Addition of Different Levels of Humic Substances Extracted from Worm Compost in Broiler Feeds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Characterization of the HS
2.2. Animals, Treatments, and Diets
2.3. Sample Collection and Laboratory Determinations
2.4. Statistical Analysis of Data
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EMEA. Committee for Veterinary Medical Products. Humic Acids and Their Sodium Salts, Summary Report. Committee for Veterinary Medicinal Products. 1999. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/Maximum_Residue_Limits_-_Report/2009/11/WC500014416 (accessed on 29 April 2021).
- Islam, K.M.S.; Schuhmacher, A.; Gropp, J. Humic Acid Substances in Animal Agriculture. Pakis. J. Nut. 2005, 4, 126–134. [Google Scholar]
- Arif, M.; Alagawany, M.; Abd El-Hack, M.E.; Saeed, M.; Arain, M.A.; Elnesr, S.S. Humic Acid as a Feed Additive in Poultry Diets: A Review. Iran. J. Vet. Res. 2019, 20, 167–172. [Google Scholar] [PubMed]
- Klocking, R.; Helbig, B. Medical Aspects and Application of Humic Substances. In Biopolymers for Medical and Pharmaceutical Applications; Steinbuchel, A., Marchessault, R.H., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2005. [Google Scholar]
- Jacob, K.K.; Prashob, P.; Chandramohanakumar, N. Humic Substances as a Potent Biomaterials for Therapeutic and Drug Delivery System-A Review. Int. J. Appl. Pharm. 2019, 11, 1–4. [Google Scholar] [CrossRef] [Green Version]
- Swidsinski, A.; Dörffel, Y.; Loening-Baucke, V.; Gille, C.; Reißhauer, A.; Göktas, Ö.; Krüger, M.; Neuhaus, J.; Schrödl, W. Impact of Humic Acids on the Colonic Microbiome in Healthy Volunteers. Observational Study. World J. Gastroenterol. 2017, 23, 885–890. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S. Application of Fulvic Acid and Its Derivatives in the Fields of Agriculture and Medicine, 1st ed.; 1993. [Google Scholar]
- Priegnitz, H. Wasserkur und Badelust; Koehler and Amelang: Leipzig, Germany, 1986. [Google Scholar]
- Van Rensburg, C.E. The Antiinflammatory properties of humic substances: A mini review. Phytother. Res. 2015, 29, 791–795. [Google Scholar] [CrossRef] [Green Version]
- Berzelius, J.J. Lehrbuch der Chemie; Wöhler: Dresden/Leipzig, Germany, 1839. [Google Scholar]
- Peña-Méndez, E.M.; Havel, J.; Patočka, J. Humic Substances—Compounds of Still Unknown Structure: Applications in Agriculture, Industry, Environment, and Biomedicine. J. Appl. Biomed. 2005, 3, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Rosales, S.; Angeles, M.L.; Núñez-Hernández, G.; Figueroa-Viramontes, U. Methodologies for the Production of Compost and Worm Compost from Dairy Cattle Excreta; Technical Book; National Center of Disciplinary Research in Animal Physiology, National Institute for Research in Forestry, Agriculture and Livestock: Querétaro, Mexico, 2013; pp. 1–52. Available online: https://pdfs.semanticscholar.org/581d/3131800723d95415a9a9b691ed672523ac41.pdf (accessed on 1 October 2021).
