How Selective Breeding Has Changed the Morphology of the American Mink (Neovison vison)—A Comparative Analysis of Farm and Feral Animals
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zalewski, A.; Brzeziński, M. Norka Amerykańska Biologia Gatunku Inwazyjnego; Instytut Biologii Ssaków PAN: Białowieża, Poland, 2014; pp. 12–44. [Google Scholar]
- Bonesi, L.; Palazon, S. The American mink in Europe: Status, impacts, and control. Biol. Conserv. 2007, 134, 470–483. [Google Scholar] [CrossRef]
- Halliwell, E.C.; Macdonald, D.W. American mink Mustela vison in the upper Thames catchment: Relationship with selected prey species and den availability. Biol. Conserv. 1996, 76, 51–56. [Google Scholar] [CrossRef]
- Brzeziński, M.; Natorff, M.; Zalewski, A.; Żmihorski, M. Numerical and behavioral responses of waterfowl to the invasive American mink: A conservation paradox. Biol. Conserv. 2012, 147, 68–78. [Google Scholar] [CrossRef]
- Maran, T.; Põdra, M.; Harrington, L.A.; Macdonald, D.W. European mink: Restoration attempts for a species on the brink of extinction. In Biology and Conservation of Musteloids; Macdonald, D.W., Newman, C., Harrington, L.A., Eds.; Oxford University Press: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Sidorovich, V.; Kruuk, H.; Macdonald, D.W. Body size, and interactions between European and American mink (Mustela lutreola and M. vison) in Eastern Europe. J. Zool. 1999, 248, 521–527. [Google Scholar] [CrossRef]
- Dunstone, N.; Gorman, M. (Eds.) Behaviour and Ecology of Riparian Mammals (Symposia of the Zoological Society of London); Cambridge University Press: Cambridge, UK, 1998; pp. 311–320. [Google Scholar] [CrossRef]
- Põdra, M.; Gómez, A. Rapid expansion of the American mink poses a serious threat to the European mink in Spain. Mammalia 2018, 82, 580–588. [Google Scholar] [CrossRef]
- Brzeziński, M.; Marzec, M. The origin, dispersal and distribution of the American mink Mustela vison in Poland. Acta Theriol. 2003, 48, 505–514. [Google Scholar] [CrossRef]
- Zalewski, A.; Michalska-Parda, A.; Ratkiewicz, M.; Kozakiewicz, M.; Bartoszewicz, M.; Brzeziński, M. High mitochondrial DNA diversity of an introduced alien carnivore: Comparison of feral and ranch American mink Neovison vison in Poland. Divers. Distrib. 2011, 17, 757–768. [Google Scholar] [CrossRef]
- Wierzbicki, H. Breeding value evaluation in Polish fur animals: Factors affecting pelt prices in the international trading system. Czech J. Anim. Sci. 2005, 50, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Wierzbicki, H.; Peura, J.; Filistowicz, A.; Przysiecki, P. Economic weights for litter size and fur coat traits of Arctic fox in Poland. J. Anim. Feed. Sci. 2007, 16, 140–152. [Google Scholar] [CrossRef]
- Rauw, W.M.; Kanis, E.; Noordhuizen-Stassen, E.N.; Grommers, F.J. Undesirable side effects of selection for high production efficiency in farm animals: A review. Livest. Prod. Sci. 1998, 56, 15–33. [Google Scholar] [CrossRef]
- Zatoń-Dobrowolska, M.; Moska, M.; Mucha, A.; Wierzbicki, H.; Przysiecki, P.; Dobrowolski, M. Variation in fur farm and wild populations of the red fox, Vulpes vulpes (Carnivora: Canidae)—Part I: Morphometry. Can. J. Anim. Sci. 2016, 96, 589–597. [Google Scholar] [CrossRef] [Green Version]
- Kruska, D. The effect of domestication on brain size and composition in the mink (Mustela vison). J. Zool. 1996, 239, 645–661. [Google Scholar] [CrossRef]
