Monitoring and Modeling Tree Bat (Genera: Lasiurus, Lasionycteris) Occurrence Using Acoustics on Structures off the Mid-Atlantic Coast—Implications for Offshore Wind Development
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Acoustic Data
2.3. Atmospheric Conditions and Other Variables
2.4. Presentation of Data and Exploratory Data Analysis
2.5. Modeling
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnett, E.B.; Baerwald, E.F.; Mathews, F.; Rodrigues, L.; Rodríguez-Durán, A.; Rydell, J.; Villegas-Patraca, R.; Voigt, C.C. Impacts of wind energy development on bats: A global perspective. In Bats in the Anthropocene: Conservation of Bats in a Changing World; Springer International Publishing: Basel, Switzerland, 2015; pp. 295–323. [Google Scholar]
- Frick, W.F.; Baerwald, E.F.; Pollock, J.F.; Barclay, R.M.R.; Szymanski, J.A.; Weller, T.J.; Russell, A.L.; Loeb, S.C.; Medellin, R.A.; McGuire, L.P. Fatalities at wind turbines may threaten population viability of a migratory bat. Biol. Conserv. 2017, 209, 172–177. [Google Scholar] [CrossRef]
- Friedenberg, N.A.; Frick, W.F. Assessing fatality minimization for hoary bats amid continued wind energy development. Biol. Conserv. 2021, 262, 109309. [Google Scholar] [CrossRef]
- Hein, C.D.; Schirmacher, M.R. Impact of wind energy on bats: A summary of our current knowledge. Hum.-Wildl. Interact. 2016, 10, 19–27. [Google Scholar] [CrossRef]
- Arnett, E.B.; Brown, W.K.; Erickson, W.P.; Fiedler, J.K.; Hamilton, B.L.; Henry, T.H.; Jain, A.; Johnson, G.D.; Kerns, J.; Koford, R.J.R.; et al. Patterns of bat fatalities at wind energy facilities in North America. J. Wildl. Manag. 2008, 72, 61–78. [Google Scholar] [CrossRef]
- Arnett, E.B.; Baerwald, E.F. Impacts of wind energy development on bats: Implications for conservation. In Bat Evolution, Ecology, and Conservation; Springer: New York, NY, USA, 2013; pp. 435–456. ISBN 9781461473978. [Google Scholar]
- Thompson, M.; Beston, J.A.; Etterson, M.; Diffendorfer, J.E.; Loss, S.R. Factors associated with bat mortality at wind energy facilities in the United States. Biol. Conserv. 2017, 215, 241–245. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.Y.; Wittig, T.W.; Kluever, B.M. An evaluation of bird and bat mortality at wind turbines in the Northeastern United States. PLoS ONE 2020, 15, e0238034. [Google Scholar] [CrossRef] [PubMed]
- Britzke, E.R.; Loeb, S.C.; Hobson, K.A.; Romanek, C.S.; Vonhof, M.J. Using Hydrogen Isotopes to Assign Origins of Bats in the Eastern United States. J. Mammal. 2009, 90, 743–751. [Google Scholar] [CrossRef] [Green Version]
- Cryan, P.M. Seasonal distribution of migratory tree bats (Lasiurus and Lasionycteris) in North America. J. Mammal. 2003, 84, 579–593. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.S.; Watrous, K.S.; Giumarro, G.J.; Peterson, T.S.; Boyden, S.A.; Lacki, M.J. Seasonal and geographic trends in acoustic detection of tree-roosting bats. Acta Chiropterologica 2011, 13, 157–168. [Google Scholar] [CrossRef]
- Cryan, P.M.; Bogan, M.A.; Rye, R.O.; Landis, G.P.; Kester, C.L. Stable hydrogen isotope analysis of bat hair as evidence for seasonal molt and long-distance migration. J. Mammal. 2004, 85, 995–1001. [Google Scholar] [CrossRef] [Green Version]
- Cryan, P.M.; Barclay, R.M.R. Causes of bat fatalities at wind turbines: Hypotheses and predictions. J. Mammal. 2009, 90, 1330–1340. [Google Scholar] [CrossRef] [Green Version]
