Diurnal Ruminal pH and Temperature Patterns of Steers Fed Corn or Barley-Based Finishing Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Samuelson, K.L.; Hubbert, M.E.; Galyean, M.L.; Loest, C. Nutritional recommendations of feedlot consulting nutritionists: The 2015 New Mexico State and Texas Tech University survey. J. Anim. Sci. 2016, 94, 2648–2663. [Google Scholar] [CrossRef] [PubMed]
- Bowman, J.G.P. Barley for beef cattle. In Cow-Calf Management Guide. Nutrition Section, 2nd ed.; Western Beef Resource Committee; JRAdams Publishing: Moscow, ID, USA, 2001; Volume 332, pp. 1–5. [Google Scholar]
- Owens, F.N.; Secrist, D.S.; Hill, W.J.; Gill, D.R. Acidosis in cattle: A review. J. Anim. Sci. 1998, 76, 275–286. [Google Scholar] [CrossRef]
- Galyean, M.L.; Rivera, J.D. Nutritionally related disorders affecting feedlot cattle. Can. J. Anim. Sci. 2003, 83, 13–20. [Google Scholar] [CrossRef] [Green Version]
- Owens, F.N.; Secrist, D.S.; Hill, W.J.; Gill, D.R. The effect of grain source and grain processing on performance of feedlot cattle: A review. J. Anim. Sci. 1997, 75, 868–879. [Google Scholar] [CrossRef] [Green Version]
- Ørskov, E.R. Starch Digestion and Utilization in Ruminants. J. Anim. Sci. 1986, 63, 1624–1633. [Google Scholar] [CrossRef]
- Herrera-Saldana, R.; Huber, J.; Poore, M. Dry Matter, Crude Protein, and Starch Degradability of Five Cereal Grains. J. Dairy Sci. 1990, 73, 2386–2393. [Google Scholar] [CrossRef]
- Nagaraja, T.G.; Titgemeyer, E.C. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci. 2007, 90, E17–E38. [Google Scholar] [CrossRef] [Green Version]
- Nocek, J.; Allman, J.; Kautz, W. Evaluation of an Indwelling Ruminal Probe Methodology and Effect of Grain Level on Diurnal pH Variation in Dairy Cattle. J. Dairy Sci. 2002, 85, 422–428. [Google Scholar] [CrossRef]
- Beauchemin, K.A. Managing rumen fermentation in barley based diets: Balance between high production and acidosis. Adv. Dairy Technol. 2000, 12, 109–125. [Google Scholar]
- Elam, C.J. Acidosis in Feedlot Cattle: Practical Observations. J. Anim. Sci. 1976, 43, 898–901. [Google Scholar] [CrossRef] [PubMed]
- Wahrmund, J.L.; Ronchesel, J.R.; Krehbiel, C.R.; Goad, C.L.; Trost, S.M.; Richards, C.J. Ruminal acidosis challenge impact on ruminal temperature in feedlot cattle. J. Anim. Sci. 2012, 90, 2794–2801. [Google Scholar] [CrossRef]
- AlZahal, O.; Kebreab, E.; France, J.; Froetschel, M.; McBride, B. Ruminal Temperature May Aid in the Detection of Subacute Ruminal Acidosis. J. Dairy Sci. 2008, 91, 202–207. [Google Scholar] [CrossRef]
- Rose-Dye, T.K.; Burciaga-Robles, L.O.; Krehbiel, C.R.; Step, D.L.; Fulton, R.W.; Confer, A.W.; Richards, C.J. Rumen temperature change monitored with remote rumen temperature boluses after challenges with bovine viral diarrhea virus and Mannheimia haemolytica. J. Anim. Sci. 2011, 89, 1193–1200. [Google Scholar] [CrossRef]
- Moya, D.; Holtshausen, L.; Marti, S.; Gibb, D.G.; McAllister, T.A.; Beauchemin, K.A.; Schwartzkopf-Genswein, K. Feeding behavior and ruminal pH of corn silage, barley grain, and corn dried distillers’ grain offered in a total mixed ration or in a free-choice diet to beef cattle. J. Anim. Sci. 2014, 92, 3526–3536. [Google Scholar] [CrossRef]
- DelCurto-Wyffels, H.; Dafoe, J.; Parsons, C.; Boss, D.; DelCurto, T.; Wyffels, S.; Van Emon, M.; Bowman, J. Corn versus Barley in Finishing Diets: Effect on Steer Performance and Feeding Behavior. Animals 2021, 11, 935. [Google Scholar] [CrossRef]
- Barley Breeding Program, Montana. State University Malt Variety Dictionary—Hockett. 2008. Available online: https://www.montana.edu/barleybreeding/learning-center/malt-variety-dictionary/two-row/hockett.html (accessed on 10 December 2020).
