Implications of Nutritional Management on Fatty Acid Profiles of Southern White Rhinoceroses (Ceratotherium simum simum) Housed at Two Zoological Institutions
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals, Sample Collection, and Analysis
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Emslie, R. Ceratotherium simum. IUCN Red List Threat. Species 2020, e.T4185A45813880. [Google Scholar] [CrossRef]
- Ferreira, S.M.; Bissett, C.; Cowell, C.R.; Gaylard, A.; Greaver, C.; Hayes, J.; Hofmeyr, M.; Moolman-van der Vyver, L.; Zimmermann, D. The status of rhinoceroses in South African national parks. KOEDOE–Afr. Prot. Area Conserv. Sci. 2017, 59, a1392. [Google Scholar] [CrossRef]
- Knight, M.H.; Emslie, R.H.; Smart, R.; Balfour, D. Biodiversity management plan for the white rhinoceros (Ceratotherium simum) in South Africa 2015–2020. Dep. Environ. Aff. Pretoria S. Afr. 2015. [Google Scholar]
- Association of Zoos and Aquariums (AZA). The Guide to Accreditation of Zoological Parks and Aquariums 2021 Edition; AZA Executive Office: Silver Spring, MD, USA, 2021; Available online: https://assets.speakcdn.com/assets/2332/guide_to_accreditation.pdf (accessed on 1 October 2021).
- Wood, J.; Koutsos, E.; Kendall, C.; Minter, L.J.; Tollefson, T.; Ange-van Heugten, K. Analyses of African elephant (Loxodonta africana) diet with various browse and pellet inclusion levels. Zoo Biol. 2020, 39, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.; Koutsos, E.; Kendall, C.; Minter, L.J.; Tollefson, T.; Ivory, E.; Ange-van Heugten, K. Circulating nutrients and hematological parameters in managed African elephants (Loxodonta africana) over a 1-year period. Zoo Biol. 2020, 39, 345–354. [Google Scholar] [CrossRef]
- Fritsche, K. Fatty acids as modulators of the immune response. Annu. Rev. Nutr. 2006, 26, 45–73. [Google Scholar] [CrossRef] [Green Version]
- Patisaul, H.B. Infertility in the southern white rhino: Is diet the source of the problem? Endocrinology 2012, 153, 1568–1571. [Google Scholar] [CrossRef] [Green Version]
- Versteege, L. (Ed.) EAZA White rhino EEP Best Practice Guidelines; Safaripark Beekse Bergen: NJ Hilvarenbeek, The Netherlands, 2018; p. 49. [Google Scholar]
- Abayasekara, D.R.E.; Wathes, D.C. Effects of altering dietary fatty acid composition on prostaglandin synthesis and fertility. Prostaglandins Leukot. Essent. Fat. Acids 1999, 61, 275–287. [Google Scholar] [CrossRef]
- Gulliver, C.E.; Friend, M.A.; King, B.J.; Clayton, E.H. The role of omega-3 polyunsaturated fatty acids in reproduction of sheep and cattle. Anim. Reprod. Sci. 2012, 131, 9–22. [Google Scholar] [CrossRef]
- Nemeth, M.; Millesi, E.; Siutz, C.; Wagner, K.-H.; Quint, R.; Wallner, B. Reproductive performance and gestational effort in relation to dietary fatty acids in guinea pigs. J. Anim. Sci. Biotechnol. 2017, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Ramos Angrimani, D.S.; Nichi, M.; Losano, J.D.A.; Lucio, C.F.; Lima Veiga, G.A.; Junqueira Franco, M.V.M.; Vannucchi, C.I. Fatty acid content of epididymal fluid and spermatozoa during sperm maturation in dogs. J. Anim. Sci. Biotechnol. 2017, 8, 18. [Google Scholar] [CrossRef]
