Maternal and Neonatal Evaluation of Derived Reactive Oxygen Metabolites and Biological Antioxidant Potential in Donkey Mares and Foals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sanchez-Rodriguez, M.A.; Mendoza-Nunez, V.M. Oxidative stress indexes for diagnosis of health or disease in humans. Oxid. Med. Cell. Longev. 2019, 2019, 4128152. [Google Scholar] [CrossRef]
- Wu, F.; Tian, F.J.; Lin, Y.; Xu, W.M. Oxidative stress: Placenta function and dysfunction. Am. J. Reprod. Immunol. 2016, 76, 258–271. [Google Scholar] [CrossRef]
- Trachootham, D.; Alexandre, J.; Huang, P. Targeting cancer cells by ROS-mediated mechanisms: A radical therapeutic approach? Nat. Rev. Drug Discov. 2009, 8, 579–591. [Google Scholar] [CrossRef]
- Agarwal, A.; Gupta, S.; Sharma, R.K. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2005, 3, 28. [Google Scholar] [CrossRef] [Green Version]
- Wu, F.; Tian, F.; Lin, Y. Oxidative stress in placenta: Health and disease. BioMed Res. Intern. 2015, 293271. [Google Scholar] [CrossRef] [Green Version]
- Schoots, M.H.; Gordijn, S.J.; Scherjon, S.A.; Van Goor, H. Oxidative stress in placental pathology. Placenta 2018, 69, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Perrone, S.; Tataranno, M.L.; Negro, S.; Cornacchione, S.; Longini, M.; Proietti, F.; Soubasi, V.; Benders, M.J.; Van Bel, F.; Buonocore, G. May oxidative stress biomarkers in cords blood predict the occurrence of necrotizing enterocolitis in preterm infant? J. Matern. Fetal Neonatal Med. 2012, 25, 128–131. [Google Scholar] [CrossRef]
- Sciorsci, R.L.; Mutinati, M.; Piccinno, M.; Lillo, E.; Rizzo, A. Oxidative status along different stages of pregnancy in dairy cows. Large Anim. Rev. 2020, 26, 223–228. [Google Scholar]
- Lista, G.; Castoldi, F.; Compagnoni, G.; Maggioni, C.; Cornelissen, G.; Halberg, F. Neonatal and maternal concentrations of hydroxil radical and total antioxidant system: Protective role of placenta against fetal oxidative stress. Neuroendocrinol. Lett. 2010, 31, 319–324. [Google Scholar]
- Mutlu, B.; Aksoy, N.; Cakir, H.; Celik, H.; Erel, O. The effects of the mode of delivery on oxidative-antioxidative balance. J Matern. Fetal Neonatal Med. 2011, 24, 1367–1370. [Google Scholar] [CrossRef] [PubMed]
- Perrone, S.; Tataranno, M.L.; Negro, S.; Longini, M.; Toti, M.S.; Alagna, M.G.; Proietti, F.; Bazzini, F.; Toti, P.; Bonocore, G. Placental histological examination and the relationship with oxidative stress in preterm infants. Placenta 2016, 46, 72–78. [Google Scholar] [CrossRef] [PubMed]
- Qanungo, S.; Sen, A.; Mukherjea, M. Antioxidant status and lipid peroxidation in human feto-placental unit. Clin. Chim. Acta 1999, 285, 1–12. [Google Scholar] [CrossRef]
- Aljunaidy, M.M.; Morton, J.S.; Cooke, C.-L.M.; Davidge, S.T. Prenatal hypoxia and placental oxidative stress: Linkages to developmental origins of cardiovascular disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2017, 313, R395–R399. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Hernandez, J.; Bravo, A.; Alonso, M.L.; Pereira, V.; Benedino, J.L. Oxidative status during late pregnancy and early lactation in dairy cows. Vet. J. 2005, 169, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Castillo, C.; Hernandez, J.; Pereira, V.; Sotillo, J.; Alonso, M.L.; Benedino, J.L. Plasma malondialdehyde (MDA) and total antioxidant status (TAS) during lactation in dairy cows. Res. Vet. Sci. 2006, 80, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Gaal, T.; Ribiczeyne-Szabo, P.; Stadler, K.; Jakus, J.; Reiczigel, J.; Kover, P.; Mezes, M.; Sumeghy, L. Free radicals, lipid peroxidation and the antioxidant system in the blood of cows and newborn calves around calving. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2006, 143, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, A.; Ceci, E.; Pantaleo, M.; Mutinati, M.; Spedicato, M.; Minoia, G.; Sciorsci, R.L. Evaluation of blood and milk oxidative status during early post-partum of dairy cows. Animal 2013, 7, 118–123. [Google Scholar] [CrossRef] [Green Version]
