Phenotypic PIA-Dependent Biofilm Production by Clinical Non-Typeable Staphylococcus aureus Is Not Associated with the Intensity of Inflammation in Mammary Gland: A Pilot Study Using Mouse Mastitis Model
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. S. aureus Phenotypes
2.2. Capsular Typing of S. aureus
2.3. Determination of Biofilm Forming Potential of S. aureus
2.4. Detection of PIA-Dependent Biofilm Production Related Genes of S. aureus
2.5. Detection of Virulence Genes of S. aureus
2.6. Infection of Mammary Gland Using NT S. aureus Strains
2.6.1. Animal Ethics Approval
2.6.2. Preparation of Bacterial Inocula
2.6.3. Mice
2.6.4. Method of Infection of the Mammary Gland
2.6.5. Post Inoculation Examination
Macroscopic Examination
Bacteriological Procedure
Blood, Liver, Lung, and Spleen
Histological and Cytological Procedure
Grading of Histological Changes Observed in Mammary Glands
2.6.6. Quantification of Inflammatory Cytokines
2.6.7. Statistical Analysis
3. Results
3.1. Detection of Capsular Types of S. aureus
3.2. Determination of Biofilm Forming Potential of S. aureus Isolates
3.2.1. CRA and TCP Method
3.2.2. ica Typing of S. aureus Isolates
3.3. Detection of Different MSCRAMM-Encoding Genes of S. aureus Using Conventional PCR
3.4. Macroscopic Examination of Mammary Glands for Clinical Symptoms
3.5. Bacterial Load and Histopathological Changes of Mammary Gland
3.5.1. Bacteriology of Blood and Histopathology of Liver, Lung, and Spleen
3.5.2. Histopathology of Mammary Glands Post-infection with Biofilm Forming S. aureus
3.6. Quantification of Inflammatory Cytokines in Serum
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bardiau, M.; Detilleux, J.; Farnir, F.; Mainil, J.G.; Ote, I. Associations between properties linked with persistence in a collection of Staphylococcus aureus isolates from bovine mastitis. Vet. Microbiol. 2014, 169, 74–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaatout, N.; Ayachi, A.; Kecha, M. Staphylococcus aureus persistence properties associated with bovine mastitis and alternative therapeutic modalities. J. Appl. Microbiol. 2020, 129, 1102–1119. [Google Scholar] [CrossRef] [PubMed]
- O’Riordan, K.; Lee, J.C. Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 2004, 17, 218–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sompolinsky, D.; Samra, Z.; Karakawa, W.; Vann, W.; Schneerson, R.; Malik, Z. Encapsulation and capsular types in isolates of Staphylococcus aureus from different sources and relationship to phage types. J. Clin. Microbiol. 1985, 22, 828–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poutrel, B.; Boutonnier, A.; Sutra, L.; Fournier, J. Prevalence of capsular polysaccharide types 5 and 8 among Staphylococcus aureus isolates from cow, goat, and ewe milk. J. Clin. Microbiol. 1988, 26, 38–40. [Google Scholar] [CrossRef] [Green Version]
- Han, H.; Pak, S.I.; Guidry, A. Prevalence of capsular polysaccharide (CP) types of Staphylococcus aureus isolated from bovine mastitic milk and protection of S. aureus infection in mice with CP vaccine. J. Vet. Med. Sci. 2000, 62, 1331–1333. [Google Scholar] [CrossRef] [Green Version]