- Wang, Z.; Nkrumah, J.D.; Li, C.; Basarab, J.A.; Goonewardene, L.A.; Okine, E.K.; Crews, D.H.; Moore, S. Test duration for growth, feed intake, and feed efficiency in beef cattle using the GrowSafe System1. J. Anim. Sci. 2006, 84, 2289–2298. [Google Scholar] [CrossRef]
- Gasteiner, J.; Guggenberger, T.; Häusler, J.; Steinwidder, A. Continuous and Long-Term Measurement of Reticuloruminal pH in Grazing Dairy Cows by an Indwelling and Wireless Data Transmitting Unit. Veter-Med. Int. 2012, 2012, 236956. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sowell, B.; Bowman, J.; Branine, M.; Hubbert, M. Radio frequency technology to measure feeding behavior and health of feedlot steers. Appl. Anim. Behav. Sci. 1998, 59, 277–284. [Google Scholar] [CrossRef]
- Schwartzkopf-Genswein, K.; Atwood, S.; McAllister, T. Relationships between bunk attendance, intake and performance of steers and heifers on varying feeding regimes. Appl. Anim. Behav. Sci. 2002, 76, 179–188. [Google Scholar] [CrossRef]
- Parsons, C.; Galyean, M.; Swingle, R.; DeFoor, P.; Nunnery, G.; Salyer, G. Use of Individual Feeding Behavior Patterns to Classify Beef Steers into Overall Finishing Performance and Carcass Characteristic Categories. Prof. Anim. Sci. 2004, 20, 365–371. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 2nd ed.; Sage: Thousand Oaks, CA, USA, 2011; Available online: http://socserv.socsci.mcmaster.ca/jfox/Books/Companion (accessed on 1 December 2020).
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lenth, R. Estimated Marginal Means, Aka Least-Squares Means, 1.3.3; R Package. 2019. Available online: https://CRAN.R-project.org/package=emmeans (accessed on 1 December 2020).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 15 November 2018).
- Schwartzkopf-Genswein, K.; Beauchemin, K.; Gibb, D.; Crews, D.; Hickman, D.; Streeter, M.; McAllister, T. Effect of bunk management on feeding behavior, ruminal acidosis and performance of feedlot cattle: A review. J. Anim. Sci. 2003, 81, E149–E158. [Google Scholar] [CrossRef]
- Cooper, R.J.; Klopfenstein, T.J.; Stock, R.A.; Milton, C.T.; Herold, D.W.; Parrott, J.C. Effects of imposed feed intake variation on acidosis and performance of finishing steers. J. Anim. Sci. 1999, 77, 1093–1099. [Google Scholar] [CrossRef] [Green Version]
- Fulton, W.R.; Klopfenstein, T.J.; Britton, R.A. Adaptation to High Concentrate Diets by Beef Cattle. I. Adaptation to Corn and Wheat Diets. J. Anim. Sci. 1979, 49, 775–784. [Google Scholar] [CrossRef]
- Surber, L.; Bowman, J.; Daniels, T.; Milner, T.; Lewis, A.; Coulson, D.; Blake, T. Feeding value of barley varieties for finishing cattle. In Proceedings of the Western Section American Society Animal Science, Denver, CO, USA, 27–30 July 1998; Volume 49, pp. 268–271. [Google Scholar]
- Brown, M.S.; Krehbiel, C.R.; Galyean, M.L.; Remmenga, M.D.; Peters, J.P.; Hibbard, B.; Robinson, J.; Moseley, W.M. Evaluation of models of acute and subacute acidosis on dry matter intake, ruminal fermentation, blood chemistry, and endocrine profiles of beef steers. J. Anim. Sci. 2000, 78, 3155–3168. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Beauchemin, K.; Koenig, K.; Rode, L. Comparison of Hull-less Barley, Barley, or Corn for Lactating Cows: Effects on Extent of Digestion and Milk Production. J. Dairy Sci. 1997, 80, 2475–2486. [Google Scholar] [CrossRef]
