Association between Disease Severity, Heart Rate Variability (HRV) and Serum Cortisol Concentrations in Horses with Acute Abdominal Pain
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Horses
3.2. HRV Analyses
3.3. Laboratory Variables
3.4. Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tinker, M.K.; White, N.A.; Lessard, P.; Thatcher, C.D.; Pelzer, K.D.; Davis, B.; Carmel, D.K. Prospective study of equine colic incidence and mortality. Equine Vet. J. 1997, 29, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Kaneene, J.B.; Miller, R.; Ross, W.A.; Gallagher, K.; Marteniuk, J.; Rook, J. Risk factors for colic in the Michigan (USA) equine population. Prev. Vet. Med. 1997, 30, 23–36. [Google Scholar] [CrossRef]
- Traub-Dargatz, J.L.; Kopral, C.A.; Seitzinger, A.H.; Garber, L.P.; Forde, K.; White, N.A. Estimate of the national incidence of and operation-level risk factors for colic among horses in the United States, spring 1998 to spring 1999. J. Am. Vet. Med. Assoc. 2001, 219, 67–71. [Google Scholar] [CrossRef] [Green Version]
- Proudman, C.J.; Smith, J.E.; Edwards, G.B.; French, N.P. Long-term survival of equine surgical colic cases. Part 1: Patterns of mortality and morbidity. Equine Vet. J. 2002, 34, 432–437. [Google Scholar] [CrossRef]
- Mair, T.S.; Smith, L.J. Survival and complication rates in 300 horses undergoing surgical treatment of colic. Part 1: Short-term survival following a single laparotomy. Equine Vet. J. 2005, 37, 296–302. [Google Scholar] [CrossRef]
- Morris, D.D.; Moore, J.N.; Crowe, N. Serum tumor necrosis factor activity in horses with colic attributable to gastrointestinal tract disease. Am. J. Vet. Res. 1991, 52, 1565–1569. [Google Scholar]
- Vandenplas, M.L.; Moore, J.N.; Barton, M.H.; Roussel, A.J.; Cohen, N.D. Concentrations of serum amyloid A and lipopolysaccharide-binding protein in horses with colic. Am. J. Vet. Res. 2005, 66, 1509–1516. [Google Scholar] [CrossRef]
- Proudman, C.J.; Edwards, G.B.; Barnes, J.; French, N.R. Factors affecting long-term survival of horses recovering from surgery of the small intestine. Equine Vet. J. 2005, 37, 360–365. [Google Scholar] [CrossRef]
- Johnston, K.; Holcombe, S.J.; Hauptman, J.G. Plasma lactate as a predictor of colonic viability and survival after 360 degrees volvulus of the ascending colon in horses. Vet. Surg. 2007, 36, 563–567. [Google Scholar] [CrossRef]
- Yamout, S.Z.; Nieto, J.E.; Beldomenico, P.M.; Dechant, J.E.; leJeune, S.; Snyder, J.R. Peritoneal and plasma D-lactate concentrations in horses with colic. Vet. Surg. 2011, 40, 817–824. [Google Scholar] [CrossRef]
- McConachie, E.L.; Giguere, S.; Rapoport, G.; Barton, M.H. Heart rate variability in horses with acute gastrointestinal disease requiring exploratory laparotomy. J. Vet. Emerg. Crit. Care 2016, 26, 269–280. [Google Scholar] [CrossRef]
- Heart Rate Variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. Eur. Heart J. 1996, 17, 354–381. [Google Scholar]
- Cripps, T.R.; Malik, M.; Farrell, T.G.; Camm, A.J. Prognostic value of reduced heart rate variability after myocardial infarction: Clinical evaluation of a new analysis method. Br. Heart J. 1991, 65, 14–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagani, M.; Malfatto, G.; Pierini, S.; Casati, R.; Masu, A.M.; Poli, M.; Guzzetti, S.; Lombardi, F.; Cerutti, S.; Malliani, A. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy. J. Auton. Nerv. Syst. 1988, 23, 143–153. [Google Scholar] [CrossRef]