- Kocabagli, N.; Alp, M.; Acar, N.; Kahraman, R. The effects of dietary humate supplementation on broiler growth and carcass yield. Poult. Sci. 2012, 81, 227–230. [Google Scholar] [CrossRef]
- Taklimi, S.M.S.M.; Ghahri, H.; Isakan, M.A. Influence of different levels of humic acid and esterified glucomannan on growth performance and intestinal morphology of broiler chickens. Agricult. Sci. 2012, 3, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Ozturk, E.; Ocak, N.; Turan, A.; Erener, G.; Altop, A.; Cankaya, S. Performance, carcass, gastrointestinal tract and meat quality traits, and selected blood parameters of broilers fed diets supplemented with humic substances. J. Sci. Food. Agric. 2012, 92, 59–65. [Google Scholar] [CrossRef]
- Disetlhe, A.R.P.; Marume, U.; Mlambo, V.; Dinev, I. Humic acid and enzymes in canola-based broiler diets: Effects on bone development, intestinal histomorphology and immune development. S. Afr. J. Anim. Sci. 2017, 47, 914–922. [Google Scholar] [CrossRef] [Green Version]
- Gomez-Rosales, S.; Angeles, M.L. Addition of a Worm Leachate as Source of Humic Substances in the Drinking Water of Broiler Chickens. Asian-Australas. J. Anim. Sci. 2015, 28, 215–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domínguez-Negrete, A.; Gómez-Rosales, S.; Angeles, M.L.; López-Hernández, L.H.; Reis-de-Souza, T.C.; López-García, Y.; Zavala-Franco, A.; Téllez-Isaias, G. Effect of the Addition of Humic Substances as Growth Promoter in Broiler Chickens Under Two Feeding Regimens. Animals 2019, 9, 1101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Honikel, K.O. Reference Methods for the Assessment of Physical Characteristics of Meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Earl, L.A.; King, A.J.; Fitzpatrick, D.P.; Cooper, J.E. A Modification of a Method to Determine Expressible Moisture in Ground, Dark Poultry Meat. Poult. Sci. 1996, 75, 1433–1436. [Google Scholar] [CrossRef]
- Serpen, A.; Gökmen, V.; Fogliano, V. Total Antioxidant Capacities of Raw and Cooked Meats. Meat Sci. 2012, 90, 60–65. [Google Scholar] [CrossRef]
- Maraschiello, C.; Sárraga, C.; García Regueiro, J.A. Glutathione Peroxidase Activity, TBARS, and α-Tocopherol in Meat from Chickens Fed Different Diets. J. Agric. Food Chem. 1999, 47, 867–872. [Google Scholar] [CrossRef]
- SAS. SAS User´s Guide; Versión 9.0; SAS Institute Inc.: Cary, NC, USA, 2002. [Google Scholar]
- Ozturk, E.; Ocak, N.; Coskun, I.; Turhan, S.; Erener, G. Effects of humic substances supplementation provided through drinking water on performance, carcass traits and meat quality of broilers. J. Anim. Physiol. Anim. Nut. 2010, 94, 78–85. [Google Scholar] [CrossRef] [PubMed]
- Nagaruju, R.; Reddy, B.S.; Gloridoss, R.; Suresh, B.N.; Ramesh, C. Effect of dietary supplementation of humic acids on performance of broilers. Indian J. Anim. Sci. 2014, 84, 447–452. [Google Scholar]
- Salah, H.; Masour, E.S.; Reham, R.R.; El Hamid, E.S.A. Study on the effect of humic acid on growth performance, immunological, some blood parameters and control intestinal closterdium in broilers chickens. Zag. Vet. J. 2015, 43, 102–109. [Google Scholar] [CrossRef]
