Comparative Study of Semen Parameters and Hormone Profile in Small-Spotted Catshark (Scyliorhinus canicula): Aquarium-Housed vs. Wild-Captured
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Experimental Design
2.3. Sample Collection and Processing
2.4. Seminal Quality Assessment
2.5. Sperm Morphometrics and Morphology
2.6. Transmission Electron Microscopy
2.7. Field-Emission Scanning Electron Microscopy (FE-SEM)
2.8. Sexual Hormonal Analysis
2.9. Statistical Analysis
3. Results
3.1. Comparison of Biometric Parameters between Aquarium-Housed and Wild-Captured Individuals
3.2. Comparison of Semen Parameters between Aquarium-Housed and Wild-Captured Individuals
3.3. Comparison of Sperm Morphology between Aquarium-Housed and Wild-Captured Individuals
3.4. Morphometric Comparison of Sperm between Aquarium-Housed and Wild-Captured Individuals
3.5. Comparative Analysis of Hormonal Reproductive (Testosterone, Progesterone, and Estradiol) Profile between Aquarium-Housed and Wild-Captured Individuals
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviatures
IUCN | International Union for Conservation of Nature |
UV | Ultraviolet light |
NaCl | Sodium chloride |
DNA | Deoxyribonucleic acid |
JC-1 | Mitochondrial membrane potential assay kit |
SYBR-14 | Membrane-permeant DNA stain |
PBS | Phosphate-buffered saline |
FE-SEM | Field-emission scanning electron microscopy |
CV | Coefficient of variation |
SD | Standard deviation |
SEM | Standard error of the mean |
References
- Gascon, C.; Brooks, T.M.; Contreras-MacBeath, T.; Heard, N.; Konstant, W.; Lamoreux, J.; Launay, F.; Maunder, M.; Mittermeier, R.A.; Molur, S.; et al. The importance and benefits of species. Curr. Biol. 2015, 25, 431–438. [Google Scholar] [CrossRef] [Green Version]
- McClenachan, L.; Cooper, A.B.; Carpenter, K.E.; Dulvy, N.K. Extinction risk and bottlenecks in the conservation of charismatic marine species. Conserv. Lett. 2012, 5, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Frölicher, T.L.; Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 2018, 9, 650. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.E.; Allain, V.; Basel, B.; Bell, J.D.; Chin, A.; Dutra, L.X.C.; Hooper, E.; Loubser, D.; Lough, J.; Moore, B.R.; et al. Impacts of climate change on marine resources in the Pacific Island region. In Climate Change and Impacts in the Pacific; Kumar, L., Ed.; Springer: Cham, Switzerland, 2020; pp. 359–402. ISBN 978-3-030-32878-8. [Google Scholar]
- Schéré, C.M.; Dawson, T.P.; Schreckenberg, K. Multiple conservation designations: What impact on the effectiveness of marine protected areas in the Irish Sea? Int. J. Sustain. Dev. World Ecol. 2020, 27, 596–610. [Google Scholar] [CrossRef] [Green Version]
- Walls, R.H.L.; Dulvy, N.K. Eliminating the dark matter of data deficiency by predicting the conservation status of Northeast Atlantic and Mediterranean Sea sharks and rays. Biol. Conserv. 2020, 246, 108459. [Google Scholar] [CrossRef]
- Oegelund-Nielsen, R.; da Silva, R.; Juergens, J.; Staerk, J.; Lindholm Sørensen, L.; Jackson, J.; Smeele, S.Q.; Conde, D.A. Standardized data to support conservation prioritization for sharks and batoids (Elasmobranchii). Data Br. 2020, 33, 106337. [Google Scholar] [CrossRef]