- Ohmura, H.; Hiraga, A.; Aida, H.; Kuwahara, M.; Tsubone, H.; Jones, J.H. Changes in heart rate and heart rate variability in Thoroughbreds during prolonged road transportation. Am. J. Vet. Res. 2006, 67, 455–462. [Google Scholar] [CrossRef] [PubMed]
- Nagy, K.; Bodó, G.; Bárdos, G.; Harnos, A.; Kabai, P. The effect of a feeding stress-test on the behaviour and heart rate variability of control and crib-biting horses (with or without inhibition). Appl. Anim. Behav. Sci. 2009, 121, 140–147. [Google Scholar] [CrossRef]
- Becker-Birck, M.; Schmidt, A.; Lasarzik, J.; Aurich, J.; Mostl, E.; Aurich, C. Cortisol release and heart rate variability in sport horses participating in equestrian competitions. J. Vet. Behav. 2013, 8, 87–94. [Google Scholar] [CrossRef]
- Perkins, J.D.; Bowen, I.M.; Else, R.W.; Marr, C.M.; Mayhew, I.G. Functional and histopathological evidence of cardiac parasympathetic dysautonomia in equine grass sickness. Vet. Rec. 2000, 146, 246–250. [Google Scholar] [CrossRef]
- Rietmann, T.R.; Stauffacher, M.; Bernasconi, P.; Auer, J.A.; Weishaupt, M.A. The association between heart rate, heart rate variability, endocrine and behavioural pain measures in horses suffering from laminitis. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2004, 51, 218–225. [Google Scholar] [CrossRef]
- Oel, C.; Gerhards, H.; Gehlen, H. Effect of retrobulbar nerve block on heart rate variability during enucleation in horses under general anesthesia. Vet. Ophthalmol. 2014, 17, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Von Borell, E.; Langbein, J.; Després, G.; Hansen, S.; Leterrier, C.; Marchant-Forde, J.; Marchant-Forde, R.; Minero, M.; Mohr, E.; Prunier, A.; et al. Heart rate variability as a measure of autonomic regulation of cardiac activity for assessing stress and welfare in farm animals — A review. Physiol. Behav. 2007, 92, 293–316. [Google Scholar] [CrossRef] [PubMed]
- Kuwahara, M.; Hashimoto, S.; Ishii, K.; Yagi, Y.; Hada, T.; Hiraga, A.; Kai, M.; Kubo, K.; Oki, H.; Tsubone, H.; et al. Assessment of autonomic nervous function by power spectral analysis of heart rate variability in the horse. J. Auton. Nerv. Syst. 1996, 60, 43–48. [Google Scholar] [CrossRef]
- Grulke, S.; Olle, E.; Detilleux, J.; Gangl, M.; Caudron, I.; Serteyn, D. Determination of a gravity and shock score for prognosis in equine surgical colic. J. Vet. Med. A Physiol. Pathol. Clin. Med. 2001, 48, 465–473. [Google Scholar] [CrossRef] [PubMed]
- Marr, C.M.; Bowen, M. Cardiology of the Horse, 2nd ed.; Elsevier Health Sciences: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Eggensperger, B.H.; Schwarzwald, C.C. Influence of 2nd-degree AV blocks, ECG recording length, and recording time on heart rate variability analyses in horses. J. Vet. Cardiol. 2017, 19, 160–174. [Google Scholar] [CrossRef]
- Physick-Sheard, P.W.; Marlin, D.J.; Thornhill, R.; Schroter, R.C. Frequency domain analysis of heart rate variability in horses at rest and during exercise. Equine Vet. J. 2000, 32, 253–262. [Google Scholar] [CrossRef]
