Pilot Study of the Effects of Polyphenols from Chestnut Involucre on Methane Production, Volatile Fatty Acids, and Ammonia Concentration during In Vitro Rumen Fermentation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. PICB Extraction
2.2. Donor Animals, Diet, and Rumen Fluid Collection
2.3. Experimental Design and Treatments
2.4. Sampling and Chemical Analyses
2.5. Statistics and Analysis
3. Results
3.1. Fermentation Parameters and DM Degradation Rate
3.2. Gas Production, Composition, and Methane Yield
3.3. Gas Production after 96 h In-Vitro Fermentation
4. Discussion
4.1. Effect of PICB on pH
4.2. Effect of PICB on NH3-N Concentration
4.3. Effect of PICB on VFA Production
4.4. Effect of PICB on Methane Production
4.5. Effects of PICB on IVDMD
4.6. Effect of PICB on Gas Production after 24 and 96 h In-Vitro Fermentation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tackling Climate Change through Livestock: A Global Assessment of Emissions and Mitigation Opportunities. Available online: http://www.fao.org/3/i3437e/i3437e00.htm (accessed on 21 March 2020).
- Aboagye, I.A.; Oba, M.; Koenig, K.; Zhao, G.Y.; Beauchemin, K.A. Use of gallic acid and hydrolyzable tannins to reduce methane emission and nitrogen excretion in beef cattle fed a diet containing alfalfa silage. J. Anim. Sci. 2019, 97, 2230–2244. [Google Scholar]
- Calsamiglia, S.; Ferret, A.; Reynolds, C.K.; Kristensen, N.B.; Van Vuuren, A.M. Strategies for optimizing nitrogen use by ruminants. Animal 2010, 4, 1184–1196. [Google Scholar]
- Dijkstra, J.; Oenema, O.; Van Groenigen, J.W.; Spek, J.W.; Van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7, 292–302. [Google Scholar]
- Wischer, G.; Greiling, A.; Boguhn, J.; Steingass, H.; Schollenberger, M.; Hartung, K.; Rodehutscord, M. Effects of long-term supplementation of chestnut and valonea extracts on methane release, digestibility and nitrogen excretion in sheep. Animal 2014, 8, 938–948. [Google Scholar]
- Goel, G.; Makkar, H. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 2011, 44, 729–739. [Google Scholar]
- McSweeney, C.S.; Palmer, B.; McNeill, D.M.; Krause, D.O. Microbial interactions with tannins: Nutritional consequences for ruminants. Anim. Feed Sci. Technol. 2001, 91, 83–93. [Google Scholar]
- Bhatta, R.; Uyeno, Y.; Tajima, K.; Takenaka, A.; Yabumoto, Y.; Nonaka, I.; Enishi, O.; Kurihara, M. Difference in nature of tannins on in vitro ruminal methane and volatile fatty acid production and on methanogenic archaea and protozoal populations. J. Dairy Sci. 2009, 92, 5512–5522. [Google Scholar]
- Deaville, E.R.; Givens, D.I.; Mueller-Harvey, I. Chestnut and mimosa tannin silages: Effects in sheep differ for apparent digestibility, nitrogen utilisation and losses. Anim. Feed Sci. Technol. 2010, 157, 129–138. [Google Scholar]
- FAOSTAT. Food and Agriculture Organization of the United States. Available online: http://www.fao.org/faostat/en/?#data/QC (accessed on 20 December 2019).