- Clauss, M.; Grum, C.; Hatt, J.M. Fatty acid status of captive wild animals: A review. Zool. Gart. 2007, 76, 382–401. [Google Scholar]
- Schmidt, D.; Koutsos, E.A.; Ellersieck, M.R.; Griffin, M.E. Serum concentration comparisons of amino acids, fatty acids, lipoproteins, vitamins A and E, and minerals between zoo and free-ranging giraffes (Giraffa camelopardalis). J. Zoo Wildl. Med. 2009, 40, 29–38. [Google Scholar] [CrossRef]
- Field, C.J.; Clandinin, M.T. Modulation of adipose tissue fat composition by diet: A review. Nutr. Res. 1984, 4, 743–755. [Google Scholar] [CrossRef]
- Suedmeyer, W.K.; Dierenfeld, E.S. Clinical experience with fatty acid supplementation in a group of black rhinoceros (Diceros bicornis). Proc. Am. Assoc. Zoo Vet. 1998, 1998, 113–115. [Google Scholar]
- Brinkmann, L.; Riek, A.; Gerken, M. Long-term adaptation capacity of ponies: Effect of season and feed restriction on blood and physiological parameters. Animal 2018, 12, 88–97. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, J.M.; Metherel, A.H.; Stark, K.D. Direct microwave transesterification of fingertip prick blood samples for fatty acid determinations. Lipids 2008, 43, 187–196. [Google Scholar] [CrossRef]
- Bailey-Hall, E.; Nelson, E.B.; Ryan, A.S. Validation of a rapid measure of blood PUFA levels in humans. Lipids 2008, 43, 181–186. [Google Scholar] [CrossRef]
- Wood, J.; Minter, L.J.; Stoskopf, M.K.; Bibus, D.; Ange, D.; Tollefson, T.N.; Fellner, V.; Ange-van Heugten, K. Investigation of Dried Blood Spot Cards for Fatty Acid Analysis Using Porcine Blood. Vet. Med. Int. 2021, 2021, 6624751. [Google Scholar] [CrossRef]
- Baylin, A.; Kim, M.K.; Donovan-Palmer, A.; Siles, X.; Dougherty, L.; Tocco, P.; Campos, H. Fasting whole blood as a biomarker of essential fatty acid intake in epidemiologic studies: Comparison with adipose tissue and plasma. Am. J. Epidemiol. 2005, 162, 373–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rise, P.; Eligini, S.; Ghezzi, S.; Colli, S.; Galli, C. Fatty acid composition of plasma, blood cells and whole blood: Relevance for the assessment of the fatty acid status in humans. Prostaglandins Leukot. Essent. Fat. Acids 2007, 76, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.D.; Rosman, L.M.; Ratcliff, J.D.; Strickland, P.T.; Graham, D.R.; Silbergeld, E.K. State of the science of dried blood spots. Clin. Chem. 2018, 64, 656–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koutsos, E.; Minter, L.J.; Ange-van Heugten, K.D.; Mejia-Fava, J.; Harmes, C. Blood fatty acid profiles of neritic juvenile wild green turtles (Chelonia mydas) and Kemp’s ridley turtles (Lepidochelys kempii). J. Zoo Wildl. Med. 2021, 52, 610–617. [Google Scholar] [CrossRef]
- Bergero, D.; Miraglia, N.; Polidori, M.; Ziino, M.; Gagliardi, D. Blood serum and skin fatty acid levels in horses and the use of dietary polyunsaturated fatty acids. Anim. Res. 2002, 51, 157–163. [Google Scholar] [CrossRef] [Green Version]