- Cryan, P.M. Mating behavior as a possible cause of bat fatalities at wind turbines. J. Wildl. Manag. 2008, 72, 845–849. [Google Scholar] [CrossRef]
- Muthersbaugh, M.S. Seasonal Activity Patterns of Bats in the Central Appalachians. Master’s Thesis, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA, 2017. [Google Scholar]
- American Wind and Wildlife Institute (AWWI). Summary of Bat Fatality Monitoring Data Contained in AWWIC, Technical Report, 2nd ed.; American Wind and Wildlife Institute (AWWI): Washington, DC, USA, 2020. [Google Scholar]
- Cryan, P.M.; Gorresen, P.M.; Hein, C.D.; Schirmacher, M.R.; Diehl, R.H.; Huso, M.M.; Hayman, D.T.S.; Fricker, P.D.; Bonaccorso, F.J.; Johnson, D.H.; et al. Behavior of bats at wind turbines. Proc. Natl. Acad. Sci. USA 2014, 111, 15126–15131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horn, J.W.; Arnett, E.B.; Kunz, T.H. Behavioral responses of bats to operating wind turbines. J. Wildl. Manag. 2008, 72, 123–132. [Google Scholar] [CrossRef]
- Nichols, J.T. Red bat and spotted porpoise off the Carolinas. J. Mammal. 1920, 1, 87. [Google Scholar] [CrossRef]
- Thomas, O. Bats on migration. J. Mammal. 1921, 2, 167. [Google Scholar] [CrossRef]
- Norton, A.H. A red bat at sea. J. Mammal. 1930, 11, 225–226. [Google Scholar] [CrossRef]
- Allen, G.M. The red bat in Bermuda. J. Mammal. 1923, 4, 61. [Google Scholar] [CrossRef]
- Sjollema, A.L.; Gates, J.E.; Hilderbrand, R.H.; Sherwell, J. Offshore activity of bats along the mid-Atlantic coast. Northeast. Nat. 2014, 21, 154–163. [Google Scholar] [CrossRef]
- Hatch, S.K.; Connelly, E.E.; Divoll, T.J.; Stenhouse, I.J.; Williams, K.A. Offshore observations of eastern red bats (Lasiurus borealis) in the mid-Atlantic United States using multiple survey methods. PLoS ONE 2013, 8, e83803. [Google Scholar] [CrossRef] [Green Version]
- Johnson, J.B.; Gates, J.E.; Zegre, N.P. Monitoring seasonal bat activity on a coastal barrier island in Maryland, USA. Environ. Monit. Assess. 2011, 173, 685–699. [Google Scholar] [CrossRef]
- Peterson, T.S.; Pelletier, S.K.; Boyden, S.A.; Watrous, K.S. Offshore acoustic monitoring of bats in the Gulf of Maine. Northeast. Nat. 2014, 21, 86–107. [Google Scholar] [CrossRef]
- Peterson, T.; Pelletier, S.; Giovanni, M. Long-Term Bat Monitoring on Islands, Offshore Structures, and Coastal Sites in the Gulf of Maine, Mid-ATLANTIC, and Great Lakes—Final Report; Stantec Consulting Services Inc.: Topsham, ME, USA, 2016. [Google Scholar]
- Smith, A.D.; McWilliams, S.R. Bat activity during autumn relates to atmospheric conditions: Implications for coastal wind energy development. J. Mammal. 2016, 97, 1565–1577. [Google Scholar] [CrossRef]
- Alerstam, T.; Pettersson, S.G. Why do migrating birds fly along coastlines? J. Theor. Biol. 1977, 65, 699–712. [Google Scholar] [CrossRef]
- Shamoun-Baranes, J.; Liechti, F.; Vansteelant, W.M.G. Atmospheric conditions create freeways, detours and tailbacks for migrating birds. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2017, 203, 509–529. [Google Scholar] [CrossRef] [PubMed]
- Costoya, X.; de Castro, M.; Carvalho, D.; Gómez-Gesteira, M. On the suitability of offshore wind energy resource in the United States of America for the 21st century. Appl. Energy 2020, 262, 114537. [Google Scholar] [CrossRef]
- Beiter, P.; Musial, W.; Kilcher, L.; Maness, M.; Smith, A. An Assessment of the Economic Potential of Offshore Wind in the United States from 2015 to 2030; National Renewable Energy Lab (NREL): Golden, CO, USA, 2017.
