Changes in Proximate Chemical and Mineral Compositions of Different Sex Categories of Mutton during the Dry-Curing Process
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Production of Dalmatian Kaštradina
2.2. Sampling
2.3. Chemical Analyses
2.4. Statistical Analyses
3. Results and Discussion
3.1. Proximate Chemical Properties of Raw Mutton and Kaštradina
3.2. Macro- and Microelements of Raw Mutton and “Kaštradina”
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krvavica, M.; Friganović, E.; Đugum, J.; Kegalj, A. Dalmatinska kaštradina (koštradina). MESO Prvi Hrvat. Časopis o Mesu 2009, 5, 285–290. [Google Scholar]
- Krvavica, M.; Mioč, B.; Konjačić, M.; Friganović, E.; Ganić, A.; Kegalj, A. Weight loss in the processing of dry-cured mutton: Effect of age, gender and processing technology. Agric. Conspec. Sci. 2011, 76, 345–348. [Google Scholar]
- NG 69/05:2011. Rules on Establishing a Special Standard-Croatian Indigenous Cuisine. National Gazette, Official Gazette of the Republic of Croatia. 2011. Available online: https://narodne-novine.nn.hr/clanci/sluzbeni/2011_06_60_1332.html (accessed on 12 January 2021).
- Martins, J.M.; Fialho, R.; Albuquerque, A.; Neves, J.; Freitas, A.; Tirapicos Nunes, J.; Charneca, R. Portuguese Local Pig Breeds: Genotype Effects on Meat and Fat Quality Traits. Animals 2020, 10, 905. [Google Scholar] [CrossRef]
- Hopkins, D.L.; Mortimer, S.I. Effect of genotype and age on sheep meat quality and a case study illustrating integration of knowledge. Meat Sci. 2014, 98, 544–555. [Google Scholar] [CrossRef]
- Jin, S.; Pang, Q.; Yang, H.; Diao, X.; Shan, A.; Feng, X. Effects of dietary resveratrol supplementation on the chemical composition, oxidative stability and meat quality of ducks (Anas platyrhynchos). Food Chem. 2021, 363, 130263. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Wang, B.; Liu, C.; Su, R.; Hou, Y.; Yao, D.; Zhao, L.; Su, L.; Jin, Y. Meat quality, fatty acids, volatile compounds, and antioxidant properties of lambs fed pasture versus mixed diet. Food Sci. Nutr. 2019, 7, 2796–2805. [Google Scholar] [CrossRef] [Green Version]
- Okeudo, N.J.; Moss, B.W. Interrelationships amongst carcass and meat quality characteristics of sheep. Meat Sci. 2005, 69, 1–8. [Google Scholar] [CrossRef]
- Watkins, P.J.; Rose, G.; Salvatore, L.; Allen, D.; Tucman, D.; Warner, R.D.; Dunshea, F.R.; Pethich, D.W. Age and nutrition influence the concentrations of three branched chain fatty acids in sheep fat from Australian abattoirs. Meat Sci. 2010, 86, 594–599. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, L.C.; Muller, M.; Cloete, S.W.P.; Schmidt, D. Comparison of six crossbred lamb types: Sensory, physical and nutritional meat quality characteristics. Meat Sci. 2003, 65, 1265–1274. [Google Scholar] [CrossRef]
- Ponnampalam, E.N.; Hopkins, D.L.; Butler, K.L.; Dunshea, F.R.; Warner, R.D. Genotype and age effects on sheep meat production 2. Carcass quality traits. Aust. J. Exp. Agric. 2007, 47, 1147–1154. [Google Scholar] [CrossRef]