- Kruska, D.; Schreiber, A. Comparative morphometrical and biochemical-genetic investigations in wild and ranch mink (Mustela vison: Carnivora: Mammalia). Acta Theriol. 1999, 44, 377–392. [Google Scholar] [CrossRef] [Green Version]
- Tamlin, A.L.; Bowman, J.; Hackett, D.F. Separating Wild from Domestic American Mink Neovison vison Based on Skull Morphometries. Wildl. Biol. 2009, 15, 266–277. [Google Scholar] [CrossRef] [Green Version]
- Korablev, M.P.; Korablev, N.P.; Korablev, P.N. Morphophenetic analysis of American mink (Neovison vison) populations from the Caspian-Baltic watershed. Russ. J. Biol. Invasions 2013, 4, 24–38. [Google Scholar] [CrossRef]
- Thirstrup, J.P.; Ruiz-Gonzalez, A.; Pujolar, J.M.; Larsen, P.F.; Jensen, J.; Randi, E.; Zalewski, A.; Pertoldi, C. Population genetic structure in farm and feral American mink (Neovison vison) inferred from RAD sequencing-generated single nucleotide polymorphisms. J. Anim. Sci. 2015, 93, 3773–3782. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.M.; Hayden, T.J. Genetic influences on cranial form: Variation among ranch and feral American mink Mustela vison (Mammalia: Mustelidae). Biol. J. Linn. Soc. 1995, 55, 293–307. [Google Scholar] [CrossRef]
- Schulte-Hostedde, A.I.; Bowman, J.; Nituch, L.A. Dynamic spleen mass in wild and domestic American mink. Biol. J. Linn. Soc. 2012, 107, 624–631. [Google Scholar] [CrossRef] [Green Version]
- Zalewski, A.; Michalska-Parda, A.; Bartoszewicz, M.; Kozakiewicz, M.; Brzeziński, M. Multiple introductions determine the genetic structure of an invasive species population: American mink Neovison vison in Poland. Biol. Conserv. 2010, 143, 1355–1363. [Google Scholar] [CrossRef]
- Lecis, R.; Ferrando, A.; Ruiz-Olmo, J.; Mañas, S.; Domingo-Roura, X. Population genetic structure and distribution of introduced American mink (Mustela vison) in Spain, based on microsatellite variation. Conserv. Genet. 2007, 9, 1149–1161. [Google Scholar] [CrossRef]
- Melero, Y.; Santulli, G.; Gómez, A.; Gosalbez, J.; Gosálbez, J.; Rodriguez-Refojos, C.; Palazón, S. Morphological variation of introduced species: The case of American mink (Neovison vison) in Spain. Mamm. Biol. 2012, 77, 345–350. [Google Scholar] [CrossRef]
- Hansen, B.K.; Berg, P. Mink dam weight changes during the lactation period I. Genetic and Environmental Effects. Acta Agric. Scand. Sec. A Anim. Sci. 1998, 48, 49–57. [Google Scholar] [CrossRef]
- Bender, H.; Lange, S. Adjusting for multiple testing—When and how? J. Clin. Epidemiol. 2001, 54, 343–349. [Google Scholar] [CrossRef]
- Dray, S.; Dufour, A.B. The ade4 package: Implementing the duality diagram for ecologists. J. Stat. Softw. 2007, 22, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Kassambara, A.; Mundt, F. Factoextra: Extract and Visualize the Results of Multivariate Data Analyses. R Package Version 1.0.3. 2016. Available online: http://www.sthda.com/english/rpkgs/factoextra (accessed on 15 November 2020).
- Jackson, D.A. Stopping rules in principal components analysis: A comparison of heuristical and statistical approaches. Ecology 1993, 74, 2204–2214. [Google Scholar] [CrossRef]
- Kaiser, H.F. The application of electronic computers to factor analysis. Educ. Psychol. Meas. 1960, 20, 141–151. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: http://www.R-project.org/ (accessed on 15 November 2020).
