Abnormal Bone Metabolism May Be a Primary Causative Factor of Keel Bone Fractures in Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Acquisition and Management of Animals
2.2. Experimental Design and Serum Sample Collection
2.3. Keel Bone Sample Collection
2.4. Hematoxylin-Eosin (H&E) Staining
2.5. Tartrate Resistant Acid Phosphatase (TRAP) Staining
2.6. Determination of Serum Ca and P Metabolism-Related Markers
2.7. Determination of Serum Osteoblast and Osteoclast-Related Markers
2.8. Statistical Analysis
3. Results
3.1. Measurement of Bodyweight
3.2. Measurement of Keel Bone Length and Weight
3.3. Pathological Changes of Keel Bone
3.4. Determination of Serum Ca and P Metabolism-Related Markers
3.5. Determination of Serum Osteoblast and Osteoclast-Related Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lay, D.C.; Fulton, R.M.; Hester, P.Y.; Karcher, D.M.; Kjaer, J.; Mench, J.A.; Mullens, B.A.; Newberry, R.C.; Nicol, C.J.; O’Sullivan, N.P.; et al. Hen welfare in different housing systems. Poult. Sci. 2011, 90, 278–294. [Google Scholar] [CrossRef]
- Riber, A.B.; Casey-Trott, T.M.; Herskin, M.S. The influence of keel bone damage on welfare of laying hens. Front. Vet. Sci. 2018, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Regmi, P.; Nelson, N.; Steibel, J.P.; Anderson, K.E.; Karcher, D.M. Comparisons of bone properties and keel deformities between strains and housing systems in end-of-lay hens. Poult. Sci. 2016, 95, 2225–2234. [Google Scholar] [CrossRef]
- Eusemann, B.K.; Patt, A.; Schrader, L.; Weigend, S.; Thöne-Reineke, C.; Petow, S. The role of egg production in the etiology of keel bone damage in laying hens. Front. Vet. Sci. 2020, 7, 81. [Google Scholar] [CrossRef] [Green Version]
- Petrik, M.T.; Guerin, M.T.; Widowski, T.M. On-farm comparison of keel fracture prevalence and other welfare indicators in conventional cage and floor-housed laying hens in Ontario, Canada. Poult. Sci. 2015, 94, 579–585. [Google Scholar] [CrossRef]
- Saraiva, S.; Esteves, A.; Stilwell, G. Influence of different housing systems on prevalence of keel bone lesions in laying hens. Avian Pathol. 2019, 48, 454–459. [Google Scholar] [CrossRef]
- Candelotto, L.; Stadelmann, M.; Gebhardt-Henrich, S.G.; Stratmann, A.; van de Braak, T.G.H.; Guggisberg, D.; Zysset, P.; Toscano, M.J. Genetic variation of keel and long bone skeletal properties for 5 lines of laying hens. J. Appl. Poult. Res. 2020, 29, 937–946. [Google Scholar] [CrossRef]
- Eusemann, B.K.; Baulin, U.; Schrader, L.; Thone-Reineke, C.; Patt, A.; Petow, S. Radiographic examination of keel bone damage in living laying hens of different strains kept in two housing systems. PLoS ONE 2018, 13, e0194974. [Google Scholar] [CrossRef]
- Toscano, M.J.; Dunn, I.C.; Christensen, J.P.; Petow, S.; Kittelsen, K.; Ulrich, R. Explanations for keel bone fractures in laying hens: Are there explanations in addition to elevated egg production? Poult. Sci. 2020, 99, 4183–4194. [Google Scholar] [CrossRef]