- Eren, M.; Deniz, G.; Gezen, S.S.; Turkmen, I.I. Effects of humates supplemented to the broiler feeds on fattening performance, serum mineral concentration and bone ash. Ankara Univ. Vet. Fak. Derg. 2000, 47, 255–263. [Google Scholar]
- Jaďuttová, I.; Marcinčáková, D.; Bartkovský, M.; Semjon, B.; Harčárová, M.; Nagyová, A.; Váczi, P.; Marcincak, S. The effect of dietary humic substances on the fattening performance, carcass yield, blood biochemistry parameters and bone mineral profile of broiler chickens. Acta Vet. Brno 2019, 88, 307–313. [Google Scholar] [CrossRef] [Green Version]
- Eren, M.; Cengiz, S.; Deniz, G.; Orhan, F. Effects of Liquid Humate Supplemented to Drinking Water on the Performance and Eggshell Quality of Hens in Different Laying Periods. Rev. Med. Vet. 2008, 159, 91–95. [Google Scholar]
- Dobrzański, Z.; Trziszka, T.; Herbut, E.; Krawczyk, J.; Tronina, P. Effect of humic preparations on productivity and quality traits of eggs from greenleg partridge hens. Ann. Anim. Sci. 2009, 9, 165–174. [Google Scholar]
- Ozturk, E.; Coskun, I.; Ocak, N.; Erener, G. Effects of dietary humic substances on egg production and egg shell quality of hens after peak laying period. Afr. J. Biotechnol. 2009, 8, 1155–1159. [Google Scholar]
- Kulikova, N.A.; Stepanova, E.V.; Koroleva, O.V. Mitigating Activity of Humic Substances: Direct Influence on Biota. In Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice; Perminova, E.I.V., Hatfield, K., Hertkorn, N., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 52, pp. 285–309. [Google Scholar] [CrossRef]
- Gramss, G.; Ziegenhagen, D.; Sorge, S. Degradation of Soil Humic Extract by Wood- and Soil-Associated Fungi, Bacteria, and Commercial Enzymes. Microb. Ecol. 1999, 37, 140–151. [Google Scholar] [CrossRef] [PubMed]
- Filip, Z.; Berthelin, J. Analytical determination of the microbial utilization and transformation of humic acids extracted from municipal refuse. Fresen. J. Anal. Chem. 2001, 371, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Samson, G.; Visser, S.A. Surface-active effects of humic acids on potato cell membrane properties. Soil Biol. Biochem. 1989, 21, 343–347. [Google Scholar] [CrossRef]
- Vigneault, B.; Percot, A.; Lafleur, M.; Campbell, P. Permeability Changes in Model and Phytoplankton Membranes in the Presence of Aquatic Humic Substances. Environ. Sci. Technol. 2000, 34, 3907–3913. [Google Scholar] [CrossRef]
- Teng, P.-Y.; Kim, W.K. Review: Roles of Prebiotics in Intestinal Ecosystem of Broilers. Front. Vet. Sci. 2018, 5, 245. [Google Scholar] [CrossRef]
- Tellez, G.; Latorre, J.; Arreguin-Nava, M.; Hargis, B. The Role of Probiotics in Optimizing Gut Function in Poultry. In Improving Gut Health in Poultry; Ricke, A., Ed.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019; pp. 347–370. [Google Scholar] [CrossRef]
- Aksu, T.; Bozkurt, A.S. Etçi Piliçlerde Esansiyel Yağlar ve/veya Humatın Yaz Sezonunda Performans, İnce Bağırsak Mikrobiyel Populasyonu ve Antikor Titreleri Üzerine Etkisi. Kafkas Univ. Vet. Fak. Derg. 2009, 15, 185–190. [Google Scholar] [CrossRef]