- Berntson, G.G.; Stowell, J.R. ECG artifacts and heart period variability: Don’t miss a beat! Psychophysiology 1998, 35, 127–132. [Google Scholar] [CrossRef]
- Tarvainen, M.P.; Niskanen, J.P.; Kubios HRV; Biosignal Analysis and Medical Imaging Group (BSAMIG). USER’S GUIDE. Ph.D. Thesis, Department of Applied Physics, University of Eastern Finland, Kuopio, Finland, 2012. [Google Scholar]
- Cottin, F.; Medigue, C.; Lopes, P.; Petit, E.; Papelier, Y.; Billat, V.L. Effect of exercise intensity and repetition on heart rate variability during training in elite trotting horse. Int. J. Sports Med. 2005, 26, 859–867. [Google Scholar] [CrossRef]
- EMEA. Metamizole - Summary Report; European Agency for the Evaluation of Medicinal Products: London, UK, 2003. [Google Scholar]
- Chay, S.; Woods, W. The pharmacology of nonsteroidal anti-inflammatory drugs in the horse: Flunixin meglumine (Banamine). Equine Proct. 1982, 4, 16–23. [Google Scholar]
- Tobin, T.; Wood, T. The effects of drugs on race horse performance. Proc. Am. Assoc. Equine Pract. 1989, 34, 369–650. [Google Scholar]
- Plumb, D.C. Plumb’s Veterinary Drug Handbook; Wiley-Blackwell: Hoboken, NJ, USA, 2011. [Google Scholar]
- Galletly, D.C.; Westenberg, A.M.; Robinson, B.J.; Corfiatis, T. Effect of Halothane, Isoflurane and Fentanyl on Spectral Components of Heart-Rate-Variability. Brit. J. Anaesth. 1994, 72, 177–180. [Google Scholar] [CrossRef]
- McCashin, F.B.; Gabel, A.A. Evaluation of xylazine as a sedative and preanesthetic agent in horses. Am. J. Vet. Res. 1975, 36, 1421–1429. [Google Scholar] [PubMed]
- Garcia-Villar, R.; Toutain, P.L.; Alvinerie, M.; Ruckebusch, Y. The pharmacokinetics of xylazine hydrochloride: An interspecific study. J. Vet. Pharmacol. Ther. 1981, 4, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Sundra, T.M.; Harrison, J.L.; Lester, G.D.; Raidal, S.L.; Phillips, J.K. The influence of spasmolytic agents on heart rate variability and gastrointestinal motility in normal horses. Res. Vet. Sci. 2012, 93, 1426–1433. [Google Scholar] [CrossRef] [PubMed]
- De Ferrari, G.M.; Mantica, M.; Vanoli, E.; Hull, S.S., Jr.; Schwartz, P.J. Scopolamine increases vagal tone and vagal reflexes in patients after myocardial infarction. J. Am. Coll. Cardiol. 1993, 22, 1327–1334. [Google Scholar] [CrossRef] [Green Version]
- Casadei, B.; Pipilis, A.; Sessa, F.; Conway, J.; Sleight, P. Low doses of scopolamine increase cardiac vagal tone in the acute phase of myocardial infarction. Circulation 1993, 88, 353–357. [Google Scholar] [CrossRef] [Green Version]
- Vybiral, T.; Bryg, R.J.; Maddens, M.E.; Bhasin, S.S.; Cronin, S.; Boden, W.E.; Lehmann, M.H. Effects of transdermal scopolamine on heart rate variability in normal subjects. Am. J. Cardiol. 1990, 65, 604–608. [Google Scholar] [CrossRef]
- Roelvink, M.E.; Goossens, L.; Kalsbeek, H.C.; Wensing, T. Analgesic and spasmolytic effects of dipyrone, hyoscine-N-butylbromide and a combination of the two in ponies. Vet. Rec. 1991, 129, 378–380. [Google Scholar] [CrossRef]
- Picker, O.; Scheeren, T.W.; Arndt, J.O. Inhalation anaesthetics increase heart rate by decreasing cardiac vagal activity in dogs. Br. J. Anaesth. 2001, 87, 748–754. [Google Scholar] [CrossRef] [Green Version]
