z.; Teleszko, M. Fatty acid profiles and health lipid indices in the breast muscles of local Polish goose varieties. Poult. Sci. 2020, 99, 1216–1224. [Google Scholar] [CrossRef] [PubMed]
- Cerolini, S.; Vasconi, M.; Abdel Sayed, M.; Iaffaldano, N.; Mangiagalli, M.G.; Pastorelli, G.; Moretti, V.M.; Zaniboni, L.; Mosca, F. Free-range rearing density for male and female Milanino chickens: Carcass yield and qualitative meat traits. J. Appl. Poult. Res. 2019, 28, 1349–1358. [Google Scholar] [CrossRef]
- Onk, K.; Yalcintan, H.; Sari, M.; Isik, S.A.; Yakan, A.; Ekiz, B. Effects of genotype and sex on technological properties and fatty acid composition of duck meat. Poult. Sci. 2019, 98, 491–499. [Google Scholar] [CrossRef] [PubMed]
- PN-77/A-82058. Meat and Meat Products. Determination of pH of Meat; Warsaw, Poland, 1977. [Google Scholar]
- Litwińczuk, Z.; Skałecki, P.; Florek, M. The physico-chemical characteristics of longissimus lumborum muscle of fatteners maintained in 10 herds in the Lublin region. Anim. Sci. Pap. Rep. 2006, 24, 157–165. [Google Scholar]
- Grau, R.; Hamm, R. Eine einfache methode zur bestimmung der wasserbindung im fleisch. Fleischwirtschaft 1952, 4, 295–297. [Google Scholar]
- Pohja, N.S.; Ninivaara, F.P. Die bestimmung der wasserbindung des fleisches mittels der konsandrückmethods. Fleischwirtschaft 1957, 9, 193–195. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; AOAC Int.: Gaithersburg, MD, USA, 2000. [Google Scholar]
- PN-ISO3496. Meat and Meat Products-Determination of Hydroxyproline Content; Warsaw, Poland, 2000. [Google Scholar]
- Palka, K. Changes in intramuscular connective tissue and collagen solubility of bovine m. semitendinosus during retorting. Meat Sci. 1999, 53, 189–194. [Google Scholar] [CrossRef]
- Dubovitz, V.; Brooke, M.H.; Neville, H.E. Muscle Biopsy: A Modern Approach, 1st ed.; W. B. Saunders Co. Ltd.: London, UK, 1973. [Google Scholar]
- Brooke, M.H. Some comments on neural influence on the two histochemical types of muscle fibres. In Physiology and Biochemistry on Muscle as a Food; Briskey, E.J., Cassens, R.G., Marsh, B.B., Eds.; University of Wisconsin: Madison, WI, USA, 1970; p. 131. [Google Scholar]
- Folch, J.; Lees, M.; Stanley, G.H.S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 1956, 226, 497–509. [Google Scholar] [CrossRef]
- Pikul, J.; Leszczynski, D.E.; Kummerow, F.A. Evaluation of Three Modified TBA Methods for Measuring Lipid Oxidation in Chicken Meat. J. Agric. Food Chem. 1989, 37, 1309–1313. [Google Scholar] [CrossRef]
- van der Sluis, W. Finding the Difference between Conventional and Organic. The Netherlands. Available online: www.poultryworld.net (accessed on 22 December 2011).
