Free and Microencapsulated Essential Oils Incubated In Vitro: Ruminal Stability and Fermentation Parameters
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethic Statement
2.2. Essential Oils
- Olistat-Cyn: 2b—cinnamaldehyde 20% (CAS no. 104-55-2); protected by a matrix of vegetable hydrogenated fatty acids, calcium carbonate, and wheat flour;
- Olistat-G: 2b—cinnamaldehyde (CAS no. 104-55-2), 3a710—vitamin K3 (1200 mg), and E330—citric acid 2000 mg; protected by a matrix of vegetable hydrogenated fatty acids, maize starch, calcium carbonate, and aromatic vegetable extracts;
- Olistat-P: 2b—cinnamaldehyde (CAS no. 104-55-2), 2b–thymol (CAS no. 89-83-8), and 2b–eugenol (CAS no. 97-53-0); protected by a matrix of vegetable hydrogenated fatty acids and calcium carbonate.
2.3. Experimental Substrate
2.4. Rumen Fluid Collection and Processing
2.5. Preparation of Buffer Solution
2.6. In Vitro Incubation
- -
- 1 vessel for each EO product (Olistat-Cyn, Olistat-G, and Olistat-P) containing 60 filter bags: 2 forms (fEO + mEO) in quadruplicates for 6 incubation times (48 filled filter bags) and 2 blanks (filter bags without product) for 6 incubation times (12 empty filter bags);
- -
- 3 vessels for each incubation run: 180 filter bags;
- -
- 3 incubation runs: 540 filter bags.
2.7. Analytical Procedures
2.8. Statistical Analysis
3. Results
3.1. Ruminal Stability of the EO Products
3.2. Rumen Fermentation Parameters and Protozoa Number of EO Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christaki, E.; Giannenas, I.; Bonos, E.; Florou-Paneri, P. Innovative uses of aromatic plants as natural supplements in nutrition. In Feed Additives, 1st ed.; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 19–34. [Google Scholar]
- Papaneophytou, C.; Giannenas, I.; Dragomir, C. Resistance of bacteria, fungi, and parasites to antibiotics or natural substances of botanical origin. In Feed Additives, 1st ed.; Florou-Paneri, P., Christaki, E., Giannenas, I., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 339–354. [Google Scholar]
- Conner, D.E.; Beuchat, L.R. Effects of essential oils from plants on growth of food spoilage yeasts. J. Food Sci. 1984, 49, 429–434. [Google Scholar] [CrossRef]
- Cox, S.D.; Gustafson, J.E.; Mann, C.M.; Markham, J.L.; Liew, Y.C.; Hartland, R.P.; Bell, H.C.; Warmington, J.R.; Wyllie, S.G. Tea tree oil causes K+ leakage and inhibits respiration in Escherichia coli. Lett. Appl. Microbiol. 1998, 26, 355–358. [Google Scholar] [CrossRef]
- Helander, I.M.; Alakomi, H.L.; Latva-Kala, K.; Mattila-Sandholm, T.; Pol, I.; Smid, E.J.; Gorris, L.G.; Von Wright, A. Characterization of the action of selected essential oil components on gram-negative bacteria. J. Agric. Food Chem. 1998, 46, 3590–3595. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.; Moezelaar, R.J. The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [Green Version]
- Bento, M.H.; Ouwehand, A.C.; Tiihonen, K.; Lahtinen, S.; Nurminen, P.; Saarinen, M.T.; Schulze, H.; Mygind, T.; Fischer, J. Essential oils and their use in animal feeds for monogastric animals—Effects on feed quality, gut microbiota, growth performance and food safety: A review. Vet. Med. 2013, 58, 449–458. [Google Scholar] [CrossRef] [Green Version]
- Silva, G.G.; Takiya, C.S.; Del Valle, T.A.; de Jesus, E.F.; Grigoletto, N.T.S.; Nakadonari, B.; Cortinhas, C.S.; Acedo, T.S.; Rennó, F.P. Nutrient digestibility, ruminal fermentation, and milk yield in dairy cows fed a blend of essential oils and amylase. J. Dairy Sci. 2018, 101, 9815–9826. [Google Scholar] [CrossRef] [Green Version]