- Vella, F.M.; Laratta, B.; LaCara, F.; Morana, A. Recovery of bioactive molecules from chestnut (Castanea sativa Mill.) by-products through extraction by different solvents. Nat. Prod. Res. 2017, 32, 1022–1032. [Google Scholar]
- Maurelli, L.; Ionata, E.; LaCara, F.; Morana, A. Chestnut Shell as Unexploited Source of Fermentable Sugars: Effect of Different Pretreatment Methods on Enzymatic Saccharification. Appl. Biochem. Biotech. 2013, 170, 1104–1118. [Google Scholar]
- Liberti, A.; Goretti, G.; Russo, M.V. PCDD and PCDF formation in the combustion of the vegetable wastes. Chemosphere 1983, 12, 61–63. [Google Scholar]
- Shi, E.H. Study on Extraction, Purification and the Antioxidant Activity of Polyphenol from Castanea Mollissina Blume. Master’s Thesis, Beijing University of Agriculture, Beijing China, 7 June 2013. [Google Scholar]
- Dong, S.; Li, H.; Gasco, L.; Xiong, Y.; Guo, K.J.; Zoccarato, I. Antioxidative activity of the polyphenols from the involucres of Castanea mollissima Blume and their mitigating effects on heat stress. Poult. Sci. 2015, 94, 1096–1104. [Google Scholar]
- Xiong, Y.; Dong, S.; Zhao, X.; Guo, K.J.; Gasco, L.; Zoccarato, I. The Research on the Mechanism of Antioxidative and Growth-Promoting Effects of Polyphenols from the Involucres of Castanea Mollissima Blume on IEC-6 Cells. Poult. Sci. 2016, 95, 1869–1880. [Google Scholar]
- Aboagye, I.A.; Beauchemin, K.A. Potential of Molecular Weight and Structure of Tannins to Reduce Methane Emissions from Ruminants: A Review. Animals 2019, 9, 856. [Google Scholar]
- NRC (National Research Council). Nutrient Requirements of Dairy Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed values obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Cao, Y.C.; Yang, H.J. Ruminal digestibility and fermentation characteristics in vitro of fenugreek and alfalfa hay combination with or without the inoculation of Neocallimastix sp. YAK11. Anim. Feed Sci. Technol. 2011, 169, 53–60. [Google Scholar]
- Broderick, G.; Kang, J.H. Automated simultaneous determination of ammonia and amino acids in ruminal fluids and in vitro media. J. Dairy Sci. 1980, 80, 2964–2971. [Google Scholar]
- Jayanegara, A.; Goel, G.; Makkar, H.P.S.; Becker, K. Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Technol. 2015, 209, 60–68. [Google Scholar]
- Rira, M.; Morgavi, D.; Genestoux, L.; Djibiri, S.; Sekhri, I.; Doreau, M. Methanogenic potential of tropical feeds rich in hydrolysable tannins. J. Anim Sci. 2019, 97, 2700–2710. [Google Scholar]
- Wei, C.; Guyader, J.; Collazos, L.; Beauchemin, K.; Zhao, G. Effects of gallic acid on in vitro rumen fermentation and methane production using rumen simulation (Rusitec) and batch-culture techniques. Anim. Prod. Sci. 2019, 59, 277–287. [Google Scholar]