- Finucci, B.; Cheok, J.; Ebert, D.A.; Herman, K.; Kyne, P.M.; Dulvy, N.K. Ghosts of the deep—Biodiversity, fisheries, and extinction risk of ghost sharks. Fish Fish. 2021, 22, 391–412. [Google Scholar] [CrossRef]
- Giménez, J.; Cardador, L.; Mazor, T.; Kark, S.; Bellido, J.M.; Coll, M.; Navarro, J. Marine protected areas for demersal elasmobranchs in highly exploited Mediterranean ecosystems. Mar. Environ. Res. 2020, 160, 105033. [Google Scholar] [CrossRef] [PubMed]
- Janse, M.; Zimmerman, B.; Geerlings, L.; Brown, C.; Nagelkerke, L.A.J. Sustainable species management of the elasmobranch populations within European aquariums: A conservation challenge. J. Zoo Aquar. Res. 2017, 5, 172–181. [Google Scholar]
- Leonetti, F.L.; Sperone, E.; Travaglini, A.; Mojetta, A.R.; Signore, M.; Psomadakis, P.N.; Dinkel, T.M.; Bottaro, M. Filling the gap and improving conservation: How IUCN red lists and historical scientific data can shed more light on threatened sharks in the Italian seas. Diversity 2020, 12, 389. [Google Scholar] [CrossRef]
- Tiktak, G.P.; Butcher, D.; Lawrence, P.J.; Norrey, J.; Bradley, L.; Shaw, K.; Preziosi, R.; Megson, D. Are concentrations of pollutants in sharks, rays and skates (Elasmobranchii) a cause for concern? A systematic review. Mar. Pollut. Bull. 2020, 160, 111701. [Google Scholar] [CrossRef]
- Porte, C.; Janer, G.; Lorusso, L.C.; Ortiz-Zarragoitia, M.; Cajaraville, M.P.; Fossi, M.C.; Canesi, L. Endocrine disruptors in marine organisms: Approaches and perspectives. Comp. Biochem. Physiol. Toxicol. Pharmacol. CBP 2006, 143, 303–315. [Google Scholar] [CrossRef] [PubMed]
- Simpfendorfer, C.A.; Dulvy, N.K. Bright spots of sustainable shark fishing. Curr. Biol. 2017, 27, 97–98. [Google Scholar] [CrossRef] [Green Version]
- Dulvy, N.K.; Simpfendorfer, C.A.; Davidson, L.N.K.; Fordham, S.V.; Bräutigam, A.; Sant, G.; Welch, D.J. Challenges and priorities in shark and ray conservation. Curr. Biol. 2017, 27, 565–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, J.; Mancusi, C.; Serena, F.; Haka, F.; Guallart, J.; Ungaro, N.; Coello, R.; Schembri, T.; MacKenzie, K. Scyliorhinus canicula. IUCN Red L. Threat. Species Eur. 2009, e.T161399A5415204. [Google Scholar] [CrossRef]
- Jeffree, R.A.; Warnau, M.; Teyssié, J.-L.; Markich, S.J. Comparison of the bioaccumulation from seawater and depuration of heavy metals and radionuclides in the spotted dogfish Scyliorhinus Canicula (Chondrichthys) and the Turbot Psetta Maxima (Actinopterygii: Teleostei). Sci. Total Environ. 2006, 368, 839–852. [Google Scholar] [CrossRef] [PubMed]
- Mancia, A.; Chenet, T.; Bono, G.; Geraci, M.L.; Vaccaro, C.; Munari, C.; Mistri, M.; Cavazzini, A.; Pasti, L. Adverse effects of plastic ingestion on the Mediterranean small-spotted catshark (Scyliorhinus canicula). Mar. Environ. Res. 2020, 155, 104876. [Google Scholar] [CrossRef]
- Musa, S.M.; Ripley, D.M.; Moritz, T.; Shiels, H.A. Ocean warming and hypoxia affect embryonic growth, fitness and survival of small-spotted catsharks, Scyliorhinus canicula. J. Fish Biol. 2020, 97, 257–264. [Google Scholar] [CrossRef]
- Barongi, R.; Fisken, F.; Parker, M.; Gusset, M. Committing to Conservation: The World Zoo and Aquarium Conservation Strategy; WAZA Executive Office: Gland, Switzerland, 2015; ISBN 978-2-8399-1694-3. [Google Scholar]