- Kaka, J.S.; Klavano, P.A.; Hayton, W.L. Pharmacokinetics of ketamine in the horse. Am. J. Vet. Res. 1979, 40, 978–981. [Google Scholar]
- Waterman, A.E.; Robertson, S.A.; Lane, J.G. Pharmacokinetics of intravenously administered ketamine in the horse. Res. Vet. Sci. 1987, 42, 162–166. [Google Scholar] [CrossRef]
- Grimsrud, K.N.; Mama, K.R.; Steffey, E.P.; Stanley, S.D. Pharmacokinetics and pharmacodynamics of intravenous medetomidine in the horse. Vet. Anaesth. Analg. 2012, 39, 38–48. [Google Scholar] [CrossRef]
- Cui, W.; Li, Y.; Li, S.; Wang, R.; Li, J. Systemic administration of lidocaine reduces morphine requirements and postoperative pain of patients undergoing thoracic surgery after propofol-remifentanil-based anaesthesia. Eur. J. Anaesthesiol. 2010, 27, 41–46. [Google Scholar] [CrossRef] [PubMed]
- Zabel, M.; Klingenheben, T.; Hohnloser, S.H. Changes in autonomic tone following thrombolytic therapy for acute myocardial infarction: Assessment by analysis of heart rate variability. J. Cardiovasc. Electrophysiol. 1994, 5, 211–218. [Google Scholar] [CrossRef] [PubMed]
- Zuanetti, G.; Neilson, J.M.; Latini, R.; Santoro, E.; Maggioni, A.P.; Ewing, D.J. Prognostic significance of heart rate variability in post-myocardial infarction patients in the fibrinolytic era. The GISSI-2 results. Gruppo Italiano per lo Studio della Sopravvivenza nell’ Infarto Miocardico. Circulation 1996, 94, 432–436. [Google Scholar] [CrossRef] [PubMed]
- Nagel, C.; Aurich, J.; Palm, F.; Aurich, C. Heart rate and heart rate variability in pregnant warmblood and Shetland mares as well as their fetuses. Anim. Reprod. Sci. 2011, 127, 183–187. [Google Scholar] [CrossRef]
- Clement, F.; Barrey, E. Heart rate fluctuations in the horse at rest: (2) Biological variation factors related to behavioural profile. C R Acad. Sci. III 1995, 318, 867–972. [Google Scholar]
- Olsen, L.H.; Mow, T.; Koch, J.; Pedersen, H.D. Heart rate variability in young, clinically healthy Dachshunds: Influence of sex, mitral valve prolapse status, sampling period and time of day. J. Vet. Cardiol. 1999, 1, 7–16. [Google Scholar] [CrossRef]
- Maros, K.; Doka, A.; Miklosi, A. Behavioural correlation of heart rate changes in family dogs. Appl. Anim. Behav. Sci. 2008, 109, 329–341. [Google Scholar] [CrossRef]
- Van Ravenswaaij-Arts, C.M.; Kollee, L.A.; Hopman, J.C.; Stoelinga, G.B.; van Geijn, H.P. Heart rate variability. Ann. Intern. Med. 1993, 118, 436–447. [Google Scholar] [CrossRef]
- Ohmura, H.; Hiraga, A.; Aida, H.; Kuwahara, M.; Tsubone, H. Effects of initial handling and training on autonomic nervous function in young Thoroughbreds. Am. J. Vet. Res. 2002, 63, 1488–1491. [Google Scholar] [CrossRef]
- Ohmura, H.; Jones, J.H. Changes in heart rate and heart rate variability as a function of age in Thoroughbred horses. J. Equine Sci. 2017, 28, 99–103. [Google Scholar] [CrossRef] [Green Version]
- Kuwahara, M.; Hiraga, A.; Kai, M.; Tsubone, H.; Sugano, S. Influence of training on autonomic nervous function in horses: Evaluation by power spectral analysis of heart rate variability. Equine Vet. J. Suppl. 1999, 30, 178–180. [Google Scholar] [CrossRef] [PubMed]