- Giridhar, K.S.; Prabhu, T.; Singh, K.; Nagabhushan, V.; Thirumalesh, T.; Rajeshwari, Y.; Umashankar, B. Nutritional potentialities of some tree leaves based on polyphenols and rumen in vitro gas production. Vet. World 2018, 11, 1479–1485. [Google Scholar]
- Kopecny, J.; Wallace, R.J. Cellular Location and Some Properties of Proteolytic Enzymes of Rumen Bacteria. Appl. Environ. Microb. 1982, 43, 1026–1033. [Google Scholar]
- Sarnataro, C.; Spanghero, M. In vitro rumen fermentation of feed substrates added with chestnut tannins or an extract from Stevia rebaudiana Bertoni. Anim. Nutr. 2020, 6, 54–60. [Google Scholar]
- Aguerre, M.J.; Capozzolo, M.C.; Lencioni, P.; Cabral, C.; Wattiaux, M.A. Effect of quebracho-chestnut tannin extracts at 2 dietary crude protein levels on performance, rumen fermentation, and nitrogen partitioning in dairy cows. J. Dairy Sci. 2016, 99, 4476–4486. [Google Scholar]
- Hassanat, F.; Benchaar, C. Assessment of the effect of condensed (acacia and quebracho) and hydrolysable (chestnut and valonea) tannins on rumen fermentation and methane production in vitro. J. Sci. Food Agr. 2013, 93, 332–339. [Google Scholar]
- Kabasa, J.D.; Opuda-Asibo, J.; Thinggaard, G.; Ter Meulen, U. The Role of Bioactive Tannins in the Postpartum Energy Retention and Productive Performance of Goats Browsed in a Natural Rangeland. Trop. Anim. Health Prod. 2004, 36, 567–579. [Google Scholar]
- Al-Dobaib, S.N. Effect of different levels of Quebracho tannin on nitrogen utilization and growth performance of Najdi sheep fed alfalfa (Medicago sativa) hay as a sole diet. Anim. Sci. J. 2009, 80, 532–541. [Google Scholar]
- Cerulli, A.; Napolitano, A.; Masullo, M.; Hošek, J.; Pizza, C.; Piacente, S. Chestnut shells (Italian cultivar “Marrone di Roccadaspide” PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MSn rationalization of tannins. Food Res. Int. 2020, 129. [Google Scholar] [CrossRef]
- Mcsweeney, C.S.; Palmer, B.; Bunch, R.; Krause, D.O. Isolation and Characterization of Proteolytic Ruminal Bacteria from Sheep and Goats Fed the Tannin-Containing Shrub Legume. Appl. Environ. Microb. 1999, 65, 3075–3083. [Google Scholar]
- Tabacco, E.; Borreani, G.; Crovetto, G.M.; Galassi, G.; Colombo, D.; Cavallarin, L. Effect of Chestnut Tannin on Fermentation Quality, Proteolysis, and Protein Rumen Degradability of Alfalfa Silage. J. Dairy Sci. 2006, 89, 4736–4746. [Google Scholar]
- Jouany, J.P. Manipulation of microbial activity in the rumen. Arch. Anim. Nutr. 1994, 46, 133–153. [Google Scholar]
- Aboagye, I.A.; Oba, M.; Castillo, A.R.; Koenig, K.M.; Iwaasa, A.D.; Beauchemin, K.A. Effects of hydrolyzable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet. J. Anim. Sci. 2018, 96, 5276–5286. [Google Scholar]
- Jayanegara, A.; Goel, G.; Makkar, H.P.S.; Becker, K. Reduction in Methane Emissions from Ruminants by Plant Secondary Metabolites: Effects of Polyphenols and Saponins. In Sustainable Improvement of Animal Production and Health; Odongo, N.E., Garcia, M., Viljoen, G.J., Eds.; Food and Agriculture Organization of the United Nations: Rome, Italy, 2010; pp. 151–157. [Google Scholar]