- Wyffels, J.T.; George, R.; Adams, L.; Adams, C.; Clauss, T.; Newton, A.; Hyatt, M.W.; Yach, C.; Penfold, L.M. Testosterone and semen seasonality for the Sand Tiger shark Carcharias Taurus. Biol. Reprod. 2020, 102, 876–887. [Google Scholar] [CrossRef]
- Penning, M.; Reid, G.; Koldewey, H.; Andrews, B.; Araj, K.; Garratt, P.; Gendron, S.; Lange, J.; Tanner, K.; Tonge, S.; et al. Turning the tide: A global aquarium strategy for conservation and sustainability. In World Association of Zoos and Aquariums; WAZA: Bern, Switzerland, 2009; ISBN 978-3-033-02140-2. [Google Scholar]
- Daly, J.; Jones, R. The use of reproductive technologies in breeding programs for elasmobranchs in aquaria. In The Elasmobranch Husbandry Manual II: Recent Advances in the Care of Sharks, Rays and their Relatives; Smith, M., Warmolts, D., Thoney, D., Hueter, R., Murray, M., Ezcurra, J., Eds.; Special Publication of the Ohio Biological Survey: Columbus, OH, USA, 2017; pp. 363–374. [Google Scholar]
- Capapé, C.; Mnasri-Sioudi, N.; El Kamel-Moutalibi, O.; Boumaïza, M.; Amor, M.M.B.; Reynaud, C. Production, maturity, reproductive cycle and fecundity of small-spotted catshark, Scyliorhinus canicula (Chondrichthyes: Scyliorhinidae) from the northern coast of Tunisia (central Mediterranean). J. Ichthyol. 2014, 54, 111–126. [Google Scholar] [CrossRef]
- Garnier, D.H.; Sourdaine, P.; Jégou, B. Seasonal variations in sex steroids and male sexual characteristics in Scyliorhinus Canicula. Gen. Comp. Endocrinol. 1999, 116, 281–290. [Google Scholar] [CrossRef] [PubMed]
- Kousteni, V.; Megalofonou, P. Reproductive strategy of Scyliorhinus canicula (L., 1758): A holistic approach based on macroscopic measurements and microscopic observations of the reproductive organs. Mar. Freshw. Res. 2020, 71, 596–616. [Google Scholar] [CrossRef]
- Dzyuba, V.; Ninhaus-Silveira, A.; Veríssimo-Silveira, R.; Rodina, M.; Dzyuba, B. Sperm antioxidant system in ocellate river stingray Potamotrygon motoro at transition from seminal vesicle to cloaca. Fish Physiol. Biochem. 2020, 46, 1975–1980. [Google Scholar] [CrossRef]
- Minamikawá, S.; Morisawa, M. Acquisition, initiation and maintenance of sperm motility in the shark, Ttiakis Scyllia. Comp. Biochem. Physiol. A Physiol. 1996, 113, 387–392. [Google Scholar] [CrossRef]
- Morales-Gamba, R.D.; Caldas, J.S.; Godoy, L.; Marcon, J.L. Sperm characterization of the Amazonian freshwater cururu stingray Potamotrygon wallacei (Potamotryogonidae): Basic knowledge for reproduction and conservation plans. Zygote 2019, 27, 259–261. [Google Scholar] [CrossRef]
- Rowley, A.; Locatello, L.; Kahrl, A.; Rego, M.; Boussard, A.; Garza-Gisholt, E.; Kempster, R.M.; Collin, S.P.; Giacomello, E.; Follesa, M.C.; et al. Sexual selection and the evolution of sperm morphology in sharks. J. Evol. Biol. 2019, 32, 1027–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fitzpatrick, J.L.; Kempster, R.M.; Daly-Engel, T.S.; Collin, S.P.; Evans, J.P. Assessing the potential for post-copulatory sexual selection in elasmobranchs. J. Fish Biol. 2012, 80, 1141–1158. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, B.G.M.; Hamlett, W.C. Chondrichthyan spermatozoa and phylogeny. In Reproductive Biology and Phylogeny of Chondrichthyes: Sharks, Batoids and Chimaeras; Science Publishers, Inc.: Hauppauge, NY, USA, 2005; pp. 201–236. [Google Scholar]