- Sordelli, D.O.; Buzzola, F.R.; Gomez, M.I.; Steele-Moore, L.; Berg, D.; Gentilini, E.; Catalano, M.; Reitz, A.J.; Tollersrud, T.; Denamiel, G.; et al. Capsule expression by bovine isolates of Staphylococcus aureus from Argentina: Genetic and epidemiologic analyses. J. Clin. Microbiol 2000, 38, 846–850. [Google Scholar] [CrossRef] [Green Version]
- Tuchscherr, L.P.; Buzzola, F.R.; Alvarez, L.P.; Caccuri, R.L.; Lee, J.C.; Sordelli, D.O. Capsule-negative Staphylococcus aureus induces chronic experimental mastitis in mice. Infect. Immun. 2005, 73, 7932–7937. [Google Scholar] [CrossRef] [Green Version]
- Gogoi-Tiwari, J.; Babra Waryah, C.; Sunagar, R.; Veeresh, H.B.; Nuthanalakshmi, V.; Preethirani, P.L.; Sharada, R.; Isloor, S.; Bhat, A.; Al-Salami, H.; et al. Typing of Staphylococcus aureus isolated from bovine mastitis cases in Australia and India. Aust Vet. J. 2015, 93, 278–282. [Google Scholar] [CrossRef]
- Hensen, S.; Pavičić, M.; Lohuis, J.; Poutrel, B. Use of bovine primary mammary epithelial cells for the comparison of adherence and invasion ability of Staphylococcus aureus strains. J. Dairy Sci. 2000, 83, 418–429. [Google Scholar] [CrossRef]
- Aguilar, B.; Amorena, B.; Iturralde, M.a. Effect of slime on adherence of Staphylococcus aureus isolated from bovine and ovine mastitis. Vet. Microbiol. 2001, 78, 183–191. [Google Scholar] [CrossRef]
- Cucarella, C.; Tormo, M.A.; Ubeda, C.; Trotonda, M.P.; Monzón, M.; Peris, C.; Amorena, B.; Lasa, I.; Penadés, J.R. Role of biofilm-associated protein bap in the pathogenesis of bovine Staphylococcus aureus. Infect. Immun. 2004, 72, 2177–2185. [Google Scholar] [CrossRef] [Green Version]
- Fabres-Klein, M.H.; Santos, M.J.C.; Klein, R.C.; de Souza, G.N.; Ribon, A.d.O.B. An association between milk and slime increases biofilm production by bovine Staphylococcus aureus. BMC Vet. Res. 2015, 11, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, M.E.; Ceri, H.; Morck, D.W.; Buret, A.G.; Read, R.R. Biofilm bacteria: Formation and comparative susceptibility to antibiotics. Can. J. Vet. Res. 2002, 66, 86. [Google Scholar]
- Conley, J.; Olson, M.E.; Cook, L.S.; Ceri, H.; Phan, V.; Davies, H.D. Biofilm formation by group A streptococci: Is there a relationship with treatment failure? J. Clin. Microbiol. 2003, 41, 4043–4048. [Google Scholar] [CrossRef] [Green Version]
- Babra, C.; Tiwari, J.G.; Pier, G.; Thein, T.H.; Sunagar, R.; Sundareshan, S.; Isloor, S.; Hegde, N.R.; de Wet, S.; Deighton, M. The persistence of biofilm-associated antibiotic resistance of Staphylococcus aureus isolated from clinical bovine mastitis cases in Australia. Folia Microbiol. 2013, 58, 469–474. [Google Scholar] [CrossRef]
- Rachid, S.; Ohlsen, K.; Witte, W.; Hacker, J.r.; Ziebuhr, W. Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob. Agents Chemother. 2000, 44, 3357–3363. [Google Scholar] [CrossRef] [Green Version]
- McDevitt, D.; Francois, P.; Vaudaux, P.; Foster, T. Molecular characterization of the clumping factor (fibrinogen receptor) of Staphylococcus aureus. Mol. Microbiol. 1994, 11, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Patti, J.M.; Jonsson, H.; Guss, B.; Switalski, L.M.; Wiberg, K.; Lindberg, M.; Höök, M. Molecular characterization and expression of a gene encoding a Staphylococcus aureus collagen adhesin. J. Biol. Chem. 1992, 267, 4766–4772. [Google Scholar] [CrossRef]