- Maiorano, G.; Stadnicka, K.; Tavaniello, S.; Abiuso, C.; Bogucka, J.; Bednarczyk, M. In ovo validation model to assess the efficacy of commercial prebiotics on broiler performance and oxidative stability of meat. Poult. Sci. 2017, 96, 511–518. [Google Scholar] [CrossRef]
- Mosca, F.; Zaniboni, L.; Laffaldano, N.; Sayed, A.A.; Mangiagalli, M.G.; Pastorelli, G.; Cerolini, S. Free-Range Rearing Density for Male and Female Milanino Chickens: Growth Performance and Stress Markers. J. Appl. Poult. Res. 2019, 28, 1342–1348. [Google Scholar] [CrossRef]
- Li, Y.; Luo, C.; Wang, J.; Guo, F. Effects of different raising systems on growth performance, carcass, and meat quality of medium-growing chickens. J. Appl. Anim. Res. 2017, 45, 326–330. [Google Scholar] [CrossRef]
- Połtowicz, K.; Doktor, J. Effect of free-range raising on performance, carcass attributes and meat quality of broiler chickens. Anim. Sci. Pap. Rep. 2011, 29, 139–149. [Google Scholar]
- Mennecke, B.E.; Townsend, A.M.; Hayes, D.J.; Lonergan, S.M. A study of the factors that influence consumer attitudes toward beef products using the conjoint market analysis tool. J. Anim. Sci. 2007, 85, 2639–2659. [Google Scholar] [CrossRef] [Green Version]
- Funaro, A.; Cardenia, V.; Petracci, M.; Rimini, S.; Rodriguez-Estrada, M.T.; Cavani, C. Comparison of meat quality characteristics and oxidative stability between conventional and free-range chickens. Poult. Sci. 2014, 93, 1511–1522. [Google Scholar] [CrossRef]
- Fanatico, A.C.; Pilai, P.B.; Cavitt, L.; Owens, C.; Emmert, J. Evaluation of slower-growing broiler genotypes grown with and without outdoor access: Growth performance and carcass yield. Poult. Sci. 2005, 84, 1321–1327. [Google Scholar] [CrossRef] [PubMed]
- Fletcher, D.L. Poultry meat quality. World’s Poult. Sci. J. 2002, 58, 131–145. [Google Scholar] [CrossRef]
- Lepetit, J. A theoretical approach of the relationships between collagen content, collagen cross-links and meat tenderness. Meat Sci. 2007, 76, 147–159. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Geesink, G.H. Protein degradation post mortem and tenderisation. In Applied Muscle Biology and Meat Science; Du, M., McCormick, R.J., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2009; pp. 149–173. [Google Scholar]
- Tůmová, E.; Teimouri, A. Fat deposition in the broiler chicken: A review. Sci. Agric. Bohem. 2010, 41, 121–128. [Google Scholar]
- Berri, C.; Le Bihan-Duval, E.; Debut, M.; Santé-Lhoutellier, V.; Baéza, E.; Gigaud, V.; Jégo, Y.; Duclos, M.J. Consequence of muscle hypertrophy on characteristics of Pectoralis major muscle and breast meat quality of broiler chickens. Sci. J. Anim. Sci. 2007, 85, 2005–2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tavaniello, S.; Maiorano, G.; Siwek, M.; Knaga, S.; Witkowski, A.; Di Memmo, D.; Bednarczyk, M. Growth performance, meat quality traits, and genetic mapping of quantitative trait loci in 3 generations of Japanese quail populations (Coturnix japonica). Poult. Sci. 2014, 93, 2129–2140. [Google Scholar] [CrossRef] [PubMed]
- Castellini, C.; Mugnai, C.; Dal Bosco, A. Effect of organic production system on broiler carcass and meat quality. Meat Sci. 2002, 60, 219–225. [Google Scholar] [CrossRef]
Rearing System | Org. |
---|---|
ME (kcal/kg) | 2319.19 |
DM (%) | 92.61 |
Ash (%) | 4.85 |
CP (%) | 16.71 |
Lipid (%) | 3.28 |
Fiber (%) | 5.44 |
NDF (%) | 11.46 |
ADF (%) | 5.58 |
ADL (%) | 1.05 |
Item | Sex | ||
---|---|---|---|
Male | Female | p-Value | |
n | 30 | 30 | |
Final live BW (g) | 3048.0 a ± 44.80 | 2882.7 b ± 49.29 | p = 0.019 |