- Musial, W.D.; Beiter, P.C.; Spitsen, P.; Nunemaker, J.; Gevorgian, V. 2018 Offshore Wind Technologies Market Report; National Renewable Energy Lab (NREL): Golden, CO, USA, 2019.
- Weaver, S.P.; Hein, C.D.; Simpson, T.R.; Evans, J.W.; Castro-Arellano, I. Ultrasonic acoustic deterrents significantly reduce bat fatalities at wind turbines. Glob. Ecol. Conserv. 2020, 24, e01099. [Google Scholar] [CrossRef]
- Cooper, D.; Green, T.; Miller, M.; Rickards, E. Bat Impact Minimization Technology: An Improved Bat Deterrent for the Full Swept Rotor Area of Any Wind Turbine; Frontier Wind, LLC: Rocklin, CA, USA, 2020. [Google Scholar]
- Arnett, E.B.; Hein, C.D.; Schirmacher, M.R.; Huso, M.M.P.; Szewczak, J.M. Correction: Evaluating the Effectiveness of an Ultrasonic Acoustic Deterrent for Reducing Bat Fatalities at Wind Turbines. PLoS ONE 2013, 8, 65794. [Google Scholar] [CrossRef]
- Johnson, J.B.; Ford, W.M.; Rodrigue, J.L.; Edwards, J.W. Effects of Acoustic Deterrents on Foraging Bats; US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2012.
- Smotherman, M.; Sievert, P.; Dowling, Z.; Carlson, D.; Modarres-Sadeghi, Y. Developing a biomimetic acoustic deterrent to reduce bat mortalities at wind turbines. J. Acoust. Soc. Am. 2019, 145, 1775. [Google Scholar] [CrossRef]
- Lindsey, C.T. Assessing Changes in Bat Activity in Response to an Acoustic Deterrent—Implications for Decreasing Bat Fatalities at Wind Facilities. Master’s Thesis, Texas Christian University, Fort Worth, TX, USA, 2017. [Google Scholar]
- Schirmacher, M.R. Evaluating the Effectiveness of an Ultrasonic Acoustic Deterrent in Reducing Bat Fatalities at Wind Energy Facilities; Bat Conservation International: Austin, TX, USA, 2020. [Google Scholar]
- Hayes, M.A.; Hooton, L.A.; Gilland, K.L.; Grandgent, C.; Smith, R.L.; Lindsay, S.R.; Collins, J.D.; Schumacher, S.M.; Rabie, P.A.; Gruver, J.C.; et al. A smart curtailment approach for reducing bat fatalities and curtailment time at wind energy facilities. Ecol. Appl. 2019, 29, e01881. [Google Scholar] [CrossRef]
- Behr, O.; Brinkmann, R.; Hochradel, K.; Mages, J.; Korner-Nievergelt, F.; Niermann, I.; Reich, M.; Simon, R.; Weber, N.; Nagy, M. Mitigating bat mortality with turbine-specific curtailment algorithms: A model based approach. In Wind Energy and Wildlife Interactions; Koppel, J., Ed.; Springer International: Cham, Germany, 2017; pp. 135–160. [Google Scholar]
- Smallwood, K.S.; Bell, D.A. Effects of Wind Turbine Curtailment on Bird and Bat Fatalities. J. Wildl. Manag. 2020, 84, 685–696. [Google Scholar] [CrossRef]
- Arnett, E.B.; Huso, M.M.P.; Schirmacher, M.R.; Hayes, J.P. Altering turbine speed reduces bat mortality at wind-energy facilities. Front. Ecol. Environ. 2011, 9, 209–214. [Google Scholar] [CrossRef] [Green Version]
- Baerwald, E.F.; Edworthy, J.; Holder, M.; Barclay, R.M.R. A large-scale mitigation experiment to reduce bat fatalities at wind energy facilities. J. Wildl. Manag. 2009, 73, 1077–1081. [Google Scholar] [CrossRef]
- Martin, C.M.; Arnett, E.B.; Stevens, R.D.; Wallace, M.C. Reducing bat fatalities at wind facilities while improving the economic efficiency of operational mitigation. J. Mammal. 2017, 98, 378–385. [Google Scholar] [CrossRef]