- O’Neill, E.; Pozzi, C.; Houston, P.; Humphreys, H.; Robinson, D.A.; Loughman, A.; Foster, T.J.; O’Gara, J.P. A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J. Bacteriol. 2008, 190, 3835–3850. [Google Scholar] [CrossRef] [Green Version]
- Tung, H.-s.; Guss, B.; Hellman, U.; Persson, L.; Rubin, K.; Rydén, C. A bone sialoprotein-binding protein from Staphylococcus aureus: A member of the staphylococcal Sdr family. Biochem. J. 2000, 345, 611–619. [Google Scholar] [CrossRef]
- Caiazza, N.C.; O’Toole, G.A. Alpha-toxin is required for biofilm formation by Staphylococcus aureus. J. Bacteriol. 2003, 185, 3214–3217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abraham, N.M.; Jefferson, K.K. Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium. Microbiology 2012, 158, 1504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- du Preez, J.H. Bovine mastitis therapy and why it fails. J. S. Afr. Vet. Assoc. 2000, 71, 201–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cramton, S.E.; Gerke, C.; Schnell, N.F.; Nichols, W.W.; Götz, F. The intercellular adhesion (ica) locus is present in Staphylococcus aureus and is required for biofilm formation. Infect. Immun. 1999, 67, 5427–5433. [Google Scholar] [CrossRef] [Green Version]
- Mack, D.; Fischer, W.; Krokotsch, A.; Leopold, K.; Hartmann, R.; Egge, H.; Laufs, R. The intercellular adhesin involved in biofilm accumulation of Staphylococcus epidermidis is a linear beta-1,6-linked glucosaminoglycan: Purification and structural analysis. J. Bacteriol 1996, 178, 175–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shemesh, M.; Tam, A.; Steinberg, D. Differential gene expression profiling of Streptococcus mutans cultured under biofilm and planktonic conditions. Microbiology 2007, 153, 1307–1317. [Google Scholar] [CrossRef] [Green Version]
- Thurlow, L.R.; Hanke, M.L.; Fritz, T.; Angle, A.; Aldrich, A.; Williams, S.H.; Engebretsen, I.L.; Bayles, K.W.; Horswill, A.R.; Kielian, T. Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J. Immunol. 2011, 186, 6585–6596. [Google Scholar] [CrossRef] [Green Version]
- Gogoi-Tiwari, J.; Williams, V.; Waryah, C.B.; Eto, K.Y.; Tau, M.; Costantino, P.; Tiwari, H.K.; Mukkur, T. Comparative studies of the immunogenicity and protective potential of biofilm vs. planktonic Staphylococcus aureus vaccine against bovine mastitis using non-invasive mouse mastitis as a model system. Biofouling 2015, 31, 543–554. [Google Scholar] [CrossRef] [PubMed]
- Gogoi-Tiwari, J.; Williams, V.; Waryah, C.B.; Costantino, P.; Al-Salami, H.; Mathavan, S.; Wells, K.; Tiwari, H.K.; Hegde, N.; Isloor, S.; et al. Mammary Gland Pathology Subsequent to Acute Infection with Strong versus Weak Biofilm Forming Staphylococcus aureus Bovine Mastitis Isolates: A Pilot Study Using Non-Invasive Mouse Mastitis Model. PLoS ONE 2017, 12, e0170668. [Google Scholar] [CrossRef] [Green Version]
- Baselga, R.; Albizu, I.; De La Cruz, M.; Del Cacho, E.; Barberan, M.; Amorena, B. Phase variation of slime production in Staphylococcus aureus: Implications in colonization and virulence. Infect. Immun. 1993, 61, 4857–4862. [Google Scholar] [CrossRef] [Green Version]