- Clauss, M.; Dierenfeld, E.S.; Bigley, K.E.; Wang, Y.; Ghebremeskel, K.; Hatt, J.M.; Flach, E.J.; Behlert, O.; Castell, J.C.; Streich, W.J.; et al. Fatty acid status in captive and free-ranging black rhinoceroses (Diceros bicornis). J. Anim. Physiol. Anim. Nutr. 2008, 92, 231–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wood, J.; Minter, L.J.; Bibus, D.; Stoskopf, M.K.; Tollefson, T.N.; Fellner, V.; Ange-van Heugten, K. African elephant (Loxodonta africana) fatty acid profiles as compared via whole blood, whole blood on dried blood spot cards, serum, and plasma. Vet. Med. Int. 2021, unpublished. [Google Scholar]
- Bapodra, P.; Dierenfeld, E.; Wolfe, B.A. Evaluation of season-related dietary changes on the serum profiles of fat-soluble vitamins, mineral, fatty acids, and lipids in the captive greater one-horned rhinoceros (Rhinoceros unicornis). Zoo Biol. 2014, 33, 314–319. [Google Scholar] [CrossRef] [PubMed]
- Clauss, M.; Wang, Y.; Ghebremeskel, K.; Lendl, C.E.; Streich, W.J. Plasma and erythrocyte fatty acids in captive Asian (Elephas maximus) and African (Loxodonta africana) elephants. Vet. Record 2003, 153, 54–58. [Google Scholar] [CrossRef]
- Davidson, B.C. Seasonal changes in leaf lipid and fatty acid composition of nine plants consumed by two African herbivores. Lipids 1998, 33, 109–113. [Google Scholar] [CrossRef]
- Grant, J.B.; Brown, D.L.; Dierenfeld, E.S. Essential fatty acid profiles differ across diets and browse of black rhinoceros. J. Wildl. Dis. 2002, 38, 132–142. [Google Scholar] [CrossRef] [Green Version]
- Wood, J. Analyses of Diet and Blood Nutrient Concentrations in African Elephants (Loxodonta africana) Housed at the NC Zoo. Master’s Thesis, North Carolina State University, Raleigh, NC, USA, 20 March 2018; pp. 1–203. [Google Scholar]
- Dewhurst, R.J.; Scollan, N.; Youell, S.; Tweed, J.; Humphreys, M. Influence of species, cutting date and cutting interval on the fatty acid composition of grasses. Grass Forage Sci. 2001, 56, 68–74. [Google Scholar] [CrossRef]
- Glasser, F.; Doreau, M.; Maxin, G.; Baumont, R. Fat and fatty acid content and composition of forages: A meta-analysis. Anim. Feed Sci. Technol. 2013, 185, 19–34. [Google Scholar] [CrossRef]
- Vineyard, K.; Warren, L.; Kivipelto, J. Effect of dietary omega-3 fatty acid source on plasma and red blood cell membrane composition and immune function in yearling horses. J. Anim. Sci. 2010, 88, 248–257. [Google Scholar] [CrossRef]
- Hess, T.; Rexford, J.; Hansen, D.; Harris, M.; Schauermann, N.; Ross, T.; Engle, T.; Allen, K.; Mulligan, C. Effects of two different dietary sources of long chain omega-3, highly unsaturated fatty acids on incorporation into the plasma, red blood cell, and skeletal muscle in horses. J. Anim. Sci. 2012, 90, 3023–3031. [Google Scholar] [CrossRef] [PubMed]
- Clauss, M.; Hatt, J.M. The feeding of rhinoceros in captivity. Int. Zoo Yearb. 2006, 40, 197–206. [Google Scholar] [CrossRef]
- Shrader, A.M. Use of Food and Space by White Rhinos. Ph.D. Thesis, University of the Witwatersrand, Johannesburg, South Africa, 2003; pp. 1–190. [Google Scholar]
- Shrader, A.M.; Owen-Smith, R.N.; Ogutu, J.O. How a mega-grazer copes with the dry season: Food and nutrient intake rates by white rhinoceros in the wild. Funct. Ecol. 2006, 20, 376–384. [Google Scholar] [CrossRef]