- Weller, T.J.; Baldwin, J.A. Using echolocation monitoring to model bat occupancy and inform mitigations at wind energy facilities. J. Wildl. Manag. 2012, 76, 619–631. [Google Scholar] [CrossRef]
- Peterson, T. Predicting and Managing Risk to Bats at Commercial Wind Farms Using Acoustics; University of Maine: Orono, ME, USA, 2020. [Google Scholar]
- Tredennick, A.T.; Hooker, G.; Ellner, S.P.; Adler, P.B. A practical guide to selecting models for exploration, inference, and prediction in ecology. Ecology 2021, 102, e03336. [Google Scholar] [CrossRef]
- Fleming, G.P.; Patterson, K.; Taverana, K. The Natural Communities of Virginia: A Classification of Ecological Community Groups and Community Types. Third Approximation. Version 3.3; Virginia Department of Conservation and Recreation, Division of Natural Heritage: Richmond, VA, USA, 2021.
- Brock, M.F. A technique for monitoring bat activity with results obtained from different environments in southern Ontario. Can. J. Zool. 1970, 48, 847–851. [Google Scholar]
- Solick, D.; Pham, D.; Nasman, K.; Bay, K. Bat activity rates do not predict bat fatality rates at wind energy facilities. Acta Chiropterologica 2020, 22, 135–146. [Google Scholar] [CrossRef]
- Wood, S. mgcv: Mixed GAM Computation Vehicle with Automatic Smoothness Estimation 2020. Available online: https://cran.r-project.org/web/packages/mgcv/ (accessed on 1 September 2021).
- Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models, 1st ed.; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Wood, S.N. Generalized Additive Models: An Introduction with R.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 1498728340. [Google Scholar]
- Nelder, J.A.; Wedderburn, R.W.M. Generalized linear models. J. R. Stat. Soc. Ser. A 1972, 135, 370–384. [Google Scholar] [CrossRef]
- Wood, S.N. Thin-plate regression splines. J. R. Stat. Soc. 2003, 65, 95–114. [Google Scholar] [CrossRef]
- Wood, S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Am. Stat. Assoc. 2004, 99, 673–686. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. 2011, 73, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.N.; Pya, N.; Säfken, B. Smoothing parameter and model selection for general smooth models (with discussion). J. Am. Stat. Assoc. 2016, 111, 1548–1575. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing 2021. Available online: https://www.r-project.org/ (accessed on 1 September 2021).
- Schwarz, G. Estimating the dimension of a model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Multimodel inference: Understanding AIC and BIC in model selection. Sociol. Methods Res. 2004, 33, 261–304. [Google Scholar] [CrossRef]
- Barton, K. MuMIn: Multi-Model Inference, R Packag. Version 1.43.17. 2020. Available online: https://cran.r-project.org/web/packages/MuMIn/ (accessed on 1 September 2021).
- Xu, Q.S.; Liang, Y.Z. Monte Carlo cross validation. Chemom. Intell. Lab. Syst. 2001, 56, 1–11. [Google Scholar] [CrossRef]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.C.; Müller, M. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef] [PubMed]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. pROC: Display and Analyze ROC Curves 2020. Available online: https://cran.r-project.org/web/pacakges/pROC/ (accessed on 1 September 2021).