- Shermer, C.L.; Maciorowski, K.G.; Baile, C.A. Caecal Metabolites and Microbial Populations in Chickens Consuming Diets Containing a Mined Humate Compound. J. Sci. Food Agric. 1998, 77, 479–486. [Google Scholar] [CrossRef]
- Maguey-Gonzalez, J.A.; Michel, M.A.; Baxter, M.F.A.; Tellez, G.; Moore, P.A.; Solis-Cruz, B.; Hernández-Patlan, D.; Merino-Guzman, R.; Hernandez-Velasco, X.; Latorre, J.D.; et al. Effect of Humic Acids on Intestinal Viscosity, Leaky Gut and Ammonia Excretion in a 24 h Feed Restriction Model to Induce Intestinal Permeability in Broiler Chickens. Anim. Sci. J. 2018, 89, 1002–1010. [Google Scholar] [CrossRef]
- Arancon, N.Q.; Edwards, C.A.; Bierman, P.; Metzger, J.D.; Lee, S.; Welch, C. Effects of vermicomposts on growth and marketable fruits of field-grown tomatoes, peppers and strawberries: The 7th international symposium on earthworm ecology Cardiff Wales 2002. Pedobiologia 2003, 47, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Edwards, C.A.; Arancon, N. Interactions among Organic Matter, Earthworms, and Microorganisms in Promoting Plant Growth. In Soil Organic Matter in Sustainable Agriculture; Magdoff, F., Ray, R.W., Eds.; CRC Press Inc.: Baton Rouge, LA, USA, 2004; pp. 327–376. [Google Scholar]
- Simsek-Ersahin, Y. The Use of Vermicompost Products to Control Plant Diseases and Pests. In Biology of Earthworms; Karaca, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 24, pp. 191–213. [Google Scholar] [CrossRef]
- Meinelt, T.; Playle, R.; Schreckenbach, K.; Pietrock, M. The toxicity of the antiparasitic mixture FMC is changed by humic substances and calcium. Aquacult. Res. 2001, 32, 405–410. [Google Scholar] [CrossRef]
- Meinelt, T.; Schreckenbach, K.; Pietrock, M.; Heidrich, S.; Steinberg, C.E.W. Humic Substances: Part 1: Dissolved Humic Substances (HS) in Aquaculture and Ornamental Fish Breeding. Environ. Sci. Pollut. Res. 2008, 15, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Kodama, H.; Okazaki, F.; Ishida, S. Protective Effect of Humus Extract against Trypanosoma Brucei Infection in Mice. J. Vet. Med. Sci. 2008, 70, 1185–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aeschbacher, M.; Graf, C.; Schwarzenbach, R.P.; Sander, M. Antioxidant Properties of Humic Substances. Environ. Sci. Technol. 2012, 46, 4916–4925. [Google Scholar] [CrossRef]
- Ratasuk, N.; Nanny, M.A. Characterization and Quantification of Reversible Redox Sites in Humic Substances. Environ. Sci. Technol. 2007, 41, 7844–7850. [Google Scholar] [CrossRef] [PubMed]
- Kamel, M.; Elhady, M.; Iraqi, K. Biological Immune stimulants effects on immune response, behavioural and productive performance of broilers. Egypt. Poult. Sci. 2015, 35, 691–702. [Google Scholar]
- Mao, Y. Modulation of the Growth Performance, Meat Composition, Oxidative Status, and Immunity of Broilers by Dietary Fulvic Acids. Poult. Sci. 2019, 10, 4509–4513. [Google Scholar] [CrossRef]
- Chatli, M.K.; Joseph, S. Augmentation of Shelf Life of Meat with Natural Antioxidants: An Overview. J. Meat Sci. Technol. 2014, 2, 16–30. [Google Scholar]
- de Melo, B.A.G.; Motta, F.L.; Santana, M.H.A. Humic acids: Structural properties and multiple functionalities for novel technological developments. Mater. Sci. Technol. 2016, 62, 967–974. [Google Scholar] [CrossRef] [PubMed]