- Pedersen, G. Habitat Use and Diet Selection of Reintroduced White Rhinoceros (Ceratotherium simum) in Pafuri, Kruger National Park. Master’s Thesis, Stellenbosch University, Stellenbosch, South Africa, 14 January 2009; pp. 1–120. [Google Scholar]
- Smit, E.N.; Muskiet, F.A.J.; Boersma, E.R. The possible role of essential fatty acids in the pathophysiology of malnutrition: A review. Prostaglandins Leukot. Essent. Fat. Acids 2004, 71, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Mozaffarian, D.; Wu, J.H. Omega-3 fatty acids and cardiovascular disease: Effects on risk factors, molecular pathways, and clinical events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Figueiredo, P.S.; Inada, A.C.; Marcelino, G.; Cardozo, C.M.; Freitas, K.D.; Guimarães, R.D.; de Castro, A.P.; do Nascimento, V.A.; Hiane, P.A. Fatty acids consumption: The role metabolic aspects involved in obesity and its associated disorders. Nutrients 2017, 9, 1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perng, W.; Villamor, E.; Mora-plazas, M.; Marin, C.; Baylin, A. Alpha-linolenic acid (ALA) is inversely related to development of adiposity in school-age children. Eur. J. Clin. Nutr. 2015, 69, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Dierenfeld, E.S. Nutrition. In Biology, Medicine, and Surgery of Elephants; Fowler, M.E., Mikota, S.K., Eds.; Blackwell: Oxford, UK, 2006; pp. 57–65. [Google Scholar]
Individual Fatty Acid | North Carolina Zoo | Busch Gardens Tampa | ||
---|---|---|---|---|
Low Growth Average (SD) | High Growth Average (SD) | Low Growth Average (SD) | High Growth Average (SD) | |
Myristic acid (14:0) | 0.91 (0.18) | 0.91 (0.17) | 0.84 (0.35) | 0.85 (0.09) |
Palmitic acid (16:0) | 14.9 (1.00) | 15.4 (1.51) | 14.6 (1.77) | 15.8 (2.23) |
Palmitoleic acid (16:1w7) | 1.80 (0.40) | 1.50 (0.74) | 2.27 (0.90) | 2.08 (0.33) |
Stearic acid (18:0) | 12.1 a (0.66) | 13.0 (0.93) | 13.9 b (1.59) | 13.9 (0.58) |
Oleic acid (18:1w9) | 35.2 a (2.56) | 34.9 x (2.68) | 42.3 b (4.10) | 41.3 y (1.79) |
Linoleic acid (18:2w6) | 26.6 a (2.89) | 24.3 x (2.27) | 15.7 b (3.73) | 14.6 y (2.17) |
γ-linolenic acid (18:3w6) | 0.28 a (0.27) | 0.12 (0.04) | 0.00 b,‡ (0.00) | 0.08 ¶ (0.05) |
α-linolenic acid (18:3w3) | 4.20 a (1.48) | 3.40 x (0.54) | 5.93 b (0.99) | 6.42 y (0.79) |
Stearidonic acid (18:4w3) | 0.00 § (0.00) | 0.13¤ (0.16) | 0.00 ‡ (0.00) | 0.17 ¶ (0.05) |
Arachdic acid (20:0) | 0.07 a,§ (0.04) | 0.35 x,¤ (0.05) | 0.17 b (0.07) | 0.23 y (0.08) |
Paullinic acid (20:1w7) | 0.18 a,§ (0.07) | 0.57¤ (0.07) | 0.29 b,‡ (0.07) | 0.63 ¶ (0.11) |
Eicosenoic acid (20:2w6) | 0.36 (0.08) | 0.45 (0.14) | 0.33 (0.08) | 0.35 (0.04) |
Mead acid (20:3w9) | 0.10 a (0.04) | 0.07 (0.03) | 0.04 b,‡ (0.03) | 0.09 ¶ (0.02) |
h-γ-linolenic acid (20:3w6) | 0.27 § (0.06) | 0.38 x,¤ (0.08) | 0.25 (0.04) | 0.26 y (0.02) |
Arachidonic acid (20:4w6) | 1.79 § (0.34) | 2.35 x,¤ (0.30) | 1.54 (0.29) | 1.58 y (0.19) |
Eicosatrienoic acid (20:3w3) | 0.14 a (0.04) | 0.16 x (0.03) | 0.22 b (0.05) | 0.25 y (0.07) |
Eicosatetraenoic acid (20:4w3) | 0.08 a,§ (0.04) | 0.00¤ (0.01) | 0.28 b,‡ (0.11) | 0.01 ¶ (0.01) |