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Murtaugh, P.A. The statistical evaluation of ecological indicators. Ecol. Appl. 1996, 6, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Manel, S.; Ceri Williams, H.; Ormerod, S.J. Evaluating presence-absence models in ecology: The need to account for prevalence. J. Appl. Ecol. 2001, 38, 921–931. [Google Scholar] [CrossRef]
- Fu, C.; Xu, Y.; Bundy, A.; Grüss, A.; Coll, M.; Heymans, J.J.; Fulton, E.A.; Shannon, L.; Halouani, G.; Velez, L.; et al. Making ecological indicators management ready: Assessing the specificity, sensitivity, and threshold response of ecological indicators. Ecol. Indic. 2019, 105, 16–28. [Google Scholar] [CrossRef]
- Wickham, H.; François, R.; Henry, L.; Müller, K. dplyr: A Grammar of Data Manipulation 2020. Available online: https://cran.r-project.org/web/packages/dplyr/ (accessed on 1 September 2021).
- Wickham, H. Forcats: Tools for Working with Categorical Variables (Factors) 2020. Available online: https://cran.r-project.org/web/packages/forcats/ (accessed on 1 September 2021).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the Tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Wickham, H.; Chang, W.; Henry, L.; Pedersen, T.L.; Takahashi, K.; Wilke, C.; Woo, K.; Yutani, H.; Dunnington, D. ggplot2: Create elegant Data Visualisations Using the Grammar of Graphics 2020. Available online: https://cran.r-project.org/web/packages/ggplot2/ (accessed on 1 September 2021).
- Slowikowski, K. ggrepel: Automatically Position Non-Overlapping Text Labels with ggplot2 2020. Available online: https://cran.r-project.org/web/packages/ggrepel/ (accessed on 1 September 2021).
- Fasiolo, M.; Nedellec, R. mgcViz: Visualisations for Generalized Additive Models 2020. Available online: https://cran.r-project.org/web/packages/mgcViz/ (accessed on 1 September 2021).
- Kassambara, A. ggpubr: ggplot2 Based Publication Ready Plots 2020. Available online: https://cran.r-project.org/web/packages/ggpubr/ (accessed on 1 September 2021).
- Tennekes, M. tmap: Thematic maps in R. J. Stat. Softw. 2018, 84, 1–39. [Google Scholar] [CrossRef] [Green Version]
- Tennekes, M. tmaptools: Thematic Map Tools 2020. Available online: https://cran.r-project.org/web/packages/tmaptools/ (accessed on 1 September 2021).
- Cryan, P.M.; Brown, A.C. Migration of bats past a remote island offers clues toward the problem of bat fatalities at wind turbines. Biol. Conserv. 2007, 139, 1–11. [Google Scholar] [CrossRef]
- Fleming, T.H. Bat migration. In Encyclopedia of Animal Behavior; Choe, J.C., Ed.; Academic Press: Oxford, UK, 2019; pp. 605–610. ISBN 9780128132517. [Google Scholar]
- Cryan, P.M.; Jameson, J.W.; Baerwald, E.F.; Willis, C.K.R.; Barclay, R.M.R.; Snider, E.A.; Crichton, E.G. Evidence of late-summer mating Readiness and early sexual maturation in migratory tree-roosting bats found dead at wind turbines. PLoS ONE 2012, 7, e47586. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ammerman, L.K.; Lee, D.N.; Jones, B.A.; Holt, M.P.; Harrison, S.J.; Decker, S.K. High frequency of multiple paternity in eastern red bats, Lasiurus borealis, based on microsatellite analysis. J. Hered. 2019, 110, 675–683. [Google Scholar] [CrossRef]
- Ford, W.M.; Britzke, E.R.; Dobony, C.A.; Rodrigue, J.L.; Johnson, J.B. Patterns of acoustical activity of bats prior to and following white-nose syndrome occurrence. J. Fish. Wildl. Manag. 2011, 2, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Popa-Lisseanu, A.G.; Voigt, C.C. Bats on the Move. J. Mammal. 2009, 90, 1283–1289. [Google Scholar] [CrossRef] [Green Version]
- Solick, D.I.; Newman, C.M. Oceanic records of North American bats and implications for offshore wind energy development in the United States. Ecol. Evol. 2021. [Google Scholar] [CrossRef]
- Ahlen, I.; Bach, L.; Baagoee, H.J.; Pettersson, J. Bats and Offshore Wind Turbines Studied in Southern Scandinavia; Swedish Environmental Protection Agency: Stockholm, Sweden, 2007.