- Breyne, K.; De Vliegher, S.; De Visscher, A.; Piepers, S.; Meyer, E. A pilot study using a mouse mastitis model to study differences between bovine associated coagulase-negative staphylococci. J. Dairy Sci. 2015, 98, 1090–1100. [Google Scholar] [CrossRef] [Green Version]
- Sifri, C.D.; Baresch-Bernal, A.; Calderwood, S.B.; von Eiff, C. Virulence of Staphylococcus aureus small colony variants in the Caenorhabditis elegans infection model. Infect. Immun. 2006, 74, 1091–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paape, M.J.; Bannerman, D.D.; Zhao, X.; Lee, J.W. The bovine neutrophil: Structure and function in blood and milk. Vet. Res. 2003, 34, 597–627. [Google Scholar]
- Brouillette, E.; Malouin, F. The pathogenesis and control of Staphylococcus aureus-induced mastitis: Study models in the mouse. Microbes Infect. 2005, 7, 560–568. [Google Scholar] [CrossRef]
- Notebaert, S.; Meyer, E. Mouse models to study the pathogenesis and control of bovine mastitis. A review. Vet. Q. 2006, 28, 2–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babra, C.; Tiwari, J.; Costantino, P.; Sunagar, R.; Isloor, S.; Hegde, N.; Mukkur, T. Human methicillin-sensitive Staphylococcus aureus biofilms: Potential associations with antibiotic resistance persistence and surface polysaccharide antigens. J. Basic Microbiol. 2014, 54, 721–728. [Google Scholar] [CrossRef]
- Gogoi-Tiwari, J.; Waryah, C.B.; Eto, K.Y.; Tau, M.; Wells, K.; Costantino, P.; Tiwari, H.K.; Isloor, S.; Hegde, N.; Mukkur, T. Relative distribution of virulence-associated factors among Australian bovine Staphylococcus aureus isolates: Potential relevance to development of an effective bovine mastitis vaccine. Virulence 2015, 6, 419–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, J.C.; Chandler, R.L. Experimental Staphylococcal mastitis in the mouse. Histological, ultrastructural and bacteriological changes caused by a virulent strain of Staphylococcus aureus. J. Comp. Pathol. 1975, 85, 499–510. [Google Scholar] [CrossRef]
- Brouillette, E.; Grondin, G.; Lefebvre, C.; Talbot, B.G.; Malouin, F. Mouse mastitis model of infection for antimicrobial compound efficacy studies against intracellular and extracellular forms of Staphylococcus aureus. Vet. Microbiol. 2004, 101, 253–262. [Google Scholar] [CrossRef]
- Bancroft, J.D.; Gamble, M. Theory and Practice of Histological Techniques; Elsevier: Beijing, China, 2008; pp. 121–134. [Google Scholar]
- Ollett, W.S. A method for staining both gram-positive and gram-negative bacteria in sections. J. Pathol. Bacteriol. 1947, 59, 357. [Google Scholar]
- Skipper, R.; Destephano, D. Diff quik stain set* 64851. J. Histotechnol. 1989, 4, 303. [Google Scholar] [CrossRef]
- Tuchscherr, L.; Löffler, B.; Buzzola, F.R.; Sordelli, D.O. Staphylococcus aureus adaptation to the host and persistence: Role of loss of capsular polysaccharide expression. Future Microbiol. 2010, 5, 1823–1832. [Google Scholar] [CrossRef]
- Fox, L.; Zadoks, R.; Gaskins, C. Biofilm production by Staphylococcus aureus associated with intramammary infection. Vet. Microbiol. 2005, 107, 295–299. [Google Scholar] [CrossRef] [PubMed]
- Melchior, M.; Vaarkamp, H.; Fink-Gremmels, J. Biofilms: A role in recurrent mastitis infections? Vet. J. 2006, 171, 398–407. [Google Scholar] [CrossRef]
- Hanke, M.L.; Angle, A.; Kielian, T. MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection. PLoS ONE 2012, 7, e42476. [Google Scholar] [CrossRef]