- Janczarek, I.; Kędzierski, W.; Wilk, I.; Wnuk–Pawlak, E.; Rakowskac, A. Comparison of daily heart rate variability in old and young horses: A preliminary study. J. Vet. Behav. 2020, 38, 1–7. [Google Scholar] [CrossRef]
- Rietmann, T.R.; Stuart, A.E.A.; Bernasconi, P.; Stauffacher, M.; Auer, J.A.; Weishaupt, M.A. Assessment of mental stress in warmblood horses: Heart rate variability in comparison to heart rate and selected behavioural parameters. Appl. Anim. Behav. Sci. 2004, 88, 121–136. [Google Scholar] [CrossRef]
- Visser, E.K.; Van Reenen, C.G.; Rundgren, M.; Zetterqvist, M.; Morgan, K.; Blokhuis, H.J. Responses of horses in behavioural tests correlate with temperament assessed by riders. Equine Vet. J. 2003, 35, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Eager, R.; Norman, S.; Waran, N.K.; Price, J.P.; Welsh, E.M.; Marlin, D.J. Repeatability, diurnal variation and temperament: Factors affecting the use of heart rate variability in horses. In Proceedings of the 38th International Congress of the ISAE, Helsinki, Finland, 7 August 2004; ISAE: Helsinki, Finland, 2004; Volume 235, p. 235. [Google Scholar]
- Konig von Borstel, U.; Euent, S.; Graf, P.; Konig, S.; Gauly, M. Equine behaviour and heart rate in temperament tests with or without rider or handler. Physiol. Behav. 2011, 104, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Gehrke, E.K.; Baldwin, A.; Schiltz, P.M. Heart rate variability in horses engaged in equine-assisted activities. J. Equine Vet. Sci. 2011, 31, 78–84. [Google Scholar] [CrossRef]
- Ohmura, H.; Boscan, P.L.; Solano, A.M.; Stanley, S.D.; Jones, J.H. Changes in heart rate, heart rate variability, and atrioventricular block during withholding of food in Thoroughbreds. Am. J. Vet. Res. 2012, 73, 508–514. [Google Scholar] [CrossRef]
- Peters, S.M.; Bleijenberg, E.H.; van Dierendonck, M.C.; van der Harst, J.E.; Spruijt, B.M. Characterization of anticipatory behaviour in domesticated horses (Equus caballus). Appl. Anim. Behav. Sci. 2012, 138, 60–69. [Google Scholar] [CrossRef]
Group | Age (y) Mean ± SD | Sex m/g/s * | Breed wb/others **/pony/hh | Weight (Kg) Mean ± SD | Height (cm) Mean ± SD | Athletic Use p/b/l/s *** |
---|---|---|---|---|---|---|
1 (n = 11) | 12 ± 6 | 4/6/1 | 9/1/0/0 | 506 ± 69 | 165 ± 9 | 1/2/3/5 |
2 (n = 24) | 12 ± 6 | 9/15/0 | 15/7/1/1 | 532 ± 84 | 165 ± 9 | 1/0/14/9 |
3 (n = 8) | 16 ± 7 | 6/2/0 | 5/2/1/0 | 500 ± 124 | 159 ± 18 | 1/1/6/0 |
all (n = 43) | 12 ± 6 | 19/23/1 | 30/10/2/1 | 519 ± 88 | 164 ± 11 | 3/3/23/14 |
T1 | T2 | T3 | ||||
---|---|---|---|---|---|---|
Group | Mean ± SD (Number) | Mean ± SD (Number) | Mean ± SD (Number) | p-Value for the Overall ANOVA | p-Values between Time Points for the Bonferroni’s Multiple Comparison | |
HR (bpm) | 1 | 60 ± 11 (n = 11) | 45 ± 7 (n = 11) | 38 ±- 5 (n = 11) | <0.001 | T1-T2: 0.001 T1-T3: <0.001 |
2 | 45 ± 9 (n = 24) | 37 ± 6 (n = 23) | 38 ± 3 (n = 10) | 0.003 | T1-T2: 0.004 T1-T3: 0.042 | |
3 | 67 ± 28 (n = 8) | 60 ± 20 (n = 4) | - | 0.680 | - | |
p-Value for the Overall ANOVA | 0.001 | <0.001 | 0.923 | |||
p-Values between Groups for the Bonferroni’s Multiple Comparison | 1–2: 0.024 2–3: 0.002 | 1–2: 0.036 1–3: 0.011 2–3: <0.001 | - | |||