- Stanley, H.P. Fine structure of spermiogenesis in the elasmobranch fish Squalus suckleyi. I. Acrosome formation, nuclear elongation and differentiation of the midpiece axis. J. Ultrastruct. Res. 1971, 36, 86–102. [Google Scholar] [CrossRef]
- Stanley, H.P. Fine structure of spermiogenesis in the elasmobranch fish Squalus suckleyi. II. Late stages of differentiation and structure of the mature spermatozoon. J. Ultrastruct. Res. 1971, 36, 103–118. [Google Scholar] [CrossRef]
- Kousteni, V.; Kontopoulou, M.; Megalofonou, P. Sexual maturity and fecundity of Scyliorhinus canicula (Linnaeus, 1758) in the Aegean Sea. Mar. Biol. Res. 2010, 6, 390–398. [Google Scholar] [CrossRef]
- Henningsen, A.D. Tonic immobility in 12 elasmobranchs: Use as an aid in captive husbandry. Zoo Biol. 1994, 13, 325–332. [Google Scholar] [CrossRef]
- Lawrence, M.; Raby, G.; Teffer, A.; Jeffries, K.; Danylchuk, A.; Eliason, E.; Hasler, C.; Clark, T.; Cooke, S. Best practices for non-lethal blood sampling of fish via the caudal vasculature. J. Fish Biol. 2020, 97, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Mylniczenko, N.; Clauss, T. Pharmacology of elasmobranchs: Updates and techniques. In The Elasmobranch Husbandry Manual II: Recent Advances in the Care of Sharks, Rays and Their Relatives; Ohio Biological Survey Inc.: Columbus, OH, USA, 2017; pp. 289–302. [Google Scholar]
- Ros-Santaella, J.L.; Domínguez-Rebolledo, Á.E.; Garde, J.J. Sperm flagellum volume determines freezability in red deer spermatozoa. PLoS ONE 2014, 9, e112382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlson, J.K.; Heupel, M.R.; Young, C.N.; Cramp, J.E.; Simpfendorfer, C.A. Are we ready for elasmobranch conservation success? Environ. Conserv. 2019, 46, 264–266. [Google Scholar] [CrossRef]
- Pacoureau, N.; Rigby, C.L.; Kyne, P.M.; Sherley, R.B.; Winker, H.; Carlson, J.K.; Fordham, S.V.; Barreto, R.; Fernando, D.; Francis, M.P.; et al. Half a century of global decline in oceanic sharks and rays. Nature 2021, 589, 567–571. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, J.K.; Robeck, T.R. The relationship of maternal characteristics and circulating progesterone concentrations with reproductive outcome in the bottlenose dolphin (Tursiops truncatus) after artificial insemination, with and without ovulation induction, and natural breeding. Theriogenology 2012, 78, 469–482. [Google Scholar] [CrossRef]
- O’Brien, J.K.; Robeck, T.R. The value of ex situ cetacean populations in understanding reproductive physiology and developing assisted reproductive technology for ex situ and in situ species management and conservation efforts. Int. J. Comp. Psychol. 2010, 23, 227–248. [Google Scholar]
- Penfold, L.M.; Wyffels, J.T. Reproductive science in sharks and rays. In Reproductive Sciences in Animal Conservation; Comizzoli, P., Brown, J.L., Holt, W.V., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 1200, pp. 465–488. ISBN 978-3-030-23632-8. [Google Scholar]
- Magnotti, C.; Cerqueira, V.; Lee-Estevez, M.; Farias, J.G.; Valdebenito, I.; Figueroa, E. Cryopreservation and vitrification of fish semen: A review with special emphasis on marine species. Rev. Aquac. 2018, 10, 15–25. [Google Scholar] [CrossRef]
- Beirao, J.; Boulais, M.; Gallego, V.; O′Brien, J.K.; Peixoto, S.; Robeck, T.R.; Cabrita, E. Sperm handling in aquatic animals for artificial reproduction. Theriogenology 2019, 133, 161–178. [Google Scholar] [CrossRef]