- Corcoran, A.J.; Weller, T.J. Inconspicuous echolocation in hoary bats (Lasiurus cinereus). Proc. R. Soc. B Biol. Sci. 2018, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigt, C.C.; Schneeberger, K.; Voigt-Heucke, S.L.; Lewanzik, D. Rain increases the energy cost of bat flight. Biol. Lett. 2011, 7, 793–795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Voigt, C.C.; Russo, D.; Runkel, V.; Goerlitz, H.R. Limitations of acoustic monitoring at wind turbines to evaluate fatality risk of bats. Mamm. Rev. 2021. [Google Scholar] [CrossRef]
- Hamilton, R.; Adams, A.; Adams, A.M.; Jantzen, M.K.; Hamilton, R.M.; Fenton, M.B. Do you hear what I hear? Implications of detector selection for acoustic monitoring of bats. Methods Ecol. Evol. 2012, 3, 992–998. [Google Scholar] [CrossRef]
- Dowling, Z.R. Not Gone with the Wind: Addressing Effects of Offshore Wind Development on Bat Species in the Northeastern United States. Ph.D. Thesis, University of Massachusetts, Amherst, MA, USA, 2018. [Google Scholar]
- Farnsworth, A.; Horton, K.; Heist, K.; Bridge, E.; Diehl, R.; Frick, W.; Kelly, J.; Stepanian, P. The Role of Regional-Scale Weather Variables in Predicting Bat Mortality and Bat Acoustic Activity: Potential for Use in the Development of Smart Curtailment Algorithms, an AWWI Technical Report; American Wind and Wildlife Institute (AWWI): Washington, DC, USA, 2021. [Google Scholar]
Model Name (Model Number) | Explanation | Biological Significance |
---|---|---|
Ordinal date only (1) | Nightly tree bat occurrence is explained by a smoothed effect of the ordinal date. | Tree bat visitation of barrier islands is related to the day of the year (ordinal date) because of the seasonal offshore habits of tree bats during migration. |
Ordinal date by roosting habitat (2) | Nightly tree bat occurrence is explained by a smoothed effect of the ordinal date, but two shapes exist—one for viable roosting habitat, one for limited roosting habitat. Additionally, an intercept modifier exists for each site. | Tree bat visitation of barrier islands is related to the day of the year (ordinal date) because of the seasonal offshore habits of tree bats during migration. For sites with viable roosting habitat, the effect of ordinal date is likely highest in mid-summer, indicating maternity use. For sites with limited roosting habitat the effect of ordinal date is likely highest in spring and fall, indicating migratory use only. While the effect shapes are roost-availability specific, occurrence rates may differ between sites for some unknown reason, so the intercept is free to fluctuate between sites. |
Ordinal date by site (3) | Nightly tree bat occurrence is explained by smooth effects of the ordinal date—one for each site. | Tree bat visitation of barrier islands is related to the day of the year (ordinal date) and this relationship is specific to each site. For instance, some sites may be migration only, some sites may be for some migration and summer use, and many other minute differences between sites. |