- Overton, T.; Cameron, M.; Elliottt, J.; Clark, J.; Nelson, D. Ruminal Fermentation and Passage of Nutrients to the Duodenum of Lactating Cows Fed Mixture of Corn and Barley. J. Dairy Sci. 1995, 78, 1981–1998. [Google Scholar] [CrossRef]
- Moya, D.; Mazzenga, A.; Holtshausen, L.; Cozzi, G.; González, L.A.; Calsamiglia, S.; Gibb, D.G.; McAllister, T.A.; Beauchemin, K.A.; Schwartzkopf-Genswein, K. Feeding behavior and ruminal acidosis in beef cattle offered a total mixed ration or dietary components separately1. J. Anim. Sci. 2011, 89, 520–530. [Google Scholar] [CrossRef] [Green Version]
- Bewley, J.; Einstein, M.; Grott, M.; Schutz, M. Comparison of Reticular and Rectal Core Body Temperatures in Lactating Dairy Cows. J. Dairy Sci. 2008, 91, 4661–4672. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.; Hünerberg, M.; McAllister, T.A.; Beauchemin, K.A. Characterization of ruminal temperature and its relationship with ruminal pH in beef heifers fed growing and finishing diets1. J. Anim. Sci. 2014, 92, 4650–4660. [Google Scholar] [CrossRef]
- Brod, D.L.; Bolsen, K.K.; Brent, B.E. Effect of Water Temperature in Rumen Temperature, Digestion and Rumen Fermentation in Sheep. J. Anim. Sci. 1982, 54, 179–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dye, T.; Richards, C. Effect of water consumption on rumen temperature. J. Dairy Sci. 2008, 86, 114. [Google Scholar]
- Vázquez-Diosdado, J.; Miguel-Pacheco, G.; Plant, B.; Dottorini, T.; Green, M.; Kaler, J. Developing and evaluating threshold-based algorithms to detect drinking behavior in dairy cows using reticulorumen temperature. J. Dairy Sci. 2019, 102, 10471–10482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Barley | Corn | |
---|---|---|
Ingredient | ||
Corn, % | − | 80.00 |
Barley, % | 80.00 | − |
Barley straw, % | 12.00 | 12.00 |
Canola oil, % | 3.00 | 3.00 |
Supplement, % 1 | 5.00 | 5.00 |
Item | Barley | Corn | SEM 1 | p-Value |
---|---|---|---|---|
Average daily intake, kg 2 | 11.30 | 11.72 | 0.52 | 0.06 |
Average daily ruminal pH | 6.46 | 6.43 | 0.14 | 0.46 |
Daily ruminal pH CV, % 3 | 5.63 | 3.89 | 0.14 | <0.01 |
Average daily ruminal temperature, °C | 39.22 | 39.35 | 0.08 | 0.17 |
Daily ruminal temperature CV, % | 2.37 | 2.12 | 0.10 | <0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
DelCurto-Wyffels, H.M.; Dafoe, J.M.; Parsons, C.T.; Boss, D.L.; DelCurto, T.; Wyffels, S.A.; Van Emon, M.L.; Bowman, J.G.P. Diurnal Ruminal pH and Temperature Patterns of Steers Fed Corn or Barley-Based Finishing Diets. Animals 2021, 11, 2809. https://doi.org/10.3390/ani11102809
DelCurto-Wyffels HM, Dafoe JM, Parsons CT, Boss DL, DelCurto T, Wyffels SA, Van Emon ML, Bowman JGP. Diurnal Ruminal pH and Temperature Patterns of Steers Fed Corn or Barley-Based Finishing Diets. Animals. 2021; 11(10):2809. https://doi.org/10.3390/ani11102809
Chicago/Turabian StyleDelCurto-Wyffels, Hannah M., Julia M. Dafoe, Cory T. Parsons, Darrin L. Boss, Timothy DelCurto, Samuel A. Wyffels, Megan L. Van Emon, and Janice G. P. Bowman. 2021. "Diurnal Ruminal pH and Temperature Patterns of Steers Fed Corn or Barley-Based Finishing Diets" Animals 11, no. 10: 2809. https://doi.org/10.3390/ani11102809
APA StyleDelCurto-Wyffels, H. M., Dafoe, J. M., Parsons, C. T., Boss, D. L., DelCurto, T., Wyffels, S. A., Van Emon, M. L., & Bowman, J. G. P. (2021). Diurnal Ruminal pH and Temperature Patterns of Steers Fed Corn or Barley-Based Finishing Diets. Animals, 11(10), 2809. https://doi.org/10.3390/ani11102809