- Kaić, A.; Mioč, B.; Kasap, A.; Levart, A. Physicochemical properties of meat of Lika Pramenka lambs raised under semi-extensive production system: Effects of sex, slaughter weight and season. Vet. Arh. 2016, 86, 229–241. [Google Scholar]
- Nian, Y.; Allen, P.; Harrison, S.M.; Kerry, J.P. Effect of castration and carcass suspension method on the quality and fatty acid profile of beef from male dairy cattle. J. Sci. Food Agric. 2018, 98, 4339–4350. [Google Scholar] [CrossRef] [PubMed]
- Mioč, B.; Krvavica, M.; Vnučec, I.; Držaić, V.; Prpić, Z.; Kegalj, A. Klaonički pokazatelji i odlike trupova travničke pramenke. Stočarstvo 2011, 65, 179–188. [Google Scholar]
- Mioč, B.; Antunović, Z.; Širić, I.; Kasap, A.; Kaić, A.; Novoselec, J.; Klir Šalavardić, Ž.; Šubara, Š.; Držaić, V. Carcass and meat quality characteristics of Istrian sheep. In Proceedings of the 56th Croatian & 16th International Symposium on Agriculture, Vodice, Croatia, 5–10 September 2021; pp. 645–649. [Google Scholar]
- Field, R.A. Effect of Castration on Meat Quality and Quantity. J. Anim. Sci. 1971, 32, 849–858. [Google Scholar] [CrossRef] [PubMed]
- Habeeb, I.A. Effect of intratesticular injection of ethanol on testicular histology, testosterone level and some sperm characteristics in local rams. Basrah J. Vet. Res. 2015, 14, 231–239. [Google Scholar]
- Nishiyama, T. Serum testosterone levels after medical or surgical androgen deprivation: A comprehensive review of the literature. Urol. Oncol. 2014, 32, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Cafferky, J.; Hamill, R.M.; Allen, P.; O’Doherty, J.V.; Cromie, A.; Sweeney, T. Effect of Breed and Gender on Meat Quality of M. longissimus thoracis et lumborum Muscle from Crossbred Beef Bulls and Steers. Foods 2019, 8, 173. [Google Scholar] [CrossRef] [Green Version]
- Nagamine, I.; Sunagawa, K. Effects of the castration on the growth, meat production and odors in male goats. Anim. Behav. Manag. 2017, 53, 137–150. [Google Scholar] [CrossRef]
- Rogowski, B. Die Ernährungsphysiologische Bedeutung von Fleisch und Fett, Beiträgezur Chemie und Physic des Fleiches. Kulmb. Reihe 1981, 2, 38–56. [Google Scholar]
- Doyle, J.J. Genetic and nongenetic factors affecting the elemental composition of human and other animal tissues—A review. J. Anim. Sci. 1980, 50, 1173–1183. [Google Scholar] [CrossRef]
- Kučević, D.; Papović, T.; Tomović, V.; Plavšić, M.; Jajić, I.; Krstović, S.; Stanojević, D. Influence of Farm Management for Calves on Growth Performance and Meat Quality Traits Duration Fattening of Simmental Bulls and Heifers. Animals 2019, 11, 941. [Google Scholar] [CrossRef] [Green Version]
- Kasap, A.; Kaić, A.; Širić, I.; Antunović, Z.; Mioč, B. Proximate and mineral composition of M. longissimus thoracis et lumborum of suckling lambs from three Croatian indigenous breeds reared in outdoor conditions. Ital. J. Anim. Sci. 2017, 17, 274–278. [Google Scholar] [CrossRef] [Green Version]