MeanNN (ms) | 1 | 1216.94 ± 352.37 (n =10) | 1370.61 ± 126.71 (n = 11) | 1577.72 ± 186.61 (n = 11) | 0.006 | T1-T3: 0.005 |
2 | 1489.82 ± 305.77 (n = 24) | 1684.53 ± 276.42 (n = 23) | 1605.93 ± 220.35 (n = 10) | 0.067 | - | |
3 | 940.76 ± 328.11 (n = 8) | 969.73 ± 278.32 (n = 4) | - | 0.883 | - | |
p-Value for the Overall ANOVA | <0.001 | <0.001 | 0.753 | - | ||
p-Values between Groups for the Bonferroni’s Multiple Comparison | 2–3: <0.001 | 1–2: 0.004 1–3: 0.024 2–3: <0.001 | - | |||
SDNN (ms) | 1 | 120.38 ± 120.07 (n = 10) | 61.24 ± 24.67 (n = 11) | 62.29 ± 32.00 (n = 11) | 0.114 | - |
2 | 70.84 ± 33.31 (n = 24) | 80.58 ± 45.06 (n = 23) | 87.25 ± 34.20 (n = 10) | 0.479 | - | |
3 | 56.14 ± 49.06 (n = 8) | 28.03 ± 23.55 (n = 4) | - | 0.311 | - | |
p-Value for the Overall ANOVA | 0.088 | 0.050 | 0.100 | |||
p-Values between Groups for the Bonferroni’s Multiple Comparison | - | - | - | |||
pNN50 (%) | 1 | 30.88 ± 34.16 (n = 10) | 30.86 ± 16.04 (n = 11) | 22.39 ± 15.82 (n = 11) | 0.622 | - |
2 | 29.75 ± 18.86 (n = 24) | 33.15 ± 17.73 (n = 23) | 37.08 ± 14.30 (n = 10) | 0.532 | - | |
3 | 14.99 ± 23.31 (n = 8) | 4.95 ± 9.64 (n = 4) | - | 0.436 | - | |
p-Value for the Overall ANOVA | 0.287 | 0.013 | 0.050 | |||
p-Values between Groups for the Bonferroni’s Multiple Comparison | - | 1–3: 0.035 2–3: 0.011 | - |
T1 | T2 | T3 | |||||
---|---|---|---|---|---|---|---|
Group | Mean ± SD (Number) | Mean ± SD (Number) | Mean ± SD (Number) | p-Value for the Overall ANOVA | p-Values between Time Points for the Bonferroni’s Multiple Comparison | ||
HF (n.u.) | 1 | 18.47 ± 41.9 (n = 10) | 49.22 ± 19.98 (n = 11) | 29.44 ± 12.44 (n = 11) | 0.002 | T1-T2: 0.002 T2-T3: 0.049 | |
2 | 37.43 ± 15.61 (n = 24) | 43.01 ± 14.55 (n = 23) | 43.07 ± 12.45 (n = 10) | 0.371 | - | ||
3 | 19.99 ± 14.74 (n = 8) | 36.20 ± 23.08 (n = 4) | - | 0.165 | - | ||
p-Value for the Overall ANOVA | 0.005 | 0.391 | 0.021 | ||||
p-Values between Groups for the Bonferroni’s Multiple Comparison | 1–2: 0.015 2–3: 0.047 | - | 1–2: 0.0231 | ||||
LF (n.u.) | 1 | 81.53 ± 21.22 (n = 10) | 50.78 ± 19.98 (n = 11) | 70.56 ± 12.44 (n = 11) | 0.002 | T1-T2: 0.002 T2-T3: 0.049 | |
2 | 62.57 ± 15.62 (n = 24) | 56.98 ± 14.56 (n = 23) | 48.03 ± 12.45 (n = 10) | 0.371 | - | ||
3 | 79.9 ± 15.0 (n = 8) | 63.80 ± 23.08 (n = 4) | - | 0.171 | - | ||
p-Value for the Overall ANOVA | 0.006 | 0.391 | 0.021 | ||||
p-Values between Groups for the Bonferroni’s Multiple Comparison | 1–2: 0.015 2–3: 0.050 | - | 1–2: 0.021 | ||||
LF/HF | 1 | 7.17 ± 3.15 (n = 10) | 1.48 ± 1.31 (n = 11) | 3.03 ± 1.83 (n = 11) | <0.001 | T1-T2: <0.001 T1-T3: <0.001 | |
2 | 2.34 ± 2.02 (n = 24) | 1.68 ± 1.24 (n = 23) | 1.68 ± 1.48 (n = 10) | 0.338 | - | ||
3 | 6.98 ± 5.93 (n = 8) | 3.68 ± 4.60 (n = 4) | 0.355 | - | |||
p-Value for the Overall ANOVA | < 0.001 | 0.108 | 0.81 | ||||
p-Values between Groups for the Bonferroni’s Multiple Comparison | 1–2: 0.001 2–3: 0.004 | - | - |
T1 | T2 | T3 | ||||
---|---|---|---|---|---|---|
Group | Mean ± SD (Number) | Mean ± SD (Number) | Mean ± SD (Number) | p-Value for the Overall ANOVA | p-Values between Time Points for the Bonferroni’s Multiple Comparison | |