- Invernizzi, G.; Koutsouli, P.; Savoini, G.; Mariani, E.; Rebucci, R.; Baldi, A.; Politis, I. Oxidative indices as metabolic stress predictors in periparturient dairy cows. Ital. J. Anim. Sci. 2019, 18, 1356–1360. [Google Scholar] [CrossRef]
- Abuelo, A.; Hernandex, J.; Benedito, J.L.; Castillo, C. Redox biology in transition periods of dairy cattle: Role in the health of periparturient and neonatal animals. Antioxidants 2019, 8, 20. [Google Scholar] [CrossRef] [Green Version]
- Gabai, G.; Testoni, S.; Piccinini, R.; Marinelli, L.; Howard, C.M.; Stradaioli, G. Oxidative stress in primiparous cows in relation to dietary starch and the progress of lactation. Anim. Sci. 2004, 79, 99–108. [Google Scholar] [CrossRef]
- Albera, E.; Kankofer, M. The comparison of antioxidative/oxidative profile in blood, colostrum and milk of early post-partum cows and their newborns. Reprod. Domest. Anim. 2011, 46, 763–769. [Google Scholar] [CrossRef]
- Rizzo, A.; Mutinati, M.; Spedicato, M.; Minoia, G.; Trisolini, C.; Jirillo, F.; Sciorsci, R.L. First demonstration of an increased serum level of reactive oxygen species during the peripartal period in the ewes. Immunopharmacol. Immunotoxicol. 2008, 30, 741–746. [Google Scholar] [CrossRef]
- Mutinati, M.; Piccinno, M.; Roncetti, M.; Campanile, D.; Rizzo, A.; Sciorsci, R. Oxidative stress during pregnancy in the sheep. Reprod. Domest. Anim. 2013, 48, 353–357. [Google Scholar] [CrossRef]
- Celi, P. The role of oxidative stress in small ruminants’ health and production. Rev. Bras. Zootec. 2010, 39, 348–363. [Google Scholar] [CrossRef] [Green Version]
- Sgorbini, M.; Bonelli, F.; Rota, A.; Marmorini, P.; Biagi, G.; Corazza, M.; Pasquini, A. Maternal and neonatal evaluation of derivated reactive oxygen metabolites (d-ROMs) and biological antioxidant potential in the horse. Theriogenology 2015, 83, 48–51. [Google Scholar] [CrossRef] [PubMed]
- Tsubone, H.; Hanafusa, M.; Endo, M.; Manabe, N.; Hiraga, A.; Ohmura, H.; Aida, H. Effect of treadmill exercise and hydrogen-rich water intake on serum oxidative and anti-oxidative metabolites in serum of Thoroughbred horses. J. Equine Sci. 2013, 24, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shono, S.; Gin, A.; Minowa, F.; Okubo, K.; Mochizuki, M. The oxidative stress markers of horses-the comparison with other animals and the influence of exercise and disease. Animals 2020, 10, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bottegaro, N.B.; Gotic, J.; Šuran, J.; Brozic, D.; Klobucar, K.; Bojanic, K.; Vrbanac, Z. Effect of prolonged submaximal exercise on serum oxidative stress biomarkers (d-ROMs, MDA, BAP) and oxidative stress index in endurance horses. BMC Vet. Res. 2018, 14, 216. [Google Scholar] [CrossRef] [Green Version]
- Tsuzuki, N.; Sasaki, N.; Kusano, K.; Endo, Y.; Torisu, S. Oxidative stress markers in Thoroughbred horses after castration surgery under inhalation anesthesia. J. Equine Sci. 2016, 27, 77–79. [Google Scholar] [CrossRef]
- Martuzzi, F.; Bresciani, C.; Simoni, M.; Basini, G.; Quarantelli, A.; Righi, F. Evaluation of the oxidative status of periparturient mares supplemented with high amount of alfa-tocopherol. Ital. J. Anim. Sci. 2019, 18, 1404–1409. [Google Scholar] [CrossRef]
- Crowley, J.; Po, E.; Celi, P.; Muscatello, G. Systemic and respiratory oxidative stress in the pathogenesis and diagnosis of Rhodococcus equi pneumonia. Equine Vet. J. 2013, 45, 20–25. [Google Scholar] [CrossRef]
- Falomo, M.E.; Del Re, B.; Rossi, M.; Giaretta, E.; Da Dalt, L.; Gabai, G. Relationship between postpartum uterine involution and biomarkers of inflammation and oxidative stress in clinically healthy mares (Equus caballus). Heliyon 2020, 6, e03691. [Google Scholar] [CrossRef]