- De Souza, K.A.; de Oliveira Monteschio, J.; Mottin, C.; Ramos, T.R.; de Moraes Pinto, L.A.; Eiras, C.E.; Guerrero, A.; do Prado, I.N. Effects of diet supplementation with clove and rosemary essential oils and protected oils (eugenol, thymol and vanillin) on animal performance, carcass characteristics, digestibility, and ingestive behavior activities for Nellore heifers finished in feedlot. Livest. Sci. 2019, 220, 190–195. [Google Scholar] [CrossRef] [Green Version]
- Michiels, J.; Missotten, J.; Dierick, N.; Fremaut, D.; Maene, P.; De Smet, S. In vitro degradation and in vivo passage kinetics of carvacrol, thymol, eugenol and trans-cinnamaldehyde along the gastrointestinal tract of piglets. J. Sci. Food Agric. 2008, 88, 2371–2381. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [Green Version]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Matan, N.; Rimkeeree, H.; Mawson, A.J.; Chompreeda, P.; Haruthaithanasan, V.; Parker, M. Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int. J. Food Microbiol. 2006, 107, 180–185. [Google Scholar] [CrossRef] [PubMed]
- Du, W.X.; Olsen, C.W.; Avena-Bustillos, R.J.; McHugh, T.H.; Levin, C.E.; Friedman, M. Effects of allspice, cinnamon, and clove bud essential oils in edible apple films on physical properties and antimicrobial activities. J. Food Sci. 2009, 74, M372–M378. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Ahn, Y.J. Growth-Inhibiting effects of Cinnamomum cassia bark-derived materials on human intestinal bacteria. J. Agric. Food Chem. 1998, 46, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Ouwehand, A.C.; Tiihonen, K.; Kettunen, H.; Peuranen, S.; Schulze, H.; Rautonen, N. In vitro effects of essential oils on potential pathogens and beneficial members of the normal microbiota. Vet. Med. 2010, 55, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Shelef, L.A. Antimicrobial effects of spices 1. J. Food Saf. 1984, 6, 29–44. [Google Scholar] [CrossRef]
- Farag, R.S.; Daw, Z.Y.; Hewedi, F.M.; El-Baroty, G.S.A. Antimicrobial activity of some Egyptian spice essential oils. J. Food Prot. 1989, 52, 665–667. [Google Scholar] [CrossRef]
- Shapiro, S.; Meier, A.; Guggenheim, B. The antimicrobial activity of essential oils and essential oil components towards oral bacteria. Oral Microbiol. Immunol. 1994, 9, 202–208. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Trombetta, D.; Castelli, F.; Sarpietro, M.G.; Venuti, V.; Cristani, M.; Daniele, C.; Saija, A.; Mazzanti, G.; Bisignano, G. Mechanisms of antibacterial action of three monoterpenes. Antimicrob. Agents Chemother. 2005, 49, 2474–2478. [Google Scholar] [CrossRef] [Green Version]
- Rota, M.C.; Herrera, A.; Martínez, R.M.; Sotomayor, J.A.; Jordán, M.J. Antimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oils. Food Control 2008, 19, 681–687. [Google Scholar] [CrossRef]
- Si, W.; Gong, J.; Tsao, R.; Zhou, T.; Yu, H.; Poppe, C.; Johnson, R.; Du, Z. Antimicrobial activity of essential oils and structurally related synthetic food additives towards selected pathogenic and beneficial gut bacteria. J. Appl. Microbiol. 2006, 100, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Di Pasqua, R.; Betts, G.; Hoskins, N.; Edwards, M.; Ercolini, D.; Mauriello, G. Membrane toxicity of antimicrobial compounds from essential oils. J. Agric. Food Chem. 2007, 55, 4863–4870. [Google Scholar] [CrossRef] [PubMed]
- Di Pasqua, R.; Mamone, G.; Ferranti, P.; Ercolini, D.; Mauriello, G. Changes in the proteome of Salmonella enterica serovar Thompson as stress adaptation to sublethal concentrations of thymol. Proteomics 2010, 10, 1040–1049. [Google Scholar] [CrossRef] [PubMed]
- Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol. 2010, 130, 107–115. [Google Scholar] [CrossRef]
- Remmal, A.; Achahbar, S.; Bouddine, L.; Chami, N.; Chami, F. In vitro destruction of Eimeria oocysts by essential oils. Vet. Parasitol. 2011, 182, 121–126. [Google Scholar] [CrossRef]
- Lee, S.H.; Lillehoj, H.S.; Jang, S.I.; Jang, S.I.; Lee, K.W.; Park, M.S.; Bravo, D.; Lillehoj, E.P. Cinnamaldehyde enhances in vitro parameters of immunity and reduces in vivo infection against avian coccidiosis. Br. J. Nutr. 2011, 106, 862–869. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.R.; Ramsay, A.; Hansen, T.V.; Ropiak, H.M.; Mejer, H.; Nejsum, P.; Mueller-Harvey, I.; Thamsborg, S. Anthelmintic activity of trans-cinnamaldehyde and A- and B-type proanthocyanidins derived from cinnamon (Cinnamomum verum). Sci. Rep. 2015, 5, 14791. [Google Scholar] [CrossRef] [Green Version]
- Wondrak, G.T.; Villeneuve, N.F.; Lamore, S.D.; Bause, A.S.; Jiang, T.; Zhang, D.D. The cinnamon-derived dietary factor cinnamic aldehyde activates the Nrf2-dependent antioxidant response in human epithelial colon cells. Molecules 2010, 15, 3338–3355. [Google Scholar] [CrossRef] [Green Version]
- Favaretto, J.A.; Alba, D.F.; Marchiori, M.S.; Marcon, H.J.; Souza, C.F.; Baldissera, M.D.; Bianchi, A.E.; Zanluchi, M.; Klein, B.; Wagner, R.; et al. Supplementation with a blend based on micro-encapsulated carvacrol, thymol, and cinnamaldehyde in lambs feed inhibits immune cells and improves growth performance. Livest. Sci. 2020, 240, 104144. [Google Scholar] [CrossRef]
- Lillehoj, H.S.; Kim, D.K.; Bravo, D.M.; Lee, S.H. Effects of dietary plant-derived phytonutrients on the genome-wide profiles and coccidiosis resistance in the broiler chickens. BMC Proc. 2011, 5, S34. [Google Scholar] [CrossRef] [Green Version]
- Chapman, C.E.; Ort, S.B.; Aragona, K.M.; Cabral, R.G.; Erickson, P.S. Effect of cinnamaldehyde on feed intake, rumen fermentation, and nutrient digestibility, in lactating dairy cows. J. Anim. Sci. 2019, 97, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.B.; Lee, J.S.; Cho, S.Y.; Lee, H.G. In vitro and in vivo studies of rumen-protected microencapsulated supplement comprising linseed oil, vitamin E, Rosemary extract, and hydrogenated palm oil on rumen fermentation, physiological profile, milk yield, and milk composition in dairy cows. Animals 2020, 10, 1631. [Google Scholar] [CrossRef] [PubMed]
- Piva, A.; Anfossi, P.; Meola, E.; Pietri, E.; Panciroli, A.; Bertuzzi, T.; Formigoni, A. Effect of microcapsulation on absorption processes in the pig. Livest. Prod. Sci. 1997, 51, 53–61. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, J.; Yu, H.; Guo, Q.; Defelice, C.; Hernandez, M.; Yin, Y.; Wang, Q. Alginate-Whey protein dry powder optimized for target delivery of essential oils to the intestine of chickens. Poult. Sci. 2014, 93, 2514–2525. [Google Scholar] [CrossRef] [PubMed]
- Tagliapietra, F.; Cattani, M.; Hindrichsen, I.K.; Hansen, H.H.; Colombini, S.; Bailoni, L.; Schiavon, S. True dry matter digestibility of feeds evaluated in situ with different bags and in vitro using rumen fluid collected from intact donor cows. Anim. Prod. Sci. 2012, 52, 338. [Google Scholar] [CrossRef]
- Holden, L.A. Comparison of methods of in vitro dry matter digestibility for ten feeds. J. Dairy Sci. 1999, 82, 1791–1794. [Google Scholar] [CrossRef]
- ANKOM Technology Method 3. Available online: https://www.ankom.com/sites/default/files/document-files/Method_3_Invitro_D200_D200I.pdf. (accessed on 25 April 2018).