- de Wardener, H.E.; MacGregor, G.A. Harmful effects of dietary salt in addition to hypertension. J. Hum. Hypertens. 2002, 16, 213–223. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prgomet, A. Prilog Poznavanja Proizvodnje I Svojstava Kaštradine U Dalmaciji. Master’s Thesis, Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia, 1970. [Google Scholar]
- Krvavica, M. Autohtoni suhomesnati proizvodi od ovčjeg i kozjeg mesa. In Proceedings of the Zbornik Radova 2. Hrvatski Kongres O Ruralnom Turizmu Koncepcija Dugoročnog Razvoja Ruralnog Turizma, Mali Lošinj, Croatia, 21–25 April 2010; pp. 387–393. [Google Scholar]
- Association of Official Analytical Chemists [AOAC]. Official Methods of Analysis of AOAC International, 17th ed.; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- SAS Institute Inc. SAS®9.4 Statements: Reference; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Mostert, R.; Hoffman, L.C. Effect of gender on the meat quality characteristics and chemical composition of kudu (Tragelaphus strepsiceros), an African antelope species. Food Chem. 2007, 104, 565–570. [Google Scholar] [CrossRef]
- Tejeda, J.F.; Peña, R.E.; Andrés, A.I. Effect of live weight and sex on physico-chemical and sensorial characteristics of Merino lamb meat. Meat Sci. 2008, 80, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Vnučec, I.; Držaić, V.; Mioč, B.; Prpić, Z.; Antunović, Z.; Kegalj, A. Effect of sex on meat chemical composition and fatty acid composition in suckling Pag sheep lambs. Vet. Arh. 2016, 86, 217–227. [Google Scholar]
- Okeudo, N.J.; Moss, B.W. Intramuscular lipid and fatty acid profile of sheep comprising four sex-types and seven slaughter weights produced following commercial procedure. Meat Sci. 2007, 76, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Alonso, V.; Campo Mdel, M.; Español, S.; Roncalés, P.; Beltrán, J.A. Effect of crossbreeding and gender on meat quality and fatty acid composition in pork. Meat Sci. 2009, 81, 209–217. [Google Scholar] [CrossRef]
- Latorre, M.A.; Lázaro, R.; Garciá, M.I.; Nieto, M.; Mateos, G.G. Effect of sex and terminal sire genotype on performance, carcass characteristics, and meat quality of pigs slaughtered at 117 kg body weight. Meat Sci. 2003, 65, 1369–1377. [Google Scholar] [CrossRef]
- Barton Gade, P.A. Meat and fat quality of boars, castrates and gilts. Livest. Prod. Sci. 1987, 16, 187–196. [Google Scholar] [CrossRef]
- Unruh, J.A. Effects of endogenous and exogenous growth-promoting compounds on carcass composition, meat quality and meat nutritional value. J. Anim. Sci. 1986, 62, 1441–1448. [Google Scholar] [CrossRef]
- Ahn, J.-S.; Kwon, E.-G.; Lee, H.-J.; Lee, E.-M.; Hwang, S.-M.; Cho, S.-R.; Kim, K.-W.; Kim, U.-H.; Won, J.-I.; Jin, S.; et al. Effect of Hemi-Castration on the Productivity, Histological Characteristics, and Economic Efficacy of Korean Beef Cattle. Animals 2021, 11, 2490. [Google Scholar] [CrossRef]
- Schanbacher, B.D. Manipulation of endogenous and exogenous hormones for red meat production. J. Anim. Sci. 1984, 59, 1621–1630. [Google Scholar] [CrossRef] [Green Version]
- Dumić, S. Važnija Svojstva Kvaliteta Sjeničke Stelje Kao Osnova Za Zaštitu Oznake Porekla. Master’s Thesis, Faculty of Agriculture, University of Belgrade, Beograd, Serbia, 2008. [Google Scholar]