- De Souza, D.F.; Alonso, M.A.; Brito, M.M.; Meirelles, M.G.; Francischini, M.C.P.; Nichi, M.; Fernandes, C.B. Oxidative state in equine neonates: Anti- and pro-oxidants. Equine Vet. J. 2021, 53, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Kojouri, G.A.; Sharifi, S. Preventing effect of nano-selenium particles on serum concentration of blood urea nitrogen, creatinine, and total protein during intense exercise in donkey. J. Equine Vet. Sci. 2013, 33, 597–600. [Google Scholar] [CrossRef]
- Elmeligy, E.; Abdelbaset, A.; Elsayed, H.K.; Bayomi, S.A.; Hafez, A.; Abu-Seida, A.M.; El-Khabaz, K.A.S.; Hassan, D.; Ghandour, R.A.; Khalphallah, A. Oxidative stress in Strongylus spp. infected donkeys treated with piperazine citrate versus doramectin. Open Vet. J. 2021, 11, 238–250. [Google Scholar] [CrossRef]
- D’Alessandro, A.G.; Casamassima, D.; Jirillo, F.; Martemucci, G. Effects of verbascoside administration on the blood parameters and oxidative status in jennies and their suckling foals: Potential improvement of milk for human use. Endocr. Metab. Immune Disord. Drug Targets 2014, 14, 102–112. [Google Scholar] [CrossRef]
- Crisci, A.; Rota, A.; Panzani, D.; Sgorbini, M.; Ousey, J.C.; Camillo, F. Clinical, ultrasonographic, and endocrinological studies on donkey pregnancy. Theriogenology 2014, 81, 275–283. [Google Scholar] [CrossRef]
- Carluccio, A.; De Amicis, I.; Panzani, S.; Tosi, U.; Faustini, M.; Veronesi, M.C. Electrolytes changes in mammary secretions before foaling in jennies. Reprod. Domest. Anim. 2008, 43, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Bonelli, F.; Nocera, I.; Conte, G.; Panzani, D.; Sgorbini, M. Relation between Apgar scoring and physical parameters in 44 newborn Amiata donkey foals at birth. Theriogenology 2020, 42, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Celi, P.; Sullivan, M.; Evans, D. The stability of the reactive oxygen metabolites (d-ROMs) and biological antioxidant potential (BAP) tests on stored horse blood. Vet. J. 2010, 183, 217–218. [Google Scholar] [CrossRef]
- Jansen, E.H.J.M.; Beekhof, P.K.; Viezeliene, D.; Muzakova, V.; Skalicky, J. Long-term stability of oxidative stress biomarkers in human serum. Free Radic. Res. 2017, 51, 970–977. [Google Scholar] [CrossRef]
- Kirschvink, N.; Moffarts, B.; Lekeux, P. The oxidant/antioxidant equilibrium in horses. Vet. J. 2008, 2, 178–191. [Google Scholar] [CrossRef]
- Rogers, M.S.; Mongelli, M.; Tsang, K.H.; Wang, C.C. Fetal and maternal levels of lipid peroxides in term pregnancies. Acta Obs. Gynecol. Scand. 1999, 78, 120–124. [Google Scholar]
- Walsh, S.W.; Wang, Y. Secretion of lipid peroxides by human placenta. Am. J. Obs. Gynecol. 1993, 169, 1462–1466. [Google Scholar] [CrossRef]
- Walsh, S.W.; Wang, Y.; Jesse, R. Placental reproduction of lipid peroxides, thromboxane and prostacyclin in pre-eclampsia. Hipertens Pregnancy 1996, 15, 101–111. [Google Scholar] [CrossRef]
- Pirrone, A.; Mariella, J.; Gentilini, F.; Castagnetti, C. Amniotic fluid and blood lactate concentrations in mares and foals in the early postpartum period. Theriogenology 2012, 78, 1182–1189. [Google Scholar] [CrossRef] [PubMed]
- Arguelles, S.; Machado, M.J.; Ayala, A.; Machado, A.; Hervias, B. Correlation between circulating biomarkers of oxidative stress of maternal and umbilical cord blood at birth. Free Radic. Res. 2006, 40, 565–570. [Google Scholar] [CrossRef] [PubMed]
- Paamoni-Keren, O.; Silberstein, T.; Burg, A.; Raz, I.; Mazor, M.; Saphier, O.; Weintraub, A.Y. Oxidative stress as determined by glutathione (GSH) concentrations in venous cord blood in elective cesarean delivery versus uncomplicated vaginal delivery. Arch. Gynecol. Obs. 2007, 276, 43–46. [Google Scholar] [CrossRef]