- Tarlton, J.F.; Wilkins, L.J.; Toscano, M.J.; Avery, N.C.; Knott, L. Reduced bone breakage and increased bone strength in free range laying hens fed omega-3 polyunsaturated fatty acid supplemented diets. Bone 2013, 52, 578–586. [Google Scholar] [CrossRef] [Green Version]
- Toscano, M.J.; Booth, F.; Wilkins, L.J.; Avery, N.C.; Brown, S.B.; Richards, G.; Tarlton, J.F. The effects of long (C20/22) and short (C18) chain omega-3 fatty acids on keel bone fractures, bone biomechanics, behavior, and egg production in free-range laying hens. Poult. Sci. 2015, 94, 823–835. [Google Scholar] [CrossRef] [PubMed]
- Casey-Trott, T.M.; Korver, D.R.; Guerin, M.T.; Sandilands, V.; Torrey, S.; Widowski, T.M. Opportunities for exercise during pullet rearing, Part I: Effect on the musculoskeletal characteristics of pullets. Poult. Sci. 2017, 96, 2509–2517. [Google Scholar] [CrossRef]
- Casey-Trott, T.M.; Korver, D.R.; Guerin, M.T.; Sandilands, V.; Torrey, S.; Widowski, T.M. Opportunities for exercise during pullet rearing, Part II: Long-term effects on bone characteristics of adult laying hens at the end-of-lay. Poult. Sci. 2017, 96, 2518–2527. [Google Scholar] [CrossRef]
- Wei, H.D.; Chen, Y.J.; Zeng, X.Y.; Bi, Y.J.; Wang, Y.N.; Zhao, S.; Li, J.H.; Li, X.; Zhang, R.X.; Bao, J. Keel-bone fractures are associated with bone quality differences in laying hens. Anim. Welf. 2021, 30, 71–80. [Google Scholar] [CrossRef]
- Proszkowiec-Weglarz, M.; Angel, R. Calcium and phosphorus metabolism in broilers: Effect of homeostatic mechanism on calcium and phosphorus digestibility. J. Appl. Poult. Res. 2013, 22, 609–627. [Google Scholar] [CrossRef]
- Zhao, S.C.; Teng, X.Q.; Xu, D.L.; Chi, X.; Ge, M.; Xu, S.W. Influences of low level of dietary calcium on bone characters in laying hens. Poult. Sci. 2020, 99, 7084–7091. [Google Scholar] [CrossRef]
- Li, T.T.; Xing, G.Z.; Shao, Y.X.; Zhang, L.Y.; Li, S.F.; Lu, L.; Liu, Z.P.; Liao, X.D.; Luo, X.G. Dietary calcium or phosphorus deficiency impairs the bone development by regulating related calcium or phosphorus metabolic utilization parameters of broilers. Poult. Sci. 2020, 99, 3207–3214. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.D.; Bi, Y.J.; Xin, H.W.; Pan, L.; Liu, R.Z.; Li, X.; Li, J.H.; Zhang, R.X.; Bao, J. Keel fracture changed the behavior and reduced the welfare, production performance, and egg quality in laying hens housed individually in furnished cages. Poult. Sci. 2020, 99, 3334–3342. [Google Scholar] [CrossRef]
- Claessens, L.P.A.M. The skeletal kinematics of lung ventilation in three basal bird taxa (emu, tinamou, and guinea fowl. J. Exp. Zool. 2009, 311, 586–599. [Google Scholar] [CrossRef] [PubMed]
- Nasr, M.A.F.; Nicol, C.J.; Murrell, J.C. Do laying hens with keel bone fractures experience pain? PLoS ONE 2012, 7, e42420. [Google Scholar] [CrossRef]