- Wellington, G.H.; Hogue, D.E.; Foote, R.H. Growth, carcass characteristics and androgen concentrations of gonad-altered ram lambs. Small Rumin. Res. 2003, 48, 51–59. [Google Scholar] [CrossRef]
- Madruga, M.S.; Narain, N.; Souza, J.G.; Costa, R.G. Castration and slaughter age effects on fat components of “Mestiço” goat meat. Small Rumin. Res. 2001, 42, 75–80. [Google Scholar] [CrossRef]
- Okeudo, N.J.; Moss, B.W. Production performance and meat quality characteristics of sheep comprising four sex-types over a range of slaughter weights produced following commercial practice. Meat Sci. 2008, 80, 522–528. [Google Scholar] [CrossRef] [PubMed]
- Ganić, A.; Smajić, A.; Bijeljac, S.; Brdarić, N.; Zahirović, L.; Jesenković, L.; Operta, S.; Omanović, H. Komparacija osnovnih kvalitativnih parametara ovčje stelje proizvedene u industrijskim uslovima i zanatskoj proizvodnji. In Proceedings of the 20th Scientific-Professional Conference of Agriculture and Food Industry, Neum, Bosnia and Hercegovina, 30 September–3 October 2009; pp. 117–123. [Google Scholar]
- Krvavica, M.; Lasić, D.; Kljusurić, J.G.; Đugum, J.; Janović, Š.; Milovac, S.; Bošnir, J. Chemical Characteristics of Croatian Traditional Istarski pršut (PDO) Produced from Two Different Pig Genotypes. Molecules 2021, 26, 4140. [Google Scholar] [CrossRef] [PubMed]
- Čaušević, Z.; Milanović, A.; Glogovac, Ž.; Lelek, M.; Rahim, A.A. Tehnologija proizvodnje ovčje stelje i pastrme sa naglašenim utjecajem salamurenja na njihov kvalitet. Rad. Poljopr. Fak. Univ. U Sarajev. 1984, 36, 127–139. [Google Scholar]
- Rede, R.; Petrović, L.J. Tehnologija Mesa I Nauka O Mesu, 1st ed.; Faculty of Technology, University of Novi Sad: Novi Sad, Serbia, 1997; p. 399. [Google Scholar]
- Osorio, M.T.; Zumalacárregui, J.M.; Bermejo, B.; Lozano, A.; Figueira, A.C.; Mateo, J. Effect of ewe‘s milk versus milk-replacer rearing on mineral composition of succling lamb meat and liver. Small Rumin. Res. 2007, 68, 296–302. [Google Scholar] [CrossRef]
- Miguélez, E.; Zumalacárregui, J.M.; Osorio, M.T.; Beteta, O.; Mateo, J. Carcass characteristics of suckling lambs protected by the PGI “Lechazo de Castilla y Leon” European quality label: Effect of breed, sex and carcass weight. Meat Sci. 2006, 73, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Mioč, B.; Vnučec, I.; Prpić, Z.; Pavić, V.; Antunović, Z.; Barać, Z. Effect of breed on mineral composition of meat from light lambs. Ital. J. Anim. Sci. 2009, 8, 273–275. [Google Scholar] [CrossRef] [Green Version]
- Reykdal, O.; Rabieh, S.; Steingrimsdottir, L.; Gunnlaugsdottir, H. Minerals and trace elements in Icelandic dairy products and meat. J. Food Compos. Anal. 2011, 24, 980–986. [Google Scholar] [CrossRef]
- Studzinski, T.; Valkuska, G.; Saddour, A. Content of lead, cadmium, copper and zinc in the liver, kidneys, skeletal muscle and brain of lamb and adult sheep. Bromatol. Chem. Toksykol. 1992, 25, 355–360. [Google Scholar]