- SAS Institute. SAS User’s Guide: Basics; SAS Institute Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Si, W.; Gong, J.; Chanas, C.; Cui, S.; Yu, H.; Caballero, C.; Friendship, R.M. In vitro assessment of antimicrobial activity of carvacrol, thymol and cinnamaldehyde towards Salmonella serotype Typhimurium DT104: Effects of pig diets and emulsification in hydrocolloids. J. Appl. Microbiol. 2006, 101, 1282–1291. [Google Scholar] [CrossRef]
- Yang, C.; Chowdhury, M.A.; Huo, Y.; Gong, J. Phytogenic compounds as alternatives to in-feed antibiotics: Potentials and challenges in application. Pathogens 2015, 4, 137–156. [Google Scholar] [CrossRef] [Green Version]
- Aureli, P.; Costantini, A.; Zolea, S. Antimicrobial activity of some plant essential oils against Listeria monocytogenes. J. Food Prot. 1992, 55, 344–348. [Google Scholar] [CrossRef]
- Pandit, V.A.; Shelef, L.A. Sensitivity of Listeria monocytogenes to rosemary (Rosmarinus officinalis L.). Food Microbiol. 1994, 11, 57–63. [Google Scholar] [CrossRef]
- Tassou, C.C.; Drosinos, E.H.; Nychas, G.J. Effects of essential oil from mint (Mentha piperita) on Salmonella enteritidis and Listeria monocytogenes in model food systems at 4° and 10 °C. J. Appl. Bacteriol. 1995, 78, 593–600. [Google Scholar] [CrossRef]
- Laguerre, M.; Lecomte, J.; Villeneuve, P. Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Prog. Lipid Res. 2007, 46, 244–282. [Google Scholar] [CrossRef]
- Liakos, I.; Rizzello, L.; Scurr, D.J.; Pompa, P.P.; Bayer, I.S.; Athanassiou, A. All-Natural composite wound dressing films of essential oils encapsulated in sodium alginate with antimicrobial properties. Int. J. Pharm. 2014, 463, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Bakry, A.M.; Abbas, S.; Ali, B.; Majeed, H.; Abouelwafa, M.Y.; Mousa, A.; Liang, L. Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Compr. Rev. Food Sci. Food Saf. 2016, 15, 143–182. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.; Dobarganes, C.; Márquez-Ruiz, G. Variables affecting lipid oxidation in dried microencapsulated oils. Grasas Aceites 2003, 54, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M. Nano and microparticles as controlled drug delivery devices. J. Pharm. Pharm. Sci. 2000, 3, 234–258. [Google Scholar]
- Lumsdon, S.; Friedmann, T.; Green, J. Encapsulation of Oils by Coacervation. U.S. Patent WO 2005/105290 A1, 10 November 2005. [Google Scholar]
- Ghosh, S.K. Functional coatings and microencapsulation: A general perspective. In Functional Coatings; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2006; pp. 1–28. [Google Scholar] [CrossRef] [Green Version]
- Ayala-Zavala, J.F.; Soto-Valdez, H.; González-León, A.; Álvarez-Parrilla, E.; Martín-Belloso, O.; González-Aguilar, G.A. Microencapsulation of cinnamon leaf (Cinnamomum zeylanicum) and garlic (Allium sativum) oils in β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 2008, 60, 359–368. [Google Scholar] [CrossRef]