- Campbell, M.J.; Swinscow, T.D.V. Statistics at Square One, 11th ed.; Wiley-Blackwell/BMJ Books: Chichester, UK; Hoboken, NJ, USA, 2009. [Google Scholar]
- Zalewski, A.; Bartosiewicz, M. Phenotypic variation of an alien species in a new environment: The body size and diet of American mink over time and at local and continental scales. Biol. J. Linn. Soc. 2012, 105, 681–693. [Google Scholar] [CrossRef] [Green Version]
- Thom, M.D.; Harrington, L.A.; Macdonald, D.W. Why are American mink sexually dimorphic? A role for niche separation. Oikos 2004, 105, 525–535. [Google Scholar] [CrossRef]
- Melero, Y.; Palazón, S.; Gosálbez, J. Morphological adaptation of an invasive American mink population in Mediterranean areas of Spain. Acta Zool. Stockh. 2008, 89, 47–51. [Google Scholar] [CrossRef]
- Macdonald, D.W.; Harrington, L.A.; Yamaguchi, N.; Thom, M.D.F.; Bagniewska, J. Biology, ecology, and reproduction of American mink Neovison vison on lowland farmland. In Wildlife Conservation on Farmland; Volume 2: Conflict in the Countryside; Macdonald, D.W., Feber, R.E., Eds.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Pagh, S.; Pertoldi, C.; Petersen, H.H.; Jensen, T.H.; Hansen, M.S.; Madsen, S.; Evar Kraft, D.C.; Iversen, N.; Roslev, P.; Chriel, M. Methods for the identification of farm escapees in feral mink (Neovison vison) populations. PLoS ONE 2019, 14, e0224559. [Google Scholar] [CrossRef]
- Sidorovich, V.E.; Sidorovich, A.A.; Ivanovskij, V.V.; Pikulik, M.M.; Shinkevich, E.P. The structure of vertebrate predator community in north-eastern Belarus before and after naturalization of the American mink and raccoon dog. Folia Zool. 2008, 57, 373–391. [Google Scholar]
- Schulte-Hostedde, A.I.; Elsasser, S.C. Spleen mass, body condition, and parasite load in male American mink (Neovison vison). J. Mammal. 2011, 92, 221–226. [Google Scholar] [CrossRef]
- Gugołek, A.; Zalewski, D.; Strychalski, J.; Konstantynowicz, M. Food transit time, nutrient digestibility and nitrogen retention in farmed and feral American mink (Neovison vison)—A comparative analysis. J. Anim. Physiol. Anim. Nutr. 2013, 97, 1030–1035. [Google Scholar] [CrossRef]
- Cavallini, P. Variation in the body size of the red fox. Ann. Zool. Fenn. 1995, 32, 421–427. [Google Scholar]
- Lord, K.A.; Larson, G.; Coppinger, R.P.; Karlsson, E.K. The History of Farm Foxes Undermines the animal Domestication Syndrome. Trends Ecol. Evol. 2020, 35, 125–136. [Google Scholar] [CrossRef] [Green Version]
- Belyaev, D.K. Destabilizing selection as a factor in domestication. J. Hered. 1979, 70, 301–308. [Google Scholar] [CrossRef]
- Trut, L. Early canid domestication: The Farm-Fox Experiment foxes bred for tamability in a 40-year experiment exhibit remarkable transformations that suggest an interplay between behavioral genetics and development. Am. Sci. 1999, 87, 160–169. [Google Scholar] [CrossRef]