- Viljoen, M.; Hoffman, L.C.; Brand, T.S. Prediction of the chemical composition of Mutton with near infrared reflectance spectroscopy. Small Rumin. Res. 2007, 69, 88–94. [Google Scholar] [CrossRef] [Green Version]
- Rekanović, S.; Grujić, R.; Vučić, G.; Hodžić, E. Mineral composition of traditional sheep meat products in dependence on the thermal treatment. J. Hyg. Eng. Des. 2019, 29, 92–98. [Google Scholar]
- Sejersted, O.M.; Sjøgaar, G. Dynamics and Consequences of Potassium Shifts in Skeletal Muscle and Heart during Exercise. Physiol. Rev. 2000, 80, 1411–1481. [Google Scholar] [CrossRef]
- Demirtaş, B.; Parkan, C.; Atmaca, M. Exercise-Induced Physiological Fatigue in Horses: Review. Turk. Klin. J. Vet. Sci. 2015, 6, 60–66. [Google Scholar] [CrossRef]
- Jones, R.D.; Pugh, P.J.; Jones, T.H.; Channer, K.S. The vasodilatory action of testosterone: A potassium-channel opening or a calcium antagonistic action? Br. J. Pharmacol. 2003, 138, 733–744. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanni, A.A.; Arowolo, R.O.A.; Olayemi, F.O. Preliminary study on the effect of castration and testosterone replacement on testosterone level in the New Zealand male rabbit. Afr. J. Biotechnol. 2012, 11, 10146–10148. [Google Scholar] [CrossRef]
- Hoffman, L.C.; Kritzinger, B.; Ferreira, A.V. The effects of region and gender on the fatty acid, amino acid, mineral, myoglobin and collagen contents of impala (Aepyceros melampus) meat. Meat Sci. 2005, 69, 551–558. [Google Scholar] [CrossRef]
- Sun, S.; Guo, B.; Wei, Y.; Fan, M. Multi-element analysis for determining the geographical origin of mutton from different regions of China. Food Chem. 2011, 124, 1151–1156. [Google Scholar] [CrossRef]
- Tizioto, P.C.; Gromboni, C.F.; Nogueira, A.R.D.A.; de Souza, M.M.; Mudadu, M.D.A.; Tholon, P.; Rosa, A.D.N.; Tullio, R.R.; Medeiros, S.R.; Nassu, R.T.; et al. Calcium and potassium content in beef: Influences on tenderness and associations with molecular markers in Nellore cattle. Meat Sci. 2014, 96, 436–440. [Google Scholar] [CrossRef] [PubMed]
Category | Parameters, % | ||||||||
---|---|---|---|---|---|---|---|---|---|
Water | DM | Proteins | Fat | Ash | NaCl | P/DM | F/DM | A/DM | |
1st day of processing | |||||||||
Ewes | 74.28 | 25.72 | 20.44 a | 5.08 a | 1.06 a | - | 79.47 a | 19.75 a | 4.12 a |
Wethers | 74.42 | 25.58 | 17.86 b | 7.30 b | 0.83 b | - | 70.14 b | 28.22 b | 3.26 b |
Rams | 75.73 | 24.27 | 20.64 a | 2.40 c | 1.09 a | - | 85.20 c | 9.70 c | 4.50 a |
SE | 0.46 | 0.46 | 0.46 | 0.69 | 0.04 | - | 2.38 | 2.56 | 0.15 |
P | 0.596 | 0.284 | 0.007 | 0.038 | <0.001 | - | 0.044 | 0.009 | 0.029 |
35th day of processing | |||||||||
Ewes | 48.52 | 51.48 | 33.28 a | 10.44 a | 8.16 a | 5.48 a | 64.65 a | 20.28 a | 15.88 a |
Wethers | 48.89 | 51.51 | 27.57 b | 17.31 b | 4.85 b | 3.70 b | 53.64 b | 33.71 b | 9.50 b |
Rams | 49.46 | 50.54 | 35.25 a | 7.79 c | 6.73 c | 4.99 a | 69.77 c | 15.38 c | 13.32 c |
SE | 0.84 | 0.91 | 0.79 | 0.79 | 0.34 | 0.31 | 1.23 | 1.52 | 0.70 |
P | 0.832 | 0.407 | <0.001 | 0.021 | 0.042 | 0.039 | 0.025 | 0.019 | 0.045 |
60th day of processing | |||||||||