- Wei, H.D.; Li, C.; Xin, H.W.; Li, S.; Bi, Y.J.; Li, X.; Li, J.H.; Zhang, R.X.; Bao, J. Keel fracture causes stress and inflammatory responses and inhibits the expression of the orexin system in laying hens. Animals 2019, 9, 804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rokavec, N.; Šemrov, M.Z. Psychological and physiological stress in hens with bone damage. Front. Vet. Sci. 2020, 7, 589274. [Google Scholar] [CrossRef]
- Casey-Trott, T.M.; Widowski, T.M. Behavioral differences of laying hens with fractured keel bones within furnished cages. Front. Vet. Sci. 2016, 3, 42. [Google Scholar] [CrossRef] [Green Version]
- Rufener, C.B.; Baur, S.D.; Stratmann, A.; Toscano, M.J. Keel bone fractures affect egg laying performance but not egg quality in laying hens housed in a commercial aviary system. Poult. Sci. 2019, 98, 1589–1600. [Google Scholar] [CrossRef]
- Habig, C.; Henning, M.; Baulain, U.; Jansen, S.; Scholz, A.M.; Weigend, S. Keel bone damage in laying hens-its relation to bone mineral density, body growth rate and laying performance. Animals 2021, 11, 1546. [Google Scholar] [CrossRef]
- Thøfner, I.C.N.; Dahl, J.; Christensen, J.P. Keel bone fractures in Danish laying hens: Prevalence and risk factors. PLoS ONE 2021, 16, e0256105. [Google Scholar] [CrossRef]
- Adedokun, S.A.; Adeola, O. Calcium and phosphorus digestibility: Metabolic limits. J. Appl. Poult. Res. 2013, 22, 600–608. [Google Scholar] [CrossRef]
- Igwe, A.O.; Ihedioha, J.I.; Okoye, J.O.A. Changes in serum calcium and phosphorus levels and their relationship to egg production in laying hens infected with velogenic Newcastle disease virus. J. Appl. Anim. Res. 2018, 46, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Xing, G.; Li, S.; Shao, Y.; Zhang, L.; Lu, L.; Luo, X.; Liao, X. Effect of dietary calcium or phosphorus deficiency on bone development and related calcium or phosphorus metabolic utilization parameters of broilers from 22 to 42 days of age. J. Integr. Agric. 2020, 19, 2775–2783. [Google Scholar] [CrossRef]
- Berlin, T.; Björkhem, I. Effect of calcium intake on serum levels of 25-hydroxyvitamin D3. Eur. J. Clin. Investig. 1988, 18, 52–55. [Google Scholar] [CrossRef]
- Ohta, H.; Uemura, Y.; Nakamura, T.; Fukunaga, M.; Ohashi, Y.; Hosoi, T.; Mori, S.; Sugimoto, T.; Itoi, E.; Orimo, H.; et al. Serum 25-hydroxyvitamin D level as an independent determinant of quality of life in osteoporosis with a high risk for fracture. Clin. Ther. 2014, 36, 225–235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roberts, J.R. Factors affecting egg internal quality and egg shell quality in laying hens. J. Poult. Sci. 2004, 41, 161–177. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Joyner, C.J.; Peddie, M.J.; Taylor, T.G. Changes in the concentrations of parathyroid hormone and ionic calcium in the plasma of laying hens during the egg cycle in relation to dietary deficiencies of calcium and vitamin D. Gen. Comp. Endocrinol. 1986, 61, 20–28. [Google Scholar] [CrossRef]