- Heim, C.E.; Vidlak, D.; Scherr, T.D.; Kozel, J.A.; Holzapfel, M.; Muirhead, D.E.; Kielian, T. Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J. Immunol. 2014, 192, 3778–3792. [Google Scholar] [CrossRef] [Green Version]
- Heim, C.E.; Vidlak, D.; Kielian, T. Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during Staphylococcus aureus orthopedic biofilm infection. J. Leukoc. Biol. 2015, 98, 1003–1013. [Google Scholar] [CrossRef] [Green Version]
- Heim, C.E.; Vidlak, D.; Scherr, T.D.; Hartman, C.W.; Garvin, K.L.; Kielian, T. IL-12 promotes myeloid-derived suppressor cell recruitment and bacterial persistence during Staphylococcus aureus orthopedic implant infection. J. Immunol. 2015, 194, 3861–3872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall-Stoodley, L.; Costerton, J.W.; Stoodley, P. Bacterial biofilms: From the natural environment to infectious diseases. Nat. Rev. Microbiol. 2004, 2, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Yao, L.; Bengualid, V.; Lowy, F.D.; Gibbons, J.J.; Hatcher, V.B.; Berman, J.W. Internalization of Staphylococcus aureus by endothelial cells induces cytokine gene expression. Infect. Immun. 1995, 63, 1835–1839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osterholm, M.T. Preparing for the next pandemic. N. Engl J. Med. 2005, 352, 1839–1842. [Google Scholar] [CrossRef] [Green Version]
- Fajgenbaum, D.C.; June, C.H. Cytokine Storm. N. Engl. J. Med. 2020, 383, 2255–2273. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Chang, C.-H.; Tsai, R.-K.; Hong, Y.-R.; Chuang, T.-H.; Fan, K.-T.; Peng, C.-W.; Wu, C.-Y.; Hsu, W.-L.; Wang, L.-S.; et al. Cross-Regulation of Proinflammatory Cytokines by Interleukin-10 and miR-155 in Orientia tsutsugamushi-Infected Human Macrophages Prevents Cytokine Storm. J. Investig. Dermatol. 2016, 136, 1398–1407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, F.; Saavedra, M.J.; Henriques, M. Bovine mastitis disease/pathogenicity: Evidence of the potential role of microbial biofilms. Pathog. Dis. 2016, 74, ftw006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grønnemose, R.B.; Saederup, K.L.; Kolmos, H.J.; Hansen, S.W.K.; Asferg, C.A.; Rasmussen, K.J.; Palarasah, Y.; Andersen, T.E. A novel in vitro model for haematogenous spreading of S. aureus device biofilms demonstrating clumping dispersal as an advantageous dissemination mechanism. Cell. Microbiol. 2017, 19, e12785. [Google Scholar] [CrossRef] [Green Version]
- Porcherie, A.; Cunha, P.; Trotereau, A.; Roussel, P.; Gilbert, F.B.; Rainard, P.; Germon, P. Repertoire of Escherichia coli agonists sensed by innate immunity receptors of the bovine udder and mammary epithelial cells. Vet. Res. 2012, 43, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Riollet, C.; Rainard, P.; Poutrel, B. Differential induction of complement fragment C5a and inflammatory cytokines during intramammary infections with Escherichia coli and Staphylococcus aureus. Clin. Diagn. Lab. Immunol. 2000, 7, 161–167. [Google Scholar] [CrossRef] [Green Version]
- Sakemi, Y.; Tamura, Y.; Hagiwara, K. Interleukin-6 in quarter milk as a further prediction marker for bovine subclinical mastitis. J. Dairy Res. 2011, 78, 118. [Google Scholar] [CrossRef]