- Khil’ko, S.L.; Efimova, I.V.; Smirnova, O.V. Antioxidant properties of humic acids from brown coal. Solid Fuel Chem. 2011, 45, 367–371. [Google Scholar] [CrossRef]
- Camargo-Valero, M.; Cruz-Torres, L.E. Humic substances in supply water. Ingeniería e Investigación 1999, 44, 63–72. [Google Scholar] [CrossRef]
- Huculak-Mączka, M.; Hoffmann, J.; Hoffmann, K. Evaluation of the possibilities of using humic acids obtained from lignite in the production of commercial fertilizers. J. Soil. Sediment. 2018, 18, 2868–2880. [Google Scholar] [CrossRef] [Green Version]
- Ayuso, M.; Moreno, J.L.; Hernández, T.; García, C. Characterisation and evaluation of humic acids extracted from urban waste as liquid fertilisers. J. Sci. Food Agric. 1997, 75, 481–488. [Google Scholar] [CrossRef]
- Baglieri, A.; Ioppolo, A.; Nègre, M.; Gennari, M. A method for isolating soil organic matter after the extraction of humic and fulvic acids. Org. Geochem. 2007, 38, 140–150. [Google Scholar] [CrossRef]
Item | Starter | Grower | Finisher |
---|---|---|---|
Ground corn | 63.81 | 65.31 | 67.41 |
Soybean meal | 29.40 | 27.00 | 24.70 |
Vegetable oil | 2.10 | 3.30 | 3.80 |
Calcium ortophosphate | 1.70 | 1.65 | 1.52 |
Calcium carbonate | 1.60 | 1.50 | 1.43 |
Salt | 0.32 | 0.30 | 0.28 |
DL-Methionine | 0.24 | 0.21 | 0.18 |
L-Lysine·HCl | 0.26 | 0.21 | 0.19 |
L-Threonine | 0.08 | 0.05 | 0.04 |
Sodium bicarbonate | 0.20 | 0.20 | 0.20 |
Vitamins and minerals 1 | 0.10 | 0.10 | 0.10 |
Choline chloride | 0.09 | 0.07 | 0.05 |
Calculated nutrient content | |||
ME, kcal/kg | 3000 | 3100 | 3200 |
Digestible Lys, % | 1.10 | 1.00 | 0.90 |
Digestible Met, % | 0.52 | 0.47 | 0.43 |
Digestible Thr, % | 0.71 | 0.65 | 0.60 |
Calcium, % | 1.00 | 0.90 | 0.80 |
Available phosphorus, % | 0.50 | 0.45 | 0.40 |
Level of Humic Substances, % | Effect of Humic Substances | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Response Variables a | Positive Control | 0.00 | 0.15 | 0.30 | 0.45 | SEM b | p-Value | Lin | Quad | Cub |
Body weight, g | ||||||||||
Day 1 | 44.5 | 44.7 | 44.5 | 44.3 | 44.0 | 0.259 | 0.33 | 0.24 | 0.94 | 0.92 |
Day 14 | 418.4 | 432.9 | 431.6 | 426.3 | 421.6 | 6.122 | 0.40 | 0.19 | 0.80 | 0.88 |
Day 28 | 1323 | 1327 | 1313 | 1295 | 1314 | 15.504 | 0.65 | 0.44 | 0.31 | 0.55 |
Day 42 | 2600 | 2497 | 2555 | 2491 | 2510 | 25.682 | 0.29 | 0.74 | 0.28 | 0.14 |
Productive performance from 1–14 days of age | ||||||||||
Feed intake, g/d | 40.5 | 41.9 | 41.6 | 40.8 | 40.1 | 0.573 | 0.17 | 0.05 | 0.78 | 0.78 |
Weigh gain, g/d | 26.7 | 27.7 | 27.6 | 27.3 | 27.0 | 0.436 | 0.42 | 0.22 | 0.80 | 0.88 |
Feed conversion ratio | 1.52 | 1.51 | 1.50 | 1.50 | 1.49 | 0.024 | 0.93 | 0.48 | 0.94 | 0.94 |
Productive performance from 15–28 days of age | ||||||||||
Feed intake, g/d | 122.1 | 118.4 | 119.0 | 118.8 | 119.1 | 1.658 | 0.53 | 0.80 | 0.95 | 0.86 |
Weigh gain, g/d | 64.6 | 63.8 | 63.0 | 62.1 | 63.8 | 1.062 | 0.51 | 0.81 | 0.23 | 0.57 |
Feed conversion ratio | 1.89 | 1.86 | 1.89 | 1.92 | 1.87 | 0.026 | 0.58 | 0.65 | 0.17 | 0.60 |
Productive performance from 29–42 days of age | ||||||||||
Feed intake, g/d | 218.5 c | 215.8 c | 204.5 d | 199.3 d | 203.8 d | 3.097 | 0.05 | 0.05 | 0.01 | 0.44 |