- Williams, T.M. Locomotion in the North American Mink, a semi-aquatic mammal. J. Exp. Biol. 1983, 103, 155–168. [Google Scholar]
- Tomaszewska, E.; Muszyński, S.; Dobrowolski, P.; Kostro, K.; Taszkun, I.; Żmuda, A.; Blicharski, T.; Kędzia, P. Bentonite diminishes DON-induced changes in bone development in mink dams. J. Vet. Res. 2016, 60, 349–355. [Google Scholar] [CrossRef] [Green Version]
- Tomaszewska, E.; Dobrowolski, P.; Świetlicka, I.; Muszyński, S.; Kostro, K.; Jakubczak, A.; Taszkun, I.; Żmuda, A.; Rycerz, K.; Blicharski, T.; et al. Effects of maternal treatment with β-hydroxy-β-metylbutyrate and 2-oxoglutaric acid on femur development in offspring of minks of the standard dark brown type. J. Anim. Physiol. Anim. Nutr. 2018, 102, e299–e308. [Google Scholar] [CrossRef] [Green Version]
- Sulik, M.; Radek, A.; Bilski, P. Discrimination between the domesticated and the feral American mink in Poland based on the left track of a forelimb. In Proceedings of the Xth International Scientific Congress in Fur Animal Production, Copenhagen, Denmark, 21–24 August 2012; Wageningen Academic Publishers: Wageningen, The Netherlands, 2012; Volume 36, pp. 368–375. [Google Scholar] [CrossRef]
- Thirstrup, J.P.; Jensen, J.; Lund, M.S. Genetic parameters for fur quality graded on live animals and dried pelts of American mink (Neovison vison). J. Anim. Breed. Genet. 2017, 134, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Villumsen, T.M.; Asp, T.; Guldbrandtsen, B.; Sahana, G.; Lund, M.S. SNP markers associated with body size and pelt length in American mink (Neovison vison). BMC Genet. 2018, 19, 103. [Google Scholar] [CrossRef]
- Hammershøj, M.; Pertoldi, C.; Asferg, T.; Møller, T.B.; Kristensen, N.B. Danish free-ranging mink populations consist mainly of farm animals: Evidence from microsatellite and stable isotope analyses. J. Nat. Conserv. 2005, 13, 267–274. [Google Scholar] [CrossRef]
- Mallapaty, S. COVID mink analysis shows mutations are not dangerous—Yet. Nature 2020, 587, 340–341. [Google Scholar] [CrossRef] [PubMed]
- Euronews. Polish Scientists Identify First Cases of COVID-19 at a Mink Farm. Available online: https://www.euronews.com/2020/11/24/polish-scientists-identify-first-cases-of-covid-19-at-a-mink-farm (accessed on 19 December 2020).
Trait | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BW (g) | BL (cm) | BC (cm) | TL (cm) | EH (cm) | FRPL (cm) | RRPL (cm) | FRFL (cm) | RRFL (cm) | PrCo1 | PrCo2 | |
FARM MINK | |||||||||||
n median | 200 1725.00 | 200 42.00 | 200 19.00 | 195 18.00 | 199 1.70 | 200 11.00 | 199 13.00 | 200 4.00 | 199 6.00 | 199 0.92 | 199 0.67 |
mean | 1753.00 a | 42.38 a | 19.18 a | 18.19 a | 1.65 a | 11.54 a | 12.51 a | 4.26 | 6.28 | 0.93 a | 0.68 |