- DeLuca, H.F.; Paaren, H.E.; Schnoes, H.K. Vitamin D and calcium metabolism. Top. Curr. Chem. 1979, 83, 1–65. [Google Scholar]
- MacDonald, B.R.; Gallagher, J.A.; Russell, R.G.G. Parathyroid hormone stimulates the proliferation of cells derived from human bone. Endocrinology 1986, 118, 2445–2449. [Google Scholar] [CrossRef] [PubMed]
- Naot, D.; Cornish, J. The role of peptides and receptors of the calcitonin family in the regulation of bone metabolism. Bone 2008, 43, 813–818. [Google Scholar] [CrossRef]
- Tanaka, Y.; Nakayamada, S.; Okada, Y. Osteoblasts and osteoclasts in bone remodeling and inflammation. Curr. Drug Targets Inflamm. Allergy 2005, 4, 325–328. [Google Scholar] [CrossRef]
- Seibel, M.J. Biochemical markers of bone turnover part II: Clinical applications in the management of osteoporosis. Clin. Biochem. Rev. 2006, 27, 123–138. [Google Scholar]
- Takeda, E.; Yamamoto, H.; Yamanaka-Okumura, H.; Taketani, Y. Increasing dietary phosphorus intake from food additives: Potential for negative impact on bone health. Adv. Nutr. 2014, 5, 92–97. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez, J.; Mandalunis, P.M. Effect of cadmium on bone tissue in growing animals. Exp. Toxicol. Pathol. 2016, 68, 391–397. [Google Scholar] [CrossRef]
- Yin, Y.; Ding, L.; Hou, Y.; Jiang, H.; Zhang, J.; Dai, Z.; Zhang, G. Upregulating microRNA-410 or downregulating Wnt-11 increases osteoblasts and reduces osteoclasts to alleviate osteonecrosis of the femoral head. Nanoscale Res. Lett. 2019, 14, 383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsuda, E.; Goto, M.; Mochizuki, S.; Yano, K.; Kobayashi, F.; Morinaga, T.; Higashio, K. Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 1997, 234, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Lacey, D.; Timms, E.; Tan, H.L.; Kelley, M.; Dunstan, C.; Burgess, T.; Elliott, R.; Colombero, A.; Elliott, G.; Scully, S.; et al. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 1998, 93, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Martini, G.; Gennari, L.; Merlotti, D.; Salvadori, S.; Franci, M.B.; Campagna, S.; Avanzati, A.; De Paola, V.; Nuti, R. Serum OPG and RANKL levels before and after intravenous bisphosphonate treatment in Paget’s disease of bone. Bone 2007, 40, 457–463. [Google Scholar] [CrossRef] [PubMed]
- Kittelsen, K.E.; Gretarsson, P.; Jensen, P.; Christensen, J.P.; Toftaker, I.; Moe, R.O.; Vasdal, G. Keel bone fractures are more prevalent in White Leghorn hens than in Red Jungle fowl hens—A pilot study. PLoS ONE 2021, 16, e0255234. [Google Scholar] [CrossRef]
Ingredients (%) | Nutrients | ||
---|---|---|---|
Corn (%) | 62.5 | Metabolic energy (Kcal/kg) | 2787.8 |