Percent of Positive Occurrence Nights with Conditions | Conditions | Values |
---|---|---|
0.90 | Wind Speed | <4.06 m/s |
0.95 | Wind Speed | <4.90 m/s |
0.99 | Wind Speed | <7.28 m/s |
0.90 | Temperature | >12.66 °C |
0.95 | Temperature | >10.31 °C |
0.99 | Temperature | >5.43 °C |
0.90 | Wind Speed and Temperature or Date Range | <4.5 m/s and >12 °C or within either 28 April–14 May or 16 August–1 September |
0.95 | Wind Speed and Temperature or Date Range | <4.5 m/s and >12 °C or within either 23 March–11 June or 11 July–7 October |
0.99 | Wind Speed and Temperature or Date Range | <4.5 m/s and >12 °C or within 24 February–3 November |
Model Name (Model Number) | df | log () | BIC | ∆BIC |
---|---|---|---|---|
Ordinal date by roosting habitat (2) | 18 | −2798.92 | 5758.08 | 0.00 |
Ordinal date only (1) | 14 | −2834.04 | 5794.93 | 36.85 |
Ordinal date by site (3) | 44 | −2760.76 | 5906.33 | 148.25 |
Intercept | Site | f (Ordinal, by Roost Habitat) | f (Press) | f (Temp) | f (Visib) | f (Wind Spd) | f (Precip Duration) | f (∆Press) | df | BIC | ∆BIC |
---|---|---|---|---|---|---|---|---|---|---|---|
−1.149 | + | + | N/I | + | + | + | N/I | N/I | 23 | 4557.7 | 0.00 |
−1.149 | + | + | N/I | + | + | + | + | N/I | 24 | 4563.8 | 6.09 |
−1.136 | + | + | N/I | + | N/I | + | N/I | N/I | 20 | 4567.5 | 9.82 |
−1.134 | + | + | N/I | + | N/I | + | + | N/I | 21 | 4569.1 | 11.37 |
−1.149 | + | + | + | + | + | + | N/I | N/I | 28 | 4579.8 | 22.12 |
β Parameter | Estimate | Standard Error | Z-Score | p-Value |
---|---|---|---|---|
β0 (Intercept, Cedar Island) | −1.170 | 0.086 | −13.69 | <0.05 |
β1 (Assateague Island) | 3.133 | 0.209 | 14.96 | <0.05 |
β2 (Hog Island) | −0.444 | 0.101 | −4.38 | <0.05 |
β3 (Silver Beach) | 0.311 | 0.113 | 2.74 | <0.05 |
β4 (Smith Island) | −0.335 | 0.104 | −3.21 | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
True, M.C.; Reynolds, R.J.; Ford, W.M. Monitoring and Modeling Tree Bat (Genera: Lasiurus, Lasionycteris) Occurrence Using Acoustics on Structures off the Mid-Atlantic Coast—Implications for Offshore Wind Development. Animals 2021, 11, 3146. https://doi.org/10.3390/ani11113146
True MC, Reynolds RJ, Ford WM. Monitoring and Modeling Tree Bat (Genera: Lasiurus, Lasionycteris) Occurrence Using Acoustics on Structures off the Mid-Atlantic Coast—Implications for Offshore Wind Development. Animals. 2021; 11(11):3146. https://doi.org/10.3390/ani11113146
Chicago/Turabian StyleTrue, Michael C., Richard J. Reynolds, and W. Mark Ford. 2021. "Monitoring and Modeling Tree Bat (Genera: Lasiurus, Lasionycteris) Occurrence Using Acoustics on Structures off the Mid-Atlantic Coast—Implications for Offshore Wind Development" Animals 11, no. 11: 3146. https://doi.org/10.3390/ani11113146
APA StyleTrue, M. C., Reynolds, R. J., & Ford, W. M. (2021). Monitoring and Modeling Tree Bat (Genera: Lasiurus, Lasionycteris) Occurrence Using Acoustics on Structures off the Mid-Atlantic Coast—Implications for Offshore Wind Development. Animals, 11(11), 3146. https://doi.org/10.3390/ani11113146