- Vasta, V.; Daghio, M.; Cappucci, A.; Buccioni, A.; Serra, A.; Viti, C.; Mele, M. Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fiber digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci. 2019, 102, 1–24. [Google Scholar]
- Liu, H.; Vaddella, V.; Zhou, D. Effects of chestnut tannins and coconut oil on growth performance, methane emission, ruminal fermentation, and microbial populations in sheep. J. Dairy Sci. 2011, 94, 6069–6077. [Google Scholar]
- Witzig, M.; Zeder, M.; Rodehutscord, M. Effect of the ionophore monensin and tannin extracts supplemented to grass silage on populations of ruminal cellulolytics and methanogens in vitro. Anaerobe 2018, 50, 44–54. [Google Scholar]
- Kittelmann, S.; Janssen, P.H. Characterization of rumen ciliate community composition in domestic sheep, deer, and cattle, feeding on varying diets, by means of PCR-DGGE and clone libraries. FEMS Microbiol. Ecol. 2011, 75, 468–481. [Google Scholar]
- Jafari, S.; Ebrahimi, M.; Goh, Y.M.; Rajion, M.A.; Jahromi, M.F.; Al-Jumaili, W.S. Manipulation of rumen fermentation and methane gas production by plant secondary metabolites (saponin, tannin and essential oil)—A review of ten-year studies. Ann. Anim. Sci. 2019, 19, 3–29. [Google Scholar]
- Amanzougarene, Z.; Yuste, S.; Fondevila, M. Addition of several tannin extracts to modulate fermentation of barley meal under intensive ruminant feeding conditions simulated in vitro by incubating at pH 6.0–6.2. Anim. Prod. Sci. 2019, 59, 1081–1089. [Google Scholar]
Ingredient g/100 g DM | |
Flaked corn | 17.6 |
DDGS (dry) 1 | 7.8 |
Soybean meal | 2.4 |
Cottonseeds fuzzy | 2.9 |
Corn silage | 66.6 |
Sodium chloride | 0.2 |
Premix 2 | 2.5 |
Chemical Composition % DM | |
Crude protein | 13.52 |
NDF 3 | 31.48 |
ADF 4 | 16.71 |
Calcium (Ca) | 0.81 |
Phosphorus (P) | 0.36 |
Metabolized energy (MJ/kg) 5 | 11.50 |
Items | PICB inclusion (DM, %) | Polynomial 6 | |||||
---|---|---|---|---|---|---|---|
0% | 0.1% | 0.2% | 0.3% | 0.4% | 0.5% | ||
pH | 6.598 ± 0.008 | 6.621 ± 0.042 | 6.600 ± 0.066 | 6.596 ± 0.012 | 6.610 ± 0.034 | 6.598 ± 0.018 | |
NH3-N (mmol/L) 2 | 24.51 ± 0.76 a | 24.05 ± 0.62 b | 23.66 ± 0.58 bc | 23.35 ± 0.51 c | 23.92 ± 0.55 b | 23.94 ± 0.72 b | Q |
Total VFAs (mmol/L) 3 | 47.07 ± 1.65 | 46.96 ± 1.47 | 48.00 ± 2.32 | 47.42 ± 1.43 | 46.50 ± 2.61 | 48.04 ± 2.79 | |
Acetic acid (%) | 60.38 ± 0.21 a | 59.98 ± 0.36 b | 59.03 ± 0.38 c | 59.02 ± 0.40 c | 59.82 ± 0.43 b | 60.22 ± 0.30 a | Q |
Propionic acid (%) | 20.70 ± 0.39 d | 21.00 ± 0.31 c | 21.50 ± 0.41 a | 21.26 ± 0.41 ab | 21.11 ± 0.40 bc | 20.86 ± 0.25 cd | Q |
Isobutyrate acid (%) | 1.35 ± 0.09 | 1.35 ± 0.04 | 1.34 ± 0.09 | 1.35 ± 0.06 | 1.34 ± 0.06 | 1.30 ± 0.09 | |