- Benchaar, C.; Chaves, A.V.; Fraser, G.R.; Beauchemin, K.A.; McAllister, T.A. Effects of essential oils and their components on in vitro rumen microbial fermentation. Can. J. Anim. Sci. 2007, 87, 413–419. [Google Scholar] [CrossRef]
- Benchaar, C.; McAllister, T.A.; Chouinard, P.Y. Digestion, ruminal fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. J. Dairy Sci. 2008, 91, 4765–4777. [Google Scholar] [CrossRef]
- Chaves, A.V.; Stanford, K.; Dugan, M.E.R.; Gibson, L.L.; McAllister, T.A.; Van Herk, F.; Benchaar, C. Effects of cinnamaldehyde, garlic and juniper berry essential oils on rumen fermentation, blood metabolites, growth performance, and carcass characteristics of growing lambs. Livest. Sci. 2008, 117, 215–224. [Google Scholar] [CrossRef]
- Macheboeuf, D.; Morgavi, D.P.; Papon, Y.; Mousset, J.L.; Arturo-Schaan, M. Dose-Response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Anim. Feed Sci. Technol. 2008, 145, 335–350. [Google Scholar] [CrossRef]
- Benchaar, C. Diet supplementation with cinnamon oil, cinnamaldehyde, or monensin does not reduce enteric methane production of dairy cows. Animal 2016, 10, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. J. Anim. Sci. 2006, 84, 2801–2808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tager, L.R.; Krause, K.M. Effects of essential oils on rumen fermentation, milk production, and feeding behavior in lactating dairy cows. J. Dairy Sci. 2011, 94, 2455–2464. [Google Scholar] [CrossRef] [Green Version]
- Alsaht, A.A.; Bassiony, S.M.; Abdel-Rahman, G.A.; Shehata, S.A. Effect of cinnamaldehyde thymol mixture on growth performance and some ruminal and blood constituents in growing lambs fed high concentrate diet. Life Sci. J. 2014, 11, 240–248. [Google Scholar]
- Spanghero, M.; Zanfi, C.; Fabbro, E.; Scicutella, N.; Camellini, C. Effects of a blend of essential oils on some end products of in vitro rumen fermentation. Anim. Feed Sci. Technol. 2008, 145, 364–374. [Google Scholar] [CrossRef]
- Friedman, M.; Kozukue, N.; Harden, L.A. Cinnamaldehyde content in foods determined by gas chromatography-mass spectrometry. J. Agric. Food Chem. 2000, 48, 5702–5709. [Google Scholar] [CrossRef]
- Papatsiros, V.G.; Tzika, E.D.; Papaioannou, D.S.; Kyriakis, S.C.; Tassis, P.D.; Kyriakis, C.S. Effect of Origanum vulgaris and Allium sativum extracts for the control of proliferative enteropathy in weaning pigs. Pol. J. Vet. Sci. 2009, 12, 407–414. [Google Scholar]
- Papatsiros, V.G.; Tassis, P.D.; Tzika, E.D.; Papaioannou, D.S.; Petridou, E.; Alexopoulos, C.; Kyriakis, S.C. Effect of benzoic acid and combination of benzoic acid with a probiotic containing Bacillus cereus var. toyoi in weaned pig nutrition. Pol. J. Vet. Sci. 2011, 14, 117–125. [Google Scholar] [CrossRef] [Green Version]