SD | 607.71 | 3.82 | 2.77 | 3.55 | 0.30 | 1.09 | 1.15 | 0.57 | 0.68 | 0.08 | 0.08 |
VC (%) | 34.67 | 9.02 | 14.43 | 19.53 | 18.16 | 9.45 | 9.19 | 13.48 | 10.90 | 8.33 | 12.12 |
FERAL MINK | |||||||||||
n median | 43 1200.00 | 43 41.00 | 43 17.00 | 43 19.70 | 43 1.00 | 43 9.40 | 43 13.30 | 43 4.50 | 43 6.40 | 43 0.70 | 43 0.69 |
mean | 1126.74 b | 40.27 b | 17.10 b | 19.44 b | 1.14 b | 9.43 b | 13.15 b | 4.31 | 6.39 | 0.72 b | 0.67 |
SD | 275.02 | 3.76 | 2.36 | 1.97 | 0.34 | 1.59 | 1.54 | 0.82 | 0.71 | 0.11 | 0.09 |
VC (%) | 24.41 | 9.33 | 13.78 | 10.16 | 29.37 | 16.82 | 11.72 | 18.92 | 11.11 | 14.61 | 13.32 |
Trait | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BW (g) | BL (cm) | BC (cm) | TL (cm) | EH (cm) | FRPL (cm) | RRPL (cm) | FRFL (cm) | RRFL (cm) | PrCo1 | PrCo2 | |
FARM FEMALES | |||||||||||
n median | 100 1200.00 | 100 39.00 | 100 17.00 | 96 17.00 | 100 1.45 | 100 11.00 | 99 12.00 | 100 4.00 | 99 6.00 | 99 0.92 | 99 0.67 |
mean | 1219.00 b | 39.24 a | 16.88 a | 16.78 a | 1.42 b | 11.06 b | 11.81 a | 3.87 a | 5.87 a | 0.94 a | 0.66 b |
SD | 219.59 | 2.24 | 1.47 | 3.00 | 0.19 | 0.94 | 0.97 | 0.42 | 0.59 | 0.08 | 0.09 |
VC (%) | 18.01 | 5.71 | 8.72 | 17.85 | 13.39 | 8.53 | 8.18 | 10.80 | 10.08 | 8.21 | 13.44 |
FERAL FEMALES | |||||||||||
n median | 10 750.00 | 10 35.65 | 10 15.00 | 10 17.25 | 10 1.00 | 10 8.50 | 10 11.35 | 10 4.15 | 10 5.85 | 10 0.72 | 10 0.69 |
mean | 795.00 c | 35.51 b | 15.04 b | 17.31 a | 1.09 c | 8.57 c | 11.54 a | 3.82 a | 5.79 a | 0.75 b | 0.66 ab |
SD | 138.34 | 2.38 | 1.91 | 1.97 | 0.51 | 1.02 | 0.94 | 0.67 | 0.43 | 0.10 | 0.09 |
VC (%) | 17.40 | 6.69 | 12.73 | 11.39 | 46.67 | 11.87 | 8.12 | 17.49 | 7.39 | 12.97 | 13.66 |
FARM MALES | |||||||||||
n median | 100 2250.00 | 100 46.00 | 100 21.00 | 99 20.00 | 99 1.90 | 100 12.00 | 100 13.00 | 100 4.50 | 100 7.00 | 100 0.92 | 100 0.71 |
mean | 2287.00 a | 45.51 c | 21.48 c | 19.57 b | 1.89 a | 12.02 a | 13.20 b | 4.64 b | 6.69 b | 0.91 a | 0.70 a |
SD | 343.60 | 2.12 | 1.59 | 3.53 | 0.18 | 1.01 | 0.86 | 0.43 | 0.50 | 0.08 | 0.07 |
VC (%) | 15.02 | 4.67 | 7.42 | 18.02 | 9.67 | 8.44 | 6.55 | 9.33 | 7.49 | 8.25 | 10.36 |
FERAL MALES | |||||||||||
n median | 33 1250.00 | 33 42.00 | 33 17.00 | 33 20.00 | 33 1.10 | 33 9.50 | 33 14.00 | 33 4.60 | 33 6.70 | 33 0.68 | 33 0.69 |
mean | 1227.27 b | 41.71 d | 17.72 d | 20.08 b | 1.16 c | 9.70 c | 13.64 b | 4.46 b | 6.58 b | 0.71 b | 0.68 ab |
SD | 221.53 | 2.78 | 2.13 | 1.48 | 0.27 | 1.65 | 1.35 | 0.81 | 0.68 | 0.11 | 0.09 |
VC (%) | 18.05 | 6.66 | 12.00 | 7.35 | 23.46 | 16.98 | 9.88 | 18.07 | 10.34 | 15.14 | 13.36 |
Trait | BW | BL | BC | TL | EH | FRPL | RRPL | FRFL | RRFL | PrCo1 | PrCo2 |
---|---|---|---|---|---|---|---|---|---|---|---|
BW | 1.00 | 0.87 * | 0.94 * | 0.57 * | 0.74 * | 0.55 * | 0.69 * | 0.69 * | 0.63 * | −0.05 | 0.21 * |