Butyric acid (%) | 13.31 ± 0.37 b | 13.61 ± 0.33 b | 13.85 ± 0.34 ab | 14.06 ± 0.38 a | 13.60 ± 0.36 b | 13.68 ± 0.29 b | Q |
Isovaleric acid (%) | 2.66 ± 0.07 | 2.70 ± 0.10 | 2.69 ± 0.13 | 2.68 ± 0.06 | 2.65 ± 0.07 | 2.64 ± 0.11 | |
Valeric acid (%) | 1.40 ± 0.06 | 1.41 ± 0.04 | 1.42 ± 0.09 | 1.42 ± 0.06 | 1.37 ± 0.09 | 1.38 ± 0.06 | |
A:P 4 | 2.917 ± 0.054 a | 2.857 ± 0.037 a | 2.740 ± 0.056 c | 2.777 ± 0.062 bc | 2.834 ± 0.040 ab | 2.887 ± 0.033 a | Q |
IVDMD (%) 5 | 56.30 ± 0.89 | 56.84 ± 0.90 | 56.51 ± 1.12 | 56.14 ± 1.64 | 57.16 ± 2.37 | 56.15 ± 1.50 |
Items | PICB inclusion (DM, %) 1 | Polynomial 2 | |||||
---|---|---|---|---|---|---|---|
0% | 0.1% | 0.2% | 0.3% | 0.4% | 0.5% | ||
24-h gas production (mL) | 48.22 ± 0.52 ab | 48.16 ± 0.45 ab | 48.53 ± 1.24 a | 48.23 ± 0.74 ab | 47.79 ± 0.68 bc | 47.56 ± 1.00 c | |
H2 (%) | 0.0078 ± 0.0035 | 0.0090 ± 0.0023 | 0.0094 ± 0.0010 | 0.00823 ± 0.0042 | 0.0094 ± 0.0013 | 0.0089 ± 0.0023 | |
Oxygen + Nitrogen (%) | 2.99 ± 0.66 | 2.93 ± 0.61 | 2.79 ± 0.63 | 2.74 ± 0.49 | 3.01 ± 0.52 | 2.78 ± 0.68 | |
CO2 (%) | 74.66 ± 0.59 | 74.51 ± 1.04 | 74.65 ± 1.17 | 74.61 ± 0.87 | 74.24 ± 1.15 | 74.27 ± 1.17 | |
CH4 (%) | 14.65 ± 0.27 a | 14.52 ± 0.27 a | 13.36 ± 0.35 c | 14.15 ± 0.47 b | 14.52 ± 0.38 a | 14.60 ± 0.45 a | Q |
CH4 yield (mL) | 7.063 ± 0.101 a | 6.991 ± 0.109 a | 6.468 ± 0.171 c | 6.823 ± 0.214 b | 6.940 ± 0.249 ab | 6.958 ± 0.0234 a | Q |
Items | PICB Inclusion (DM, %) 1 | Polynomial 4 | ||||||
---|---|---|---|---|---|---|---|---|
0% | 0.1% | 0.2% | 0.3% | 0.4% | 0.5% | |||
96-h gas production (mL) | 61.30 ± 0.48 | 62.34 ± 0.92 | 62.52 ± 0.51 | 60.04 ± 0.33 | 60.88 ± 0.85 | 59.16 ± 0.91 | L | Q |
B (mL) 2 | 61.41 ± 0.47 b | 62.41 ± 0.91 a | 62.65 ± 0.51 a | 60.19 ± 0.34 c | 61.01 ± 0.85 bc | 59.29 ± 0.92 d | L | Q |
c (%/h−1) 3 | 0.0658 ± 0.0014 b | 0.0699 ± 0.0011 a | 0.0649 ± 0.0009 bc | 0.0630 ± 0.0015 d | 0.0642 ± 0.0009 cd | 0.0638 ± 0.0009 cd | L |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Yu, S.; Li, Y.; Zhang, S.; Qi, X.; Guo, K.; Guo, Y.; Fortina, R. Pilot Study of the Effects of Polyphenols from Chestnut Involucre on Methane Production, Volatile Fatty Acids, and Ammonia Concentration during In Vitro Rumen Fermentation. Animals 2021, 11, 108. https://doi.org/10.3390/ani11010108
Wang Y, Yu S, Li Y, Zhang S, Qi X, Guo K, Guo Y, Fortina R. Pilot Study of the Effects of Polyphenols from Chestnut Involucre on Methane Production, Volatile Fatty Acids, and Ammonia Concentration during In Vitro Rumen Fermentation. Animals. 2021; 11(1):108. https://doi.org/10.3390/ani11010108
Chicago/Turabian StyleWang, Yichong, Sijiong Yu, Yang Li, Shuang Zhang, Xiaolong Qi, Kaijun Guo, Yong Guo, and Riccardo Fortina. 2021. "Pilot Study of the Effects of Polyphenols from Chestnut Involucre on Methane Production, Volatile Fatty Acids, and Ammonia Concentration during In Vitro Rumen Fermentation" Animals 11, no. 1: 108. https://doi.org/10.3390/ani11010108