Soybean meal | 24.0 | Crude protein (g/kg) | 16.40 |
Wheat bran | 2.50 | Lysine (g/kg, measured) | 8.81 |
Limestone | 8.15 | Methionine (g/kg, measured) | 3.39 |
Calcium hydrogen phosphate | 1.37 | Calcium (g/kg) | 33.4 |
Sodium chloride | 0.33 | Calcium (g/kg, measured) | 34.6 |
DL-Methionine | 0.15 | Total phosphorus (g/kg) | 5.88 |
Vitamin-mineral premix 1 | 1.00 | Total phosphorus (g/kg, measured) | 4.98 |
Total | 100 | Available phosphorus (g/kg) | 3.66 |
Available phosphorus (g/kg, measured) | 3.70 | ||
Sodium (g/kg, measured) | 1.16 | ||
Magnesium (g/kg, measured) | 2.22 | ||
Manganese (mg/kg, measured) | 139.1 |
Main Effect | BW (kg) | Main Effect | BW (kg) | Main Effect | p-Value |
---|---|---|---|---|---|
Time (week) | Cage (No) | Time | 0.001 | ||
18 | 1.51 c | C1 | 1.99 | Group | 0.046 |
22 | 1.96 b | C2 | 1.86 | Cage | 0.394 |
25 | 2.01 a | C3 | 1.81 | Time × Group | 0.874 |
29 | 2.07 a | C4 | 1.87 | Group × Cage | 0.235 |
SEM | 0.03 | C5 | 1.92 | Time × Cage | 0.989 |
Group | C6 | 1.85 | Group × Time × Cage | 0.906 | |
NK | 1.92 x | C7 | 1.83 | ||
DK | 1.87 x,y | C8 | 1.75 | ||
FK | 1.79 y | SEM | 0.05 | ||
SEM | 0.03 |
Item (Unit) | Group | p-Value | ||
---|---|---|---|---|
NK | DK | FK | ||
Keel bone length (mm) | 104.49 ± 1.17 | 104.69 ± 1.40 | 101.81 ± 1.84 | 0.339 |
Keel bone weight (g) | 8.39 ± 0.24 | 7.61 ± 0.32 | 7.67 ± 0.49 | 0.276 |
Main Effect | Treatment | Ca | P | 1,25-(OH)2D3 | 25-OHD3 | PTH | CT |
---|---|---|---|---|---|---|---|
(mmol/L) | (mmol/L) | (pg/mL) | (ng/mL) | (ng/L) | (ng/L) | ||
Time (week) | |||||||
18 | 1.47 c | 2.45 a | 132.53 | 8.16 | 40.38 ab | 84.77 | |
22 | 1.76 b | 2.28 ab | 132.80 | 8.28 | 39.47 b | 84.55 | |
25 | 1.89 ab | 2.12 b | 130.33 | 8.21 | 40.80 a | 84.87 | |
29 | 1.93 a | 2.02 b | 132.32 | 8.31 | 40.23 ab | 83.46 | |
SEM | 0.06 | 0.10 | 1.03 | 0.06 | 0.34 | 0.59 | |
Group | |||||||
NK | 1.80 | 2.36 x | 119.40 z | 8.11 y | 39.37 y | 78.90 y | |
DK | 1.77 | 2.31 x | 134.05 y | 7.65 z | 42.17 x | 95.27 x | |
FK | 1.72 | 1.98 y | 142.38 x | 8.96 x | 39.12 y | 79.07 y | |
SEM | 0.05 | 0.09 | 0.89 | 0.05 | 0.29 | 0.51 | |
Cage (No) | |||||||
C1 | 1.67 | 2.58 | 128.41 | 7.89 | 40.35 | 88.03 | |
C2 | 1.68 | 2.34 | 138.24 | 8.40 | 40.82 | 87.23 | |
C3 | 1.68 | 2.41 | 130.92 | 8.62 | 39.34 | 78.63 | |
C4 | 1.77 | 2.11 | 127.02 | 7.97 | 40.67 | 87.17 | |
C5 | 1.83 | 2.06 | 132.00 | 8.14 | 39.89 | 84.12 | |
C6 | 1.86 | 2.28 | 128.06 | 7.98 | 41.31 | 86.13 | |
C7 | 1.81 | 2.16 | 131.79 | 8.26 | 40.35 | 84.35 | |
C8 | 1.71 | 1.90 | 139.62 | 8.92 | 38.99 | 79.83 | |
SEM | 0.06 | 0.08 | 0.89 | 0.07 | 0.56 | 0.64 | |
p-value | |||||||
Time | 0.004 | 0.016 | 0.100 | 0.229 | 0.046 | 0.202 | |
Group | 0.466 | 0.016 | <0.001 | <0.001 | 0.007 | <0.001 | |
Cage | 0.318 | 0.051 | 0.514 | 0.328 | 0.924 | 0.535 | |
Time × Group | 0.047 | 0.024 | 0.045 | 0.158 | 0.557 | 0.284 | |