Eicosapentaenoic acid (20:5w3) | 0.13 § (0.03) | 0.43 x,¤ (0.10) | 0.30 (0.18) | 0.29 y (0.09) |
Behenic acid (22:0) | 0.34 (0.08) | 0.36 x (0.04) | 0.31 (0.07) | 0.26 y (0.04) |
Erucic acid (22:1w9) | 0.00 § (0.00) | 0.05¤ (0.05) | 0.00 ‡ (0.00) | 0.07 ¶ (0.03) |
Docosatetraenoic (adrenic) acid (22:4w6) | 0.04 § (0.05) | 0.15 x,¤ (0.05) | 0.04 (0.05) | 0.03 y (0.04) |
Omega-6 docosapentaenoic acid (22:5w6) | 0.07 a (0.11) | 0.00 (0.00) | 0.21 b,‡ (0.05) | 0.00 ¶ (0.00) |
Omega-3 docosapentaenoic acid (22:5w3) | 0.09 § (0.05) | 0.18¤ (0.05) | 0.13 ‡ (0.03) | 0.22 ¶ (0.02) |
Docosahexaenoic acid (22:6w3) | 0.17 (0.04) | 0.16 x (0.03) | 0.17 ‡ (0.04) | 0.10 y,¶ (0.01) |
Lignoceric acid (24:0) | 0.00 § (0.00) | 0.38 x,¤ (0.06) | 0.00 ‡ (0.00) | 0.19 y,¶ (0.02) |
Nervonic acid (24:1) | 0.16 § (0.07) | 0.39¤ (0.39) | 0.16 (0.18) | 0.18 (0.07) |
Fatty Acid Group | Low Growth Average (SD) | High Growth Average (SD) | Low Growth Average (SD) | High Growth Average (SD) |
Saturates | 28.3 a,§ (0.99) | 30.4¤ (1.08) | 29.8 b (0.98) | 31.3 (1.76) |
Monoenes | 35.6 a (2.64) | 35.9 x (2.83) | 42.8 b (4.25) | 42.2 y (1.93) |
Polyunsaturated fatty acids | 34.3 a (3.07) | 32.3 x (2.56) | 25.2 b (4.62) | 24.5 y (2.91) |
Highly unsaturated fatty acids (HUFA) | 2.88 § (0.39) | 3.88 x,¤ (0.48) | 3.19 (0.54) | 2.84 y (0.32) |
Total omega-3 fatty acids | 4.80 a (1.53) | 4.45 x (0.44) | 7.03 b (1.23) | 7.45 y (0.91) |
Total omega-6 fatty acids | 29.4 a (3.23) | 27.7 x (2.67) | 18.1 b (3.85) | 16.9 y (2.34) |
Total omega-9 fatty acids | 35.4 a (2.67) | 35.3 x (2.81) | 42.5 b (4.19) | 41.6 y (1.86) |
Omega-6/Omega-3 | 6.96 a (3.30) | 6.29 x (0.94) | 2.60 b (0.50) | 2.28 y (0.29) |
Omega 3 HUFA | 21.3 a (3.90) | 23.9 x (2.36) | 34.2 b (3.75) | 30.6 y (3.60) |
Omega 6 HUFA | 78.7 a (3.90) | 76.1 x (2.36) | 65.9 b (3.75) | 69.4 y (3.60) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wood, J.; Jb Minter, L.; Tollefson, T.N.; Bissell, H.; Bibus, D.; Ange-van Heugten, K. Implications of Nutritional Management on Fatty Acid Profiles of Southern White Rhinoceroses (Ceratotherium simum simum) Housed at Two Zoological Institutions. Animals 2021, 11, 3063. https://doi.org/10.3390/ani11113063
Wood J, Jb Minter L, Tollefson TN, Bissell H, Bibus D, Ange-van Heugten K. Implications of Nutritional Management on Fatty Acid Profiles of Southern White Rhinoceroses (Ceratotherium simum simum) Housed at Two Zoological Institutions. Animals. 2021; 11(11):3063. https://doi.org/10.3390/ani11113063
Chicago/Turabian StyleWood, Jordan, Larry Jb Minter, Troy Neil Tollefson, Heidi Bissell, Doug Bibus, and Kimberly Ange-van Heugten. 2021. "Implications of Nutritional Management on Fatty Acid Profiles of Southern White Rhinoceroses (Ceratotherium simum simum) Housed at Two Zoological Institutions" Animals 11, no. 11: 3063. https://doi.org/10.3390/ani11113063
APA StyleWood, J., Jb Minter, L., Tollefson, T. N., Bissell, H., Bibus, D., & Ange-van Heugten, K. (2021). Implications of Nutritional Management on Fatty Acid Profiles of Southern White Rhinoceroses (Ceratotherium simum simum) Housed at Two Zoological Institutions. Animals, 11(11), 3063. https://doi.org/10.3390/ani11113063