Ewes | 38.27 a | 61.73 a | 37.87 a | 15.63 a | 8.25 a | 5.89 a | 61.35 a | 25.32 a | 13.37 a |
Wethers | 37.68 a | 62.32 a | 31.38 b | 23.48 b | 7.68 a | 4.37 b | 50.42 b | 37.56 b | 12.37 a |
Rams | 39.13 b | 60.87 b | 41.94 a | 9.25 c | 9.07 b | 6.49 a | 68.89 c | 15.21 c | 14.91 b |
SE | 0.54 | 0.54 | 1.22 | 1.35 | 0.22 | 0.29 | 1.96 | 2.05 | 0.40 |
P | 0.028 | 0.041 | 0.003 | 0.008 | 0.048 | 0.003 | 0.037 | 0.006 | 0.025 |
Day of processing | |||||||||
1st day | 74.81 a | 25.19 a | 19.82 a | 5.41 a | 0.99 a | - | 79.05 a | 17.12 a | 3.96 a |
35th day | 48.96 b | 51.18 b | 33.53 b | 10.18 b | 6.58 b | 4.73 | 65.59 b | 19.89 a | 12.90 b |
60th day | 38.36 c | 61.64 c | 37.06 c | 16.12 c | 8.33 c | 5.58 | 60.22 b | 26.03 b | 13.55 b |
SE | 0.37 | 0.39 | 0.83 | 1.02 | 0.20 | 0.23 | 1.77 | 2.05 | 0.41 |
P | <0.001 | <0.001 | 0.005 | <0.001 | <0.001 | 0.003 | <0.001 | 0.007 | <0.001 |
Variables | Ca | P | Mg | K | Na | Mn | Cu | Zn | Fe | Water | DM | Protein | Fat | Ash | NaCl | P/DM | F/DM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
P | 0.71 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
Mg | 0.76 | 0.97 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - | - |
K | 0.59 | 0.96 | 0.93 | 1 | - | - | - | - | - | - | - | - | - | - | - | - | - |
Na | 0.84 | 0.75 | 0.81 | 0.69 | 1 | - | - | - | - | - | - | - | - | - | - | - | - |
Mn | 0.80 | 0.77 | 0.82 | 0.72 | 0.81 | 1 | - | - | - | - | - | - | - | - | - | - | - |
Cu | 0.63 | 0.65 | 0.65 | 0.53 | 0.52 | 0.61 | 1 | - | - | - | - | - | - | - | - | - | - |
Zn | 0.78 | 0.90 | 0.93 | 0.83 | 0.80 | 0.80 | 0.71 | 1 | - | - | - | - | - | - | - | - | - |
Fe | 0.73 | 0.70 | 0.69 | 0.62 | 0.64 | 0.82 | 0.56 | 0.69 | 1 | - | - | - | - | - | - | - | - |
Water | −0.78 | −0.62 | −0.70 | −0.52 | −0.80 | −0.68 | −0.65 | −0.81 | −0.53 | 1 | - | - | - | - | - | - | - |
DM | 0.78 | 0.62 | 0.70 | 0.52 | 0.80 | 0.68 | 0.65 | 0.81 | 0.53 | −1.00 | 1 | - | - | - | - | - | - |
Protein | 0.75 | 0.82 | 0.83 | 0.76 | 0.80 | 0.76 | 0.62 | 0.84 | 0.65 | −0.79 | 0.79 | 1 | - | - | - | - | - |
Fat | 0.30 | −0.03 | 0.08 | −0.13 | 0.28 | 0.14 | 0.28 | 0.27 | 0.04 | −0.63 | 0.63 | 0.02 | 1 | - | - | - | - |
Ash | 0.81 | 0.75 | 0.81 | 0.68 | 0.87 | 0.78 | 0.65 | 0.86 | 0.61 | −0.91 | 0.91 | 0.91 | 0.30 | 1 | - | - | - |
NaCl | 0.83 | 0.79 | 0.83 | 0.72 | 0.94 | 0.80 | 0.59 | 0.85 | 0.63 | −0.88 | 0.88 | 0.88 | 0.30 | 0.94 | 1 | - | - |
P/DM | 0.06 | −0.25 | −0.15 | −0.31 | 0.06 | −0.06 | 0.04 | 0.01 | −0.17 | −0.38 | 0.38 | −0.25 | 0.94 | 0.04 | 0.06 | 1 | - |
F/DM | 0.77 | 0.61 | 0.71 | 0.54 | 0.84 | 0.70 | 0.59 | 0.78 | 0.51 | −0.93 | 0.93 | 0.74 | 0.53 | 0.95 | 0.89 | 0.30 | 1 |
A/DM | 0.79 | 0.67 | 0.74 | 0.59 | 0.92 | 0.73 | 0.52 | 0.78 | 0.54 | −0.90 | 0.90 | 0.75 | 0.49 | 0.89 | 0.96 | 0.29 | 0.93 |
Category | Macro- and Microelements, mg/kg Sample | ||||||||
---|---|---|---|---|---|---|---|---|---|
Ca | P | Mg | K | Na | Mn | Cu | Zn | Fe | |
1st day of processing | |||||||||
Ewes | 42.62 | 1866.70 | 198.23 | 3211.60 a | 859.90 ab | 0.0781 | 0.81 | 30.61 a | 30.79 a |