Sl No | S. aureus Strain | Capsular Polysaccharide Type | Biofilm Formation (TCP */CRA ** Method) | Presence of ica Genes icaA icaD | spa Gene | bbp Gene | Presence of Alpha (hla) and Beta (hlb) Toxin Genes |
---|---|---|---|---|---|---|---|
1 | S. aureus 83 | Non-capsulated | Strong biofilm (OD *** 0.775) | +ve +ve | +ve | +ve | hla, hlb |
2 | S. aureus 87 | Non-capsulated | Weak biofilm (OD 0.367) | −ve −ve | −ve | −ve | hla, hlb |
Time Post Inoculation | S. aureus 83 | S. aureus 87 | Normal Saline (Control) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P*1 | P2 | P3 | P4 | P1 | P2 | P3 | P4 | P1 | P2 | P3 | P4 | |
6 h | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
12 h | + | + | + | + | + | + | + | + | 0 | 0 | 0 | 0 |
18 h | ++ | ++ | ++ | ++ | + | + | + | + | 0 | 0 | 0 | 0 |
24 h | ++/D | ++/D | ++/D | ++/D | ++ | ++ | ++ | + | 0 | 0 | 0 | 0 |
30 h | - | - | - | - | ++/D | ++/D | ++/D | ++/D | 0 | 0 | 0 | 0 |
Group | Total Number of Mammary Glands 1 Investigated | Log Average Number of Bacteria (CFU 3) Recovered from Mammary Glands ± SE | Histopathology Grade | |||
---|---|---|---|---|---|---|
M 41 | M2 | M3 | M4 | |||
S. aureus 83 | 4 | 8.23 ± 0.001 * | 1 | 1 | 1 | 1 |
S. aureus 87 | 4 | 7.91 ± 0.003 | 1 | 1 | 1 | 1 |
Control (NS 2) | 4 | 0 | 0 | 0 | 0 | 0 |
Group | S. aureus Phenotype | IL-1β Pg/mL ± SE | IL-6 Pg/mL ± SE | IL-10 Pg/mL ± SE | IL-12 Pg/mL ± SE | IL-17A Pg/mL ± SE | IFN-γ Pg/mL ± SE | TNF-α Pg/mL ± SE |
---|---|---|---|---|---|---|---|---|
1 | S. aureus 83 | 321.7 * ± 23 | 15479.9 * ± 532 | 66.8 * ± 0.96 | 3.0 * ± 0.42 | 28.6 * ± 1.79 | 59.5 * ± 1.78 | 163.3 ± 4.5 |
2 | S. aureus 87 | 27.7 ± 41 | 529 ± 109 | 12.86 ± 0.69 | 1.43 ± 0.35 | 18.20 ± 0.5 | 12.70 ± 1.50 | 174.9 ± 21 |
3 | Control (NS) | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gogoi-Tiwari, J.; Dorji, D.; Tiwari, H.K.; Shirolkar, G.; Aleri, J.W.; Mukkur, T. Phenotypic PIA-Dependent Biofilm Production by Clinical Non-Typeable Staphylococcus aureus Is Not Associated with the Intensity of Inflammation in Mammary Gland: A Pilot Study Using Mouse Mastitis Model. Animals 2021, 11, 3047. https://doi.org/10.3390/ani11113047
Gogoi-Tiwari J, Dorji D, Tiwari HK, Shirolkar G, Aleri JW, Mukkur T. Phenotypic PIA-Dependent Biofilm Production by Clinical Non-Typeable Staphylococcus aureus Is Not Associated with the Intensity of Inflammation in Mammary Gland: A Pilot Study Using Mouse Mastitis Model. Animals. 2021; 11(11):3047. https://doi.org/10.3390/ani11113047
Chicago/Turabian StyleGogoi-Tiwari, Jully, Dorji Dorji, Harish Kumar Tiwari, Gayatri Shirolkar, Joshua W. Aleri, and Trilochan Mukkur. 2021. "Phenotypic PIA-Dependent Biofilm Production by Clinical Non-Typeable Staphylococcus aureus Is Not Associated with the Intensity of Inflammation in Mammary Gland: A Pilot Study Using Mouse Mastitis Model" Animals 11, no. 11: 3047. https://doi.org/10.3390/ani11113047
APA StyleGogoi-Tiwari, J., Dorji, D., Tiwari, H. K., Shirolkar, G., Aleri, J. W., & Mukkur, T. (2021). Phenotypic PIA-Dependent Biofilm Production by Clinical Non-Typeable Staphylococcus aureus Is Not Associated with the Intensity of Inflammation in Mammary Gland: A Pilot Study Using Mouse Mastitis Model. Animals, 11(11), 3047. https://doi.org/10.3390/ani11113047