Weigh gain, g/d | 91.2 | 83.6 | 88.7 | 85.4 | 85.4 | 1.582 | 0.12 | 0.47 | 0.10 | 0.23 |
Feed conversion ratio | 2.40 c | 2.58 d | 2.31 e | 2.34 c,d | 2.39 c,d | 0.045 | 0.01 | 0.05 | 0.01 | 0.10 |
Productive performance from 1–42 days of age | ||||||||||
Feed intake, g/d | 127.0 c | 125.4 c,d | 121.7 d,e | 119.6 e | 121.0 e | 1.458 | 0.01 | 0.05 | 0.10 | 0.79 |
Weigh gain, g/d | 60.8 | 58.4 | 59.8 | 58.3 | 58.7 | 0.577 | 0.29 | 0.72 | 0.28 | 0.14 |
Feed conversion ratio | 2.09 c,d | 2.15 c | 2.04 d | 2.05 d | 2.06 d | 0.019 | 0.01 | 0.05 | 0.01 | 0.05 |
Overall mortality, % | 7.08 c,d | 13.33 c | 5.42 d | 1.67 d | 3.75 d | 2.370 | 0.05 | 0.05 | 0.01 | 0.86 |
Level of Humic Substances, % | Effect of Humic Substances | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Response Variables a,b | Positive Control | 0.00 | 0.15 | 0.30 | 0.45 | SEM c | p-Value | Lin | Quad | Cub |
10 days of age | ||||||||||
Breast weight, g | 48.1 | 50.7 | 48.7 | 48.4 | 48.8 | 1.721 | 0.84 | 0.41 | 0.91 | 0.45 |
Breast yield, % | 17.6 | 17.2 | 17.1 | 16.9 | 17.3 | 0.271 | 0.37 | 0.94 | 0.24 | 0.53 |
Carcass weight, g | 118.2 | 127.6 | 122.4 | 122.0 | 122.1 | 3.686 | 0.52 | 0.30 | 0.46 | 0.79 |
Carcass yield, % | 43.6 | 43.3 | 42.9 | 42.6 | 43.2 | 0.464 | 0.61 | 0.77 | 0.27 | 0.67 |
24 days of age | ||||||||||
Breast weight, g | 239.4 | 231.0 | 237.5 | 234.0 | 225.8 | 6.301 | 0.57 | 0.50 | 0.24 | 0.85 |
Breast yield, % | 22.1 | 21.1 | 21.4 | 21.6 | 21.3 | 0.303 | 0.23 | 0.57 | 0.42 | 0.79 |
Carcass weight, g | 572.8 | 566.5 | 582.6 | 550.6 | 545.5 | 14.765 | 0.36 | 0.16 | 0.48 | 0.27 |
Carcass yield, % | 52.8 | 51.8 | 52.4 | 51.0 | 51.5 | 0.806 | 0.55 | 0.60 | 0.95 | 0.34 |
38 days of age | ||||||||||
Breast weight, g | 566.7 | 548.9 | 553.4 | 540.4 | 563.3 | 14.283 | 0.50 | 0.38 | 0.35 | 0.34 |
Breast yield, % | 23.3 | 22.6 | 22.6 | 22.2 | 22.6 | 0.358 | 0.23 | 0.48 | 0.21 | 0.35 |
Carcass weight, g | 957.8 | 947.9 | 949.7 | 927.8 | 977.0 | 19.670 | 0.26 | 0.25 | 0.13 | 0.22 |
Carcass yield, % | 39.4 | 38.9 | 38.8 | 38.2 | 39.3 | 0.460 | 0.10 | 0.15 | 0.13 | 0.17 |
Level of Humic Substances, % | Effect of Humic Substances | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Response Variables a,b | Positive Control | 0.00 | 0.15 | 0.30 | 0.45 | SEM c | p-Value | Lin | Quad | Cub |
10 days of age | ||||||||||
Dry matter % | 32.24 | 31.65 | 31.19 | 31.91 | 31.71 | 0.259 | 0.13 | 0.51 | 0.74 | 0.14 |
Dry matter, g | 1.42 | 1.49 | 1.46 | 1.47 | 1.46 | 0.051 | 0.93 | 0.73 | 0.89 | 0.86 |
Ashes, % | 35.81 | 37.41 | 36.22 | 36.26 | 36.60 | 0.442 | 0.14 | 0.23 | 0.10 | 0.65 |
Ashes, g | 0.51 | 0.56 | 0.53 | 0.53 | 0.54 | 0.021 | 0.67 | 0.50 | 0.45 | 0.71 |
24 days of age | ||||||||||
Dry matter % | 38.10 | 38.19 | 38.36 | 38.43 | 38.24 | 0.243 | 0.89 | 0.83 | 0.47 | 0.90 |
Dry matter, g | 3.22 | 3.30 | 3.34 | 3.29 | 3.29 | 0.076 | 0.89 | 0.81 | 0.83 | 0.68 |
Ashes, % | 39.76 | 39.66 | 39.37 | 39.70 | 40.93 | 0.637 | 0.47 | 0.18 | 0.27 | 0.93 |
Ashes, g | 1.28 | 1.31 | 1.32 | 1.31 | 1.35 | 0.036 | 0.82 | 0.53 | 0.62 | 0.66 |
38 days of age | ||||||||||
Dry matter % | 42.15 | 42.09 | 42.49 | 41.71 | 41.63 | 0.467 | 0.69 | 0.32 | 0.62 | 0.38 |