Wethers | 34.10 | 1743.70 | 189.38 | 3028.20 a | 785.90 b | 0.0621 | 0.75 | 21.87 b | 24.70 b |
Rams | 37.85 | 1930.70 | 208.88 | 3571.70 b | 891.60 a | 0.0750 | 0.90 | 28.17 ab | 26.17 ab |
SE | 3.84 | 67.98 | 7.28 | 79.96 | 31.91 | 0.0051 | 0.07 | 2.41 | 1.83 |
P | 0.395 | 0.098 | 0.486 | 0.006 | 0.049 | 0.912 | 0.394 | 0.031 | 0.049 |
35th day of processing | |||||||||
Ewes | 107.62 a | 2551.30 ab | 282.45 ab | 4245.80 a | 20,339.20 a | 0.1840 a | 1.10 a | 56.12 ab | 46.66 a |
Wethers | 65.84 b | 2114.30 a | 238.39 a | 3619.90 a | 13,594.50 b | 0.1119 b | 0.93 b | 50.62 b | 29.17 b |
Rams | 79.66 b | 2985.20 b | 323.67 b | 5227.00 b | 21,157.20 a | 0.1516 ab | 1.03 ab | 66.06 a | 41.47 a |
SE | 7.01 | 134.60 | 12.94 | 251.88 | 1663.84 | 0.0142 | 0.05 | 3.64 | 3.48 |
P | 0.043 | <0.001 | <0.001 | 0.034 | 0.017 | 0.029 | 0.048 | 0.019 | 0.027 |
60th day of processing | |||||||||
Ewes | 134.41 a | 3009.90 a | 327.48 a | 4774.80 a | 22,232.10 a | 0.1996 a | 1.52 | 76.34 a | 62.43 a |
Wethers | 99.02 b | 2408.10 b | 288.61 b | 3796.70 b | 15,173.50 b | 0.1353 b | 1.29 | 72.60 a | 35.17 b |
Rams | 103.33 b | 3614.10 c | 385.24 c | 6290.60 c | 20,725.80 ab | 0.1857 a | 1.36 | 92.99 b | 42.40 b |
SE | 7.17 | 104.66 | 10.11 | 45.60 | 1863.26 | 0.0128 | 0.08 | 3.37 | 3.15 |
P | 0.038 | 0.009 | 0.047 | <0.001 | 0.016 | 0.028 | 0.472 | 0.004 | <0.001 |
Day of processing | |||||||||
1st day | 38.19 a | 1847.03 a | 198.83 a | 3270.50 a | 845.80 a | 0.0717 a | 0.82 a | 26.88 a | 27.22 a |
35th day | 84.37 b | 2550.27 b | 281.50 b | 4364.23 b | 18,363.63 b | 0.1492 b | 1.02 b | 57.60 b | 39.10 b |
60th day | 112.25 c | 3010.70 c | 333.78 c | 4954.03 c | 19,377.13 b | 0.1735 b | 1.39 c | 80.64 c | 46.67 c |
SE | 4.29 | 88.28 | 8.13 | 164.72 | 939.98 | 0.0077 | 0.04 | 2.16 | 2.20 |
P | <0.001 | 0.004 | <0.001 | 0.034 | <0.001 | <0.001 | 0.002 | <0.001 | 0.041 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krvavica, M.; Đugum, J.; Topalović, M.D.; Kegalj, A.; Ljubičić, I.; Konjačić, M. Changes in Proximate Chemical and Mineral Compositions of Different Sex Categories of Mutton during the Dry-Curing Process. Animals 2021, 11, 3019. https://doi.org/10.3390/ani11113019
Krvavica M, Đugum J, Topalović MD, Kegalj A, Ljubičić I, Konjačić M. Changes in Proximate Chemical and Mineral Compositions of Different Sex Categories of Mutton during the Dry-Curing Process. Animals. 2021; 11(11):3019. https://doi.org/10.3390/ani11113019
Chicago/Turabian StyleKrvavica, Marina, Jelena Đugum, Marijana Drinovac Topalović, Andrijana Kegalj, Iva Ljubičić, and Miljenko Konjačić. 2021. "Changes in Proximate Chemical and Mineral Compositions of Different Sex Categories of Mutton during the Dry-Curing Process" Animals 11, no. 11: 3019. https://doi.org/10.3390/ani11113019
APA StyleKrvavica, M., Đugum, J., Topalović, M. D., Kegalj, A., Ljubičić, I., & Konjačić, M. (2021). Changes in Proximate Chemical and Mineral Compositions of Different Sex Categories of Mutton during the Dry-Curing Process. Animals, 11(11), 3019. https://doi.org/10.3390/ani11113019