BL | 0.87 * | 1.00 | 0.80 * | 0.56 * | 0.72 * | 0.57 * | 0.70 * | 0.71 * | 0.67 * | −0.05 | 0.19 |
BC | 0.78 * | 0.59 * | 1.00 | 0.51 * | 0.72 * | 0.46 * | 0.64 * | 0.67 * | 0.57 * | −0.10 | 0.24 * |
TL | 0.52 * | 0.62 * | 0.32 | 1.00 | 0.48 * | 0.39 * | 0.52 * | 0.47 * | 0.48 * | −0.08 | 0.11 |
EH | 0.31 | 0.33 | 0.21 | 0.17 | 1.00 | 0.35 * | 0.54 * | 0.58 *a | 0.53 * | −0.11 | 0.17 |
FRPL | 0.35 | 0.40 | -0.08 | 0.33 | 0.20 | 1.00 | 0.63 * | 0.62 *a | 0.55 * | 0.51 * | 0.22 * |
RRPL | 0.60 * | 0.61 * | 0.31 | 0.56 * | 0.17 | 0.53 * | 1.00 | 0.57 * | 0.65 * | −0.28 * | 0.05 |
FRFL | 0.44 | 0.46 | 0.64 * | 0.54 * | 0.01 b | −0.08 b | 0.29 | 1.00 | 0.60 * | 0.17 | 0.60 * |
RRFL | 0.65 * | 0.62 * | 0.70 * | 0.64 * | 0.04 | 0.18 | 0.60 * | 0.79 * | 1.00 | −0.04 | −0.23 * |
PrCo1 | −0.08 | −0.07 | −0.35 | −0.10 | 0.14 | 0.71 * | −0.17 | −0.34 | −0.32 | 1.00 | 0.24 * |
PrCo2 | −0.01 | 0.03 | 0.24 | 0.24 | −0.04 | −0.38 | −0.19 | 0.69 * | 0.17 | −0.24 | 1.00 |
Traits | PC1 | PC2 | PC3 |
---|---|---|---|
BW | −0.92 | 0.14 | −0.05 |
BL | −0.91 | −0.04 | −0.07 |
BC. | −0.87 | 0.02 | 0.07 |
TL | −0.47 | −0.33 | 0.00 |
EH | −0.68 | 0.41 | −0.16 |
FRPL | −0.65 | 0.55 | −0.20 |
RRPL | −0.67 | −0.52 | −0.18 |
FRFL | −0.73 | −0.19 | 0.54 |
RRFL | −0.71 | −0.38 | −0.30 |
PrCo1 | −0.13 | 0.93 | −0.07 |
PrCo2 | −0.23 | 0.14 | 0.95 |
Eigenvalue | 5.11 | 1.94 | 1.40 |
Percentage variance | 46.46 | 17.61 | 12.72 |
Percentage cumulative variance | 46.46 | 64.07 | 76.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mucha, A.; Zatoń-Dobrowolska, M.; Moska, M.; Wierzbicki, H.; Dziech, A.; Bukaciński, D.; Bukacińska, M. How Selective Breeding Has Changed the Morphology of the American Mink (Neovison vison)—A Comparative Analysis of Farm and Feral Animals. Animals 2021, 11, 106. https://doi.org/10.3390/ani11010106
Mucha A, Zatoń-Dobrowolska M, Moska M, Wierzbicki H, Dziech A, Bukaciński D, Bukacińska M. How Selective Breeding Has Changed the Morphology of the American Mink (Neovison vison)—A Comparative Analysis of Farm and Feral Animals. Animals. 2021; 11(1):106. https://doi.org/10.3390/ani11010106
Chicago/Turabian StyleMucha, Anna, Magdalena Zatoń-Dobrowolska, Magdalena Moska, Heliodor Wierzbicki, Arkadiusz Dziech, Dariusz Bukaciński, and Monika Bukacińska. 2021. "How Selective Breeding Has Changed the Morphology of the American Mink (Neovison vison)—A Comparative Analysis of Farm and Feral Animals" Animals 11, no. 1: 106. https://doi.org/10.3390/ani11010106
APA StyleMucha, A., Zatoń-Dobrowolska, M., Moska, M., Wierzbicki, H., Dziech, A., Bukaciński, D., & Bukacińska, M. (2021). How Selective Breeding Has Changed the Morphology of the American Mink (Neovison vison)—A Comparative Analysis of Farm and Feral Animals. Animals, 11(1), 106. https://doi.org/10.3390/ani11010106