- Vakilian, K.; Ranjbar, A.; Zarganjfard, A.; Mortazavi, M.; Vosough-Ghanbari, S.; Mashiee, S.; Abdollahi, M. On the relation of oxidative stress in delivery mode in pregnant women; a toxicological concern. Toxicol. Mech. Methods 2009, 19, 94–99. [Google Scholar] [CrossRef]
- Kobayashi, H.; Iorio, E.L.; Yoshino, A. Effects of mode of delivery on pro-oxidant/ antioxidant balance in fetal circulation. J. Matern. Fetal Neonatal Med. 2019, 32, 3294–3299. [Google Scholar] [CrossRef] [PubMed]
- Schenker, S.; Yang, Y.; Perez, A.; Acuff, R.V.; Papas, A.M.; Henderson, G.; Lee, M.P. Antioxidant transport by the human placenta. Clin. Nutr. 1988, 17, 159–167. [Google Scholar] [CrossRef]
- Nalos, M.; McLean, A.S.; Huang, S. Rivisiting lactate in critical illness. In Annual Update in Intensive Care and Emergency; Vincent, J.L., Ed.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 413–423. [Google Scholar]
- Brucknerova, I.; Ujhazy, E.; Dubovicky, M.; Mach, M. Oxidative stress in twins. Neuroendocrinol. Lett. 2013, 34, 71–73. [Google Scholar]
- Lazar, R.; Orvos, H.; Szollosi, R.; Varga, I.S. The quality of the antioxidant defense system in term and preterm twin neonates. Redox. Rep. 2014, 20, 103–108. [Google Scholar] [CrossRef]
- Chakraborty, P.; Dugmonits, K.N.; Orvos, H.; Hermesz, E. Mature twin neonates exhibit oxidative stress via nitric oxide synthase dysfunctionality: A prognostic stress marker in the red blood cells and umbilical cord vessels. Antioxidants 2020, 9, 845. [Google Scholar] [CrossRef] [PubMed]
- Canisso, I.F.; Panzani, D.; Mirò, J.; Ellerbrock, R.E. Key aspects of donkey and mule reproduction. Vet. Clin. N. Am. Equine Pract. 2019, 35, 607–642. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, M.C.; Villani, M.; Wilsher, S.; Contri, A.; Carluccio, A. Comparative stereological study of the term placenta in the donkey, pony and thoroughbred. Theriogenology 2010, 74, 627–631. [Google Scholar] [CrossRef] [PubMed]
Parameters | Jennies | Umbilical Cord | Non-Twin Foals |
---|---|---|---|
D-ROMs (U.Carr.) | 271.6 a 188.7–311.1 | 157.5 b 113–201 | 184.5 b 111–389.6 |
BAP (μmol/L) | 2752 a 1284–3068 | 2655 b 1038–2942 | 2461 b 1244–2740 |
Blood lactate (mmol/L) | 3.5 a 2.2–4.8 | - | 5.2 b 4.3–6.9 |
D-ROMs (U.Carr.) | |||||
UC-F1 | UC-F2 | F1 | F2 | ||
J1 | 268.2 | 169.5 | 169.5 | 157.3 | 228.3 |
J2 | 209.3 | 160.9 | 160.9 | 251.2 | 250 |
BAP (μmol/L) | |||||
UC-F1 | UC-F2 | F1 | F2 | ||
J1 | 2743 | 2908 | 2974 | 2677 | 2809 |
J2 | 2611 | 2316 | 2835 | 2619 | 2569 |
Blood lactate (mmol/L) | |||||
UC-F1 | UC-F2 | F1 | F2 | ||
J1 | 3.3 | - | - | 5.1 | 5.8 |
J2 | 3.2 | - | - | 5.6 | 6.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sgorbini, M.; Bonelli, F.; Percacini, G.; Pasquini, A.; Rota, A. Maternal and Neonatal Evaluation of Derived Reactive Oxygen Metabolites and Biological Antioxidant Potential in Donkey Mares and Foals. Animals 2021, 11, 2885. https://doi.org/10.3390/ani11102885
Sgorbini M, Bonelli F, Percacini G, Pasquini A, Rota A. Maternal and Neonatal Evaluation of Derived Reactive Oxygen Metabolites and Biological Antioxidant Potential in Donkey Mares and Foals. Animals. 2021; 11(10):2885. https://doi.org/10.3390/ani11102885
Chicago/Turabian StyleSgorbini, Micaela, Francesca Bonelli, Giulia Percacini, Anna Pasquini, and Alessandra Rota. 2021. "Maternal and Neonatal Evaluation of Derived Reactive Oxygen Metabolites and Biological Antioxidant Potential in Donkey Mares and Foals" Animals 11, no. 10: 2885. https://doi.org/10.3390/ani11102885
APA StyleSgorbini, M., Bonelli, F., Percacini, G., Pasquini, A., & Rota, A. (2021). Maternal and Neonatal Evaluation of Derived Reactive Oxygen Metabolites and Biological Antioxidant Potential in Donkey Mares and Foals. Animals, 11(10), 2885. https://doi.org/10.3390/ani11102885