Group × Cage | 0.064 | 0.712 | 0.251 | 0.467 | 0.938 | 0.478 | |
Time × Cage | 0.501 | 0.197 | 0.160 | 0.424 | 0.704 | 0.196 | |
Group × Time × Cage | 0.399 | 0.097 | 0.126 | 0.266 | 0.514 | 0.255 |
Main Effect | Treatment | ALP | OC | TRAP | OPG | CORT |
---|---|---|---|---|---|---|
(U/L) | (ng/L) | (U/L) | (ng/L) | (ng/L) | ||
Time (week) | ||||||
18 | 2049.87 a | 8.73 ab | 170.53 ab | 497.70 ab | 429.26 ab | |
22 | 1987.69 b | 8.86 a | 172.38 a | 507.01 a | 424.75 b | |
25 | 1963.06 b | 8.55 b | 167.03 b | 491.57 b | 433.37 ab | |
29 | 2041.16 a | 8.94 a | 169.29 ab | 494.28 b | 436.81 a | |
SEM | 19.89 | 0.07 | 1.93 | 7.70 | 4.39 | |
Group | ||||||
NK | 1887.74 z | 7.72 z | 154.55 z | 475.17 z | 397.79 y | |
DK | 2036.21 y | 9.47 x | 167.90 y | 489.61 y | 399.69 y | |
FK | 2107.40 x | 9.12 y | 186.97 x | 528.14 x | 500.66 x | |
SEM | 17.22 | 0.06 | 1.67 | 6.67 | 3.80 | |
Cage (No) | ||||||
C1 | 1960.28 | 8.67 | 159.48 | 489.55 | 398.36 | |
C2 | 2027.19 | 9.23 | 177.64 | 517.66 | 449.24 | |
C3 | 1958.93 | 8.35 | 168.68 | 507.71 | 449.54 | |
C4 | 1939.33 | 8.56 | 160.74 | 485.53 | 401.55 | |
C5 | 2023.58 | 8.83 | 169.90 | 500.03 | 434.09 | |
C6 | 1968.39 | 8.56 | 160.97 | 469.64 | 399.78 | |
C7 | 2036.20 | 8.76 | 172.10 | 488.85 | 431.71 | |
C8 | 2150.20 | 9.19 | 187.75 | 525.34 | 497.23 | |
SEM | 29.83 | 0.11 | 2.89 | 11.55 | 6.59 | |
p-value | ||||||
Time | 0.023 | 0.014 | 0.048 | 0.042 | 0.045 | |
Group | 0.001 | < 0.001 | < 0.001 | 0.009 | <0.001 | |
Cage | 0.207 | 0.654 | 0.743 | 0.529 | 0.679 | |
Time × Group | 0.222 | 0.050 | 0.200 | 0.894 | 0.589 | |
Group × Cage | 0.346 | 0.197 | 0.745 | 0.992 | 0.247 | |
Time × Cage | 0.318 | 0.206 | 0.267 | 0.925 | 0.664 | |
Group × Time × Cage | 0.306 | 0.160 | 0.467 | 0.911 | 0.636 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, H.; Chen, Y.; Nian, H.; Wang, J.; Liu, Y.; Wang, J.; Yang, K.; Zhao, Q.; Zhang, R.; Bao, J. Abnormal Bone Metabolism May Be a Primary Causative Factor of Keel Bone Fractures in Laying Hens. Animals 2021, 11, 3133. https://doi.org/10.3390/ani11113133
Wei H, Chen Y, Nian H, Wang J, Liu Y, Wang J, Yang K, Zhao Q, Zhang R, Bao J. Abnormal Bone Metabolism May Be a Primary Causative Factor of Keel Bone Fractures in Laying Hens. Animals. 2021; 11(11):3133. https://doi.org/10.3390/ani11113133
Chicago/Turabian StyleWei, Haidong, Yanqing Chen, Haoyang Nian, Jing Wang, Yilin Liu, Jianxing Wang, Kaiqi Yang, Qian Zhao, Runxiang Zhang, and Jun Bao. 2021. "Abnormal Bone Metabolism May Be a Primary Causative Factor of Keel Bone Fractures in Laying Hens" Animals 11, no. 11: 3133. https://doi.org/10.3390/ani11113133
APA StyleWei, H., Chen, Y., Nian, H., Wang, J., Liu, Y., Wang, J., Yang, K., Zhao, Q., Zhang, R., & Bao, J. (2021). Abnormal Bone Metabolism May Be a Primary Causative Factor of Keel Bone Fractures in Laying Hens. Animals, 11(11), 3133. https://doi.org/10.3390/ani11113133