- Spanghero, M.; Robinson, P.H.; Zanfi, C.; Fabbro, E. Effect of increasing doses of a microencapsulated blend of essential oils on performance of lactating primiparous dairy cows. Anim. Feed Sci. Technol. 2009, 153, 153–157. [Google Scholar] [CrossRef]
Product | Olistat-Cyn | Olistat-G | Olistat-P | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Form 1 | fEO | mEO | SE 2 | p-Value | fEO | mEO | SE 2 | p-Value | fEO | mEO | SE 2 | p-Value |
Incubation time (h) | ||||||||||||
0 | 20.9 | 17.7 | 1.9 | 0.989 | 56.0 | 12.0 | 2.1 | <0.001 | 18.3 | 14.4 | 1.5 | 0.809 |
2 | 26.4 | 17.5 | 1.8 | 0.034 | 75.6 | 12.7 | 1.7 | <0.001 | 36.3 | 12.4 | 1.8 | <0.001 |
6 | 30.0 | 17.7 | 2.4 | 0.023 | 76.1 | 13.0 | 2.1 | <0.001 | 53.8 | 14.4 | 2.2 | <0.001 |
12 | 50.4 | 17.9 | 2.4 | <0.001 | 76.6 | 13.0 | 1.9 | <0.001 | 55.3 | 12.4 | 2.8 | <0.001 |
24 | 50.7 | 14.1 | 1.9 | <0.001 | 80.2 | 13.6 | 1.7 | <0.001 | 55.9 | 12.3 | 1.7 | <0.001 |
48 | 64.0 | 13.4 | 1.4 | <0.001 | 80.5 | 13.7 | 1.2 | <0.001 | 84.6 | 12.4 | 1.8 | <0.001 |
Product | None | Olistat-Cyn | Olistat-G | Olistat-P | RMSE 1 | p-Value |
---|---|---|---|---|---|---|
Incubation Time (h) | 0 | 48 | 48 | 48 | ||
pH | 6.93 B | 6.73 AB | 6.36 A | 6.46 A | 0.12 | <0.001 |
Protozoa (log10/mL) | 4.73 b | 4.72 ab | 4.40 a | 4.56 ab | 0.19 | 0.099 |
Total VFA (mmol/L) | 17 a | 18 a | 33 b | 27 ab | 9.8 | 0.095 |
VFA (%) | ||||||
Acetate | 71.7 | 70.4 | 71.6 | 72.4 | 4.5 | 0.96 |
Propionate | 16.6 | 18.2 | 18 | 16.1 | 3.5 | 0.82 |
n-butyrate | 8.4 | 9.1 | 7.9 | 9.7 | 1.8 | 0.61 |
Iso-butyrate | 0.79 | 1.00 | 0.34 | 0.67 | 0.53 | 0.51 |
n-valerate | 0.63 a | 0.39 a | 1.30 b | 0.47 a | 0.31 | 0.012 |
Iso-valerate | 1.30 B | 0.73 A | 0.47 A | 0.54 A | 0.25 | <0.001 |
n-caproate | 0.47 | 0.25 | 0.40 | 0.15 | 0.24 | 0.24 |
Acetate/Propionate ratio | 4.31 | 3.88 | 4.67 | 4.69 | 1.0 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, N.; Tagliapietra, F.; Arango, S.; Guzzo, N.; Bailoni, L. Free and Microencapsulated Essential Oils Incubated In Vitro: Ruminal Stability and Fermentation Parameters. Animals 2021, 11, 180. https://doi.org/10.3390/ani11010180
Amin N, Tagliapietra F, Arango S, Guzzo N, Bailoni L. Free and Microencapsulated Essential Oils Incubated In Vitro: Ruminal Stability and Fermentation Parameters. Animals. 2021; 11(1):180. https://doi.org/10.3390/ani11010180
Chicago/Turabian StyleAmin, Nida, Franco Tagliapietra, Sheyla Arango, Nadia Guzzo, and Lucia Bailoni. 2021. "Free and Microencapsulated Essential Oils Incubated In Vitro: Ruminal Stability and Fermentation Parameters" Animals 11, no. 1: 180. https://doi.org/10.3390/ani11010180
APA StyleAmin, N., Tagliapietra, F., Arango, S., Guzzo, N., & Bailoni, L. (2021). Free and Microencapsulated Essential Oils Incubated In Vitro: Ruminal Stability and Fermentation Parameters. Animals, 11(1), 180. https://doi.org/10.3390/ani11010180