- Griffiths, A.; Jacoby, D.; Casane, D.; McHugh, M.; Croft, D.; Genner, M.; Sims, D. First analysis of multiple paternity in an oviparous shark, the small-spotted catshark (Scyliorhinus canicula, L.). J. Hered. 2011, 103, 166–173. [Google Scholar] [CrossRef] [Green Version]
- Gilroy, C.E.; Litvak, M.K. Swimming kinematics and temperature effects on spermatozoa from wild and captive shortnose sturgeon (Acipenser brevirostrum). Anim. Reprod. Sci. 2019, 204, 171–182. [Google Scholar] [CrossRef] [PubMed]
- Locatello, L.; Bertotto, D.; Cerri, R.; Parmeggiani, A.; Govoni, N.; Trocino, A.; Xiccato, G.; Mordenti, O. Sperm quality in wild-caught and farmed males of the European eel (Anguilla Anguilla). Anim. Reprod. Sci. 2018, 198, 167–176. [Google Scholar] [CrossRef]
- Zupa, R.; Fauvel, C.; Mylonas, C.C.; Santamaria, N.; Valentini, L.; Pousis, C.; Papadaki, M.; Suquet, M.; Gándara, F.l.; Bello, G.; et al. Comparative analysis of male germ cell proliferation and apoptosis in wild and captive Atlantic bluefin tuna (Thunnus Thynnus L.). J. Appl. Ichthyol. 2013, 1, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Luer, C.A.; Walsh, C.J.; Bodine, A.B.; Wyffels, J.T. Normal embryonic development in the clearnose skate, Raja Eglanteria, with experimental observations on artificial insemination. Environ. Biol. Fishes 2007, 80, 239–255. [Google Scholar] [CrossRef]
- Tanaka, S.; Kurokawa, H.; Hara, M. Comparative morphology of the sperm in chondrichthyan fishes. In Advances in Spermatozoal Phylogeny and Taxonomy; Mémoires du Muséum National d′Histoire Naturelle: Paris, France, 1995; Volume 166, pp. 313–320. ISBN 2-85653-225-X. [Google Scholar]
- Chatchavalvanich, K.; Thongpan, A.; Nakai, M. Ultrastructure of spermiogenesis in a freshwater stingray. Ichthyol. Res. 2005, 52, 379–385. [Google Scholar] [CrossRef]
- Takemura, A.; Hara, M.; Mizue, K.; Malagrino, G. Electron microscopic study on the spermatogenesis of Chimaera, Chimaera phantasma. Bull. Fac. Fish. Nagasaki Univ. 1983, 54, 35–54. [Google Scholar]
- Stanley, H.P. The fine structure of spermatozoa of Hydrolagus colliei (Chondrichthyes, Holocephali). J. Ultrastruct. Res. 1983, 83, 184–194. [Google Scholar] [CrossRef]
- Jones, R.C.; Jones, N.; Djakiew, D. Luminal composition and maturation of spermatozoa in the male genital ducts of the Port Jackson shark, Heterodontus Portusjacksoni. J. Exp. Zool. 1984, 230, 417–426. [Google Scholar] [CrossRef]
- Bondarenko, V.; Cosson, J. Structure and beating behavior of the sperm motility apparatus in aquatic animals. Theriogenology 2019, 135, 152–163. [Google Scholar] [CrossRef]
- Dobson, S.; Dodd, J. Roles of temperature and photoperiod in response of testis of dogfish, Scyliorhinus-Canicula L to partial hypophysectomy (ventral lobectomy). Gen. Comp. Endocrinol. 1977, 32, 114–115. [Google Scholar] [CrossRef]
- Capapé, C.; Reynaud, C.; Vergne, Y.; Quignard, J.-P. Biological observations on the smallspotted catshark Scyliorhinus canicula (Chondrichthyes: Scyliorhinidae) off the Languedocian coast (southern France, northern Mediterranean). Pan Am. J. Aquat. Sci. 2008, 3, 282–289. [Google Scholar]