Serum Cortisol (mmol/l) | 1 | 119.8 ± 41.9 (n = 11) | 97.1 ± 46.3 (n = 11) | 47.1 ± 20.5 (n = 11) | <0.001 | T1-T3: <0.001 T2-T3: 0.013 |
2 | 82.2 ± 40.0 (n = 24) | 57.3 ± 16.2 (n = 23) | 51.1 ± 16.8 (n = 10) | 0.004 | T1-T2: 0.014 T1-T3: 0.018 | |
3 | 127.1 ± 67.9 (n = 8) | 71.9 ± 41.4 (n = 4) | - | 0.143 | -. | |
p-Value for the Overall ANOVA | 0.024 | 0.004 | 0.628 | |||
p-Values between Groups for the Bonferroni’s Multiple Comparison | 1–2: 0.032 2–3: 0.023 | 1–2: 0.001 | - | |||
PCV (%) | 1 | 36 ± 7 (n = 11) | 32 ± 7 (n = 11) | 30 ± 4 (n = 11) | 0.075. | - |
2 | 34 ± 6 (n = 24) | 32 ± 3 (n = 23) | 32 ± 3 (n = 10) | 0.393 | - | |
3 | 43 ± 18 (n = 8) | 36 ± 11 (n = 4) | 0.445 | - | ||
p-Value for the Overall ANOVA | 0.047. | 0.459 | 0.235 | |||
p-Values between Groups for the Bonferroni’s Multiple Comparison | 2–3: 0.042 | -. | - | |||
TP (g/dl) | 1 | 6.6 ± 1.1 (n = 11) | 5.5 ± 0.6 (n = 11) | 6.4 ± 0.7 (n = 10) | 0.017 | T1-T2: 0.022 |
2 | 6.6 ± 0.7 (n = 24) | 6.3 ±0.7 (n = 22) | 6.4 ± 0.7 (n = 10) | 0.456 | -. | |
3 | 5.6 ± 1.9 (n = 7) | 4.3 ± 1.1 (n = 4) | 0.238. | -. | ||
p-Value for the Overall ANOVA | 0.082 | <0.001 | 1.00 | |||
p-Values between Groups for the Bonferroni’s Multiple Comparison | - | 1–2: 0.019 1–3: 0.013 2–3: <0.001 | - | |||
Plasma Lactate (mmol/l) | 1 | 2.1 ± 1.3 (n = 11) | 1.1 ± 0.3 (n = 11) | 1.0 ± 0 (n = 10) | 0.003 | T1-T2: 0.014 T1-T3: 0.006 |
2 | 1.3 ± 0.4 (n = 24) | 1.0 ± 0.1 (n = 23) | 1.1 ± 0.2 (n = 9) | 0.019 | T1-T2: 0.022 | |
3 | 5.9 ± 5.3 (n = 7) | 2.1 ± 0.9 (n = 4) | 0.205 | -. | ||
p-Value for the Overall ANOVA | <0.001 | <0.001 | 0.281 | |||
p-Values between Groups for the Bonferroni’s Multiple Comparison | 1–3: 0.003 2–3: <0.001 | 1–3: 0.001 2–3: 0.001 | -. |
Parameter | PCV | Plasma Lactate | MeanNN | HF | LF | LF/HF | |
---|---|---|---|---|---|---|---|
PCV | r | 0.202 | −0.406 | −0.300 | 0.300 | 0.459 | |
p | 0.200 | 0.008 | 0.054 | 0.054 | 0.002 | ||
Plasma Lactate | r | −0.537 | −0.339 | 0.339 | 0.476 | ||
p | <0.001 | 0.030 | 0.030 | 0.002 | |||
Serum Cortisol | r | 0.542 | 0.361 | 0.396 | |||
p | <0.001 | 0.019 | 0.010 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gehlen, H.; Faust, M.-D.; Grzeskowiak, R.M.; Trachsel, D.S. Association between Disease Severity, Heart Rate Variability (HRV) and Serum Cortisol Concentrations in Horses with Acute Abdominal Pain. Animals 2020, 10, 1563. https://doi.org/10.3390/ani10091563
Gehlen H, Faust M-D, Grzeskowiak RM, Trachsel DS. Association between Disease Severity, Heart Rate Variability (HRV) and Serum Cortisol Concentrations in Horses with Acute Abdominal Pain. Animals. 2020; 10(9):1563. https://doi.org/10.3390/ani10091563
Chicago/Turabian StyleGehlen, Heidrun, Maria-Dorothee Faust, Remigiusz M. Grzeskowiak, and Dagmar S. Trachsel. 2020. "Association between Disease Severity, Heart Rate Variability (HRV) and Serum Cortisol Concentrations in Horses with Acute Abdominal Pain" Animals 10, no. 9: 1563. https://doi.org/10.3390/ani10091563
APA StyleGehlen, H., Faust, M.-D., Grzeskowiak, R. M., & Trachsel, D. S. (2020). Association between Disease Severity, Heart Rate Variability (HRV) and Serum Cortisol Concentrations in Horses with Acute Abdominal Pain. Animals, 10(9), 1563. https://doi.org/10.3390/ani10091563