Daily weight gain (g) | 53.68 a ± 1.46 | 50.73 b ± 1.57 | p = 0.047 |
Carcass weight (CW, g) | 2368.0 a ± 31.46 | 2109.1 b ± 37.01 | p = 0.037 |
Carcass yield (%) | 77.52 a ± 1.21 | 73.4 b ± 1.42 | p = 0.046 |
Pectoral muscle (g) | 500.5 ± 11.04 | 475.0 ± 13.21 | p = 0.529 |
Pectoral muscle (% CW) | 21.10 ± 1.54 | 22.19 ± 1.36 | p = 0.264 |
Item | Sex | ||
---|---|---|---|
Male | Female | p-Value | |
n | 30 | 30 | |
pH15 | 6.02 ± 0.221 | 5.96 ± 0.207 | p = 0.424 |
pH24 | 5.63 ± 0.063 | 5.63 ± 0.067 | p = 0.956 |
Color 24 h | |||
L* | 61.67 ± 2.42 | 60.58 ± 2.36 | p = 0.222 |
a* | 10.27 ± 1.21 | 10.18 ± 1.31 | p = 0.848 |
b* | 5.05 ± 0.97 | 5.83 ± 0.87 | p = 0.069 |
WHC 1 (%) | 62.83 ± 2.58 | 63.54 ± 2.32 | p = 0.517 |
Shear force (N/cm) | 35.45 a ± 1.97 | 37.45 b ± 1.66 | p = 0.035 |
Fiber diameter (μm) | 41.42 a ± 1.69 | 42.79 b ± 1.91 | p = 0.046 |
Dry matter (%) | 23.98 a ± 1.10 | 24.80 b ± 0.998 | p = 0.042 |
Protein (%) | 22.94 a ± 1.27 | 23.89 b ± 0.891 | p = 0.025 |
Fat (%) | 1.47 a ± 0.078 | 1.14 b ± 0.058 | p = 0.041 |
Total collagen (%) | 0.51 ± 0.051 | 0.46 ± 0.046 | p = 0.590 |
Soluble collagen (%) | 0.16 ± 0.012 | 0.14 ± 0.015 | p = 0.571 |
Item | Sex | ||
---|---|---|---|
Male | Female | p-Value | |
n | 30 | 30 | |
C14:0 | 0.764 a ± 0.112 | 0.603 b ± 0.031 | p = 0.012 |
C16:0 | 39.09 ± 0.411 | 39.17 ± 0.514 | p = 0.990 |
C18:0 | 12.52 ± 0.29 | 13.34 ± 0.451 | p = 0.143 |
C20:0 | 1.55 a ± 0.101 | 1.17 b ± 0.091 | p = 0.009 |
C22:0 | 0.443 a ± 0.049 | 0.559 b ± 0.047 | p = 0.038 |
∑ SFA | 54.36 ± 0.321 | 54.77 ± 0.308 | p = 0.373 |
C16:1 | 1.591 a ±0.104 | 1.254 b ± 0.116 | p = 0.042 |
C18:1 n-9 | 24.41 ± 0.544 | 23.96 ± 0.616 | p = 0.595 |
C20:1 | 0.474 a ± 0.02 | 0.387 b ± 0.019 | p = 0.014 |
∑ MUFA | 26.47 ± 0.63 | 25.61 ± 0.709 | p = 0.372 |
C18:2 n-6 | 14.98 a ± 0.329 | 13.85 b ± 0.235 | p = 0.008 |
C20:2 n-6 | 0.252 ± 0.016 | 0.247 ± 0.019 | p = 0.859 |
C20:3 n-3 | 3.20 a ±0.413 | 4.51 b ± 0.628 | p = 0.049 |
C20:5 n-3 | 0.249 a ± 0.031 | 0.336 b ± 0.032 | p = 0.046 |
C22:6 n-3 | 0.467 a ± 0.064 | 0.683 b ± 0.097 | p = 0.041 |
∑ PUFA | 19.15 ± 0.657 | 19.62 ± 0.767 | p = 0.653 |
PUFA/SFA | 0.353 ± 0.012 | 0.358 ± 0.015 | p = 0.766 |
∑ n-3 | 3.92 a ± 0.501 | 5.52 b ± 0.743 | p = 0.018 |
∑ n-6 | 15.23 a ± 0.338 | 14.09 b ± 0.249 | p = 0.011 |
n-3/n-6 | 0.257 a ± 0.033 | 0.395 b ± 0.055 | p = 0.045 |
n-6/n-3 | 4.76 a ± 0.616 | 3.23 b ± 0.421 | p = 0.047 |
AI | 0.925 ± 0.017 | 0.919 ± 0.017 | p = 0.812 |
TI | 1.62 ± 0.063 | 1.49 ± 0.071 | p = 0.176 |
TBARS | 0.672 ±0.071 | 0.681 ± 0.09 | p = 0.789 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cygan-Szczegielniak, D.; Bogucka, J. Growth Performance, Carcass Characteristics and Meat Quality of Organically Reared Broiler Chickens Depending on Sex. Animals 2021, 11, 3274. https://doi.org/10.3390/ani11113274
Cygan-Szczegielniak D, Bogucka J. Growth Performance, Carcass Characteristics and Meat Quality of Organically Reared Broiler Chickens Depending on Sex. Animals. 2021; 11(11):3274. https://doi.org/10.3390/ani11113274
Chicago/Turabian StyleCygan-Szczegielniak, Dorota, and Joanna Bogucka. 2021. "Growth Performance, Carcass Characteristics and Meat Quality of Organically Reared Broiler Chickens Depending on Sex" Animals 11, no. 11: 3274. https://doi.org/10.3390/ani11113274
APA StyleCygan-Szczegielniak, D., & Bogucka, J. (2021). Growth Performance, Carcass Characteristics and Meat Quality of Organically Reared Broiler Chickens Depending on Sex. Animals, 11(11), 3274. https://doi.org/10.3390/ani11113274