- Pickering, A.D.; Pottinger, T.G.; Carragher, J.; Sumpter, J.P. The effects of acute and chronic stress on the levels of reproductive hormones in the plasma of mature male brown trout, Salmo trutta, L. Gen. Comp. Endocrinol. 1987, 68, 249–259. [Google Scholar] [CrossRef]
- Becerril-García, E.E.; Arellano-Martínez, M.; Bernot-Simon, D.; Hoyos-Padilla, E.M.; Galván-Magaña, F.; Godard-Codding, C. Steroid hormones and chondrichthyan reproduction: Physiological functions, scientific research, and implications for conservation. PeerJ 2020, 8, e9686. [Google Scholar] [CrossRef]
Type | n | Weight (g) | Length (cm) | Width (cm) | Clasper Length (cm) |
---|---|---|---|---|---|
Aquarium-housed | 7 | 309.9 ± 31.35 | 45.1 ± 1.88 | 11.3 ± 0.65 a | 3.9 ± 0.17 |
Wild-captured | 17 | 269.5 ± 50.28 | 44.9 ± 3.09 | 10.9 ± 0.90 b | 3.7 ± 0.55 |
p-value | 0.063 | 0.862 | <0.001 | 0.265 |
Semen Quality Variable | Aquarium-Housed | Wild-Captured | p-Value |
---|---|---|---|
Semen sample volume (mL) | 0.8 ± 0.42 b | 1.9 ± 1.11 a | 0.005 |
Sperm concentration (106/mL) | 78.9 ± 43.36 | 107.8 ± 50.42 | 0.072 |
Total sperm (106/sample) | 72.7 ± 68.27 b | 219.6 ± 188.57 a | 0.006 |
Motility (%) | 48.7 ± 6.96 a | 18.8 ± 4.1 b | 0.004 |
Viability (%) | 72.9 ± 5.55 | 78.3 ± 3.30 | 0.717 |
Mitochondrial membrane high potential (%) | 90.1 ± 6.97 | 96.1 ± 0.70 | 0.372 |
Sperm membrane integrity (%) | 70.0 ± 6.75 | 72.9 ± 5.14 | 0.882 |
Number of animals (total samples) | 7 (18) | 17 (17) |
Type | Acrosome (μm) | Head (μm) | Acrosome & Head (μm) | Midpiece (μm) |
---|---|---|---|---|
Aquarium-housed (CV) | 2.78 ± 0.466 a (16.74) | 40.96 ± 1.113 a (2.71) | 43.75 ± 1.153 a (2.63) | 18.16 ± 0.988 (5.44) |
Wild-captured (CV) | 3.01 ± 0.354 b (11.80) | 41.79 ± 1.284 b (3.07) | 44.80 ± 1.274 b (2.84) | 18.31 ± 1.139 (6.22) |
p-value | 0.027 | 0.005 | 0.001 | 0.566 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Baquero, M.; Marco-Jiménez, F.; García-Domínguez, X.; Ros-Santaella, J.L.; Pintus, E.; Jiménez-Movilla, M.; García-Párraga, D.; García-Vazquez, F.A. Comparative Study of Semen Parameters and Hormone Profile in Small-Spotted Catshark (Scyliorhinus canicula): Aquarium-Housed vs. Wild-Captured. Animals 2021, 11, 2884. https://doi.org/10.3390/ani11102884
Muñoz-Baquero M, Marco-Jiménez F, García-Domínguez X, Ros-Santaella JL, Pintus E, Jiménez-Movilla M, García-Párraga D, García-Vazquez FA. Comparative Study of Semen Parameters and Hormone Profile in Small-Spotted Catshark (Scyliorhinus canicula): Aquarium-Housed vs. Wild-Captured. Animals. 2021; 11(10):2884. https://doi.org/10.3390/ani11102884
Chicago/Turabian StyleMuñoz-Baquero, Marta, Francisco Marco-Jiménez, Ximo García-Domínguez, José Luis Ros-Santaella, Eliana Pintus, María Jiménez-Movilla, Daniel García-Párraga, and Francisco Alberto García-Vazquez. 2021. "Comparative Study of Semen Parameters and Hormone Profile in Small-Spotted Catshark (Scyliorhinus canicula): Aquarium-Housed vs. Wild-Captured" Animals 11, no. 10: 2884. https://doi.org/10.3390/ani11102884
APA StyleMuñoz-Baquero, M., Marco-Jiménez, F., García-Domínguez, X., Ros-Santaella, J. L., Pintus, E., Jiménez-Movilla, M., García-Párraga, D., & García-Vazquez, F. A. (2021). Comparative Study of Semen Parameters and Hormone Profile in Small-Spotted Catshark (Scyliorhinus canicula): Aquarium-Housed vs. Wild-Captured. Animals, 11(10), 2884. https://doi.org/10.3390/ani11102884