Dry matter, g | 7.78 | 7.46 | 7.75 | 7.56 | 7.76 | 0.175 | 0.61 | 0.38 | 0.83 | 0.28 |
Ashes, % | 36.86 | 35.11 | 35.02 | 35.51 | 34.82 | 0.698 | 0.24 | 0.91 | 0.69 | 0.60 |
Ashes, g | 2.86 | 2.63 | 2.70 | 2.68 | 2.70 | 0.070 | 0.18 | 0.59 | 0.72 | 0.69 |
Level of Humic Substances, % | Effect of Humic Substances | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Response Variables a | Positive Control | 0.00 | 0.15 | 0.30 | 0.45 | SEM b | p-Value | Lin | Quad | Cub |
Lactic acid bacteria, CFUlog10 | ||||||||||
10 days of age | 7.40 c | 7.73 c | 7.82 c | 7.68 c | 8.41 d | 0.218 | 0.05 | 0.05 | 0.18 | 0.32 |
24 days of age | 7.48 | 7.87 | 8.00 | 7.72 | 7.54 | 0.333 | 0.78 | 0.43 | 0.65 | 0.75 |
38 days of age | 7.70 | 8.09 | 7.84 | 7.95 | 7.92 | 0.273 | 0.88 | 0.75 | 0.70 | 0.68 |
Eimeria oocyst number/g of feces | ||||||||||
10 days of age | 62.50 | 156.25 | 181.25 | 43.75 | 118.75 | 64.127 | 0.35 | 0.38 | 0.69 | 0.19 |
24 days of age | 25.00 | 125.00 | 106.25 | 81.25 | 75.00 | 40.153 | 0.83 | 0.77 | 0.75 | 0.89 |
38 days of age | 368.75 | 431.25 | 562.5 | 345.00 | 731.25 | 168.805 | 0.43 | 0.77 | 0.88 | 0.07 |
Water holding capacity and antioxidant status of the breast meat | ||||||||||
pH | 6.36 | 6.41 | 6.44 | 6.40 | 6.47 | 0.038 | 0.06 | 0.16 | 0.84 | 0.06 |
Dripping water lost, % | 1.11 | 0.94 | 0.80 | 1.06 | 1.11 | 0.144 | 0.47 | 0.21 | 0.47 | 0.31 |
Centrifugation water lost, % | 12.62 | 9.95 | 9.70 | 11.32 | 12.27 | 1.370 | 0.45 | 0.15 | 0.65 | 0.67 |
DPPH, mmol Trolox/kg meat | 188.52 c,d | 213.31 d | 120.34 c | 165.61 c,d | 132.75 c | 29.833 | 0.05 | 0.05 | 0.19 | 0.10 |
FRAP, mmol Trolox/kg meat | 2.82 | 2.73 | 2.69 | 2.64 | 2.32 | 0.301 | 0.81 | 0.40 | 0.68 | 0.86 |
TBARS, mg MDA/kg meat | 0.09 | 0.10 | 0.10 | 0.07 | 0.09 | 0.014 | 0.61 | 0.46 | 0.57 | 0.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domínguez-Negrete, A.; Gómez-Rosales, S.; Angeles, M.d.L.; López-Hernández, L.H.; Reis de Souza, T.C.; Latorre-Cárdenas, J.D.; Téllez-Isaias, G. Addition of Different Levels of Humic Substances Extracted from Worm Compost in Broiler Feeds. Animals 2021, 11, 3199. https://doi.org/10.3390/ani11113199
Domínguez-Negrete A, Gómez-Rosales S, Angeles MdL, López-Hernández LH, Reis de Souza TC, Latorre-Cárdenas JD, Téllez-Isaias G. Addition of Different Levels of Humic Substances Extracted from Worm Compost in Broiler Feeds. Animals. 2021; 11(11):3199. https://doi.org/10.3390/ani11113199
Chicago/Turabian StyleDomínguez-Negrete, Alejandra, Sergio Gómez-Rosales, María de Lourdes Angeles, Luis Humberto López-Hernández, Tercia Cesaria Reis de Souza, Juan David Latorre-Cárdenas, and Guillermo Téllez-Isaias. 2021. "Addition of Different Levels of Humic Substances Extracted from Worm Compost in Broiler Feeds" Animals 11, no. 11: 3199. https://doi.org/10.3390/ani11113199
APA StyleDomínguez-Negrete, A., Gómez-Rosales, S., Angeles, M. d. L., López-Hernández, L. H., Reis de Souza, T. C., Latorre-Cárdenas, J. D., & Téllez-Isaias, G. (2021). Addition of Different Levels of Humic Substances Extracted from Worm Compost in Broiler Feeds. Animals, 11(11), 3199. https://doi.org/10.3390/ani11113199