Newly Grown Wool Mineral Content Response to Dietary Supplementation in Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Dietary Treatments
2.3. Wool Sampling and Mineral Analyses
2.4. Statistical Analyses
3. Results
3.1. Daily Mineral Intake
3.2. Dietary Effect on Wool Mineral Content
4. Discussion
4.1. Feed Mineral Content and Intake
4.2. Wool Mineral Content
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Song, C.; Shen, X. Effects of environmental zinc deficiency on antioxidant system function in Wumeng semi-fine wool sheep. Biol. Trace Elem. Res. 2020, 195, 110–116. [Google Scholar] [CrossRef]
- Huo, B.; Wu, T.; Song, C.; Shen, X. Studies of selenium deficiency in the Wumeng semi-fine wool sheep. Biol. Trace Elem. Res. 2020, 194, 152–158. [Google Scholar] [CrossRef]
- Ademi, A.; Bernhoft, A.; Govasmark, E.; Bytyqi, H.; Siversten, T.; Singh, B.R. Selenium and other mineral concentrations in feed and sheep’s blood in Kosovo. Transl. Anim. Sci. 2017, 7, 97–107. [Google Scholar] [CrossRef] [Green Version]
- Shen, X.; Zhang, J.; Zhang, R. Phosphorous metabolic disorder of Guizhou semi-fine wool sheep. PLoS ONE 2014, 9, e89472. [Google Scholar]
- Shen, X. Studies on wool-eating ailment in Guizhou semi-fine wool sheep. Agric. Sci. China 2011, 10, 1618–1623. [Google Scholar] [CrossRef]
- Dove, H. Balancing nutrient supply and nutrient requirements in grazing sheep. Small Rum. Res. 2010, 92, 36–40. [Google Scholar] [CrossRef]
- Anke, M. Untersuchungen über den Spurenelementgehalt der Grünland- und Ackerpflanzen verschiedener Bodenarten sowie Maßnahmen zur Erkennung und Verhütung von Mangelerscheinungen bei Milchkühen. Diss. Jena Landw. Fakultät. 1959. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-3e31774c-6651-4e3f-9b71-818717e0de3f?q=bwmeta1.element.agro-ca538400-1dae-417e-b15b-fcf339332965;0&qt=CHILDREN-STATELESS (accessed on 10 July 2020).
- Flynn, A. Hair elemental analysis as a measure of mineral status. J. Appl. Nutr. 1977, 29, 51–57. [Google Scholar]
- Bottomley, G.A. Weather Conditions and Wool Growth; University of New England Publishing Unit: Armidale, Australia, 2001; pp. 115–125. [Google Scholar]
- Hawkins, D.P.; Ragnarsdóttir, K.V. The Cu, Mn and Zn contentration of sheep wool: Influence of washing procedures, age and colour of matrix. Sci. Total Environ. 2009, 407, 4140–4148. [Google Scholar] [CrossRef]
- European Union Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2010:276:0033:0079:en:PDF (accessed on 10 July 2020).
- Hungarian Government 40/2013. (II. 14.). Korm. rendelet az állatkísérletekről. (Government Decree about the Animal Experiments—In Hungarian); Hungarian Government: Budapest, Hungary, 2013.
- NRC Nutrient Requirements of Small Ruminants; National Academies Press: Washington, DC, USA, 2007.
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Social Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef] [Green Version]
- Brini, M.; Ottolini, D.; Calì, T.; Carafoli, E. Calcium in health and disease. In Interrelations between Essential Metal Ions and Human Diseases; Metal Ions in Life Sciences; Sigel, A., Sigel, H., Sigel, R.K.O., Eds.; Springer: Dordrecht, The Netherlands, 2013; Volume 13, pp. 81–137. [Google Scholar]
- Szigeti, E.; Kátai, J.; Komlósi, I.; Oláh, J.; Szabó, C. A genotípus és a mintavétel helyének hatása a gyapjú ásványi anyag tartalmára. Acta Agraria Debreceniensis 2016, 69, 157–160. [Google Scholar] [CrossRef]
- Anke, M. Major and trace elements in cattle hair as an indicator of Ca, Mg, P, K, Na, Fe, Zn, Mn, Cu, Mo and Co. 3. Effect of additional supplements on mineral composition of cattle hair. Arch. Tierzucht. 1966, 16, 57–75. [Google Scholar]
- Michell, A.R. Physiological aspects of the requirement for sodium in mammals. Nutr. Res. Rev. 1989, 2, 149–160. [Google Scholar] [CrossRef] [Green Version]
- Schonewille, J.T.; Beynen, A.C.; Van’t Klooster, A.T.; Wouterse, H.; Ram, L. Dietary potassium bicarbonate and potassium citrate have a greater inhibitory effect than does potassium chloride on magnesium absorption in wethers. J. Nutr. 1999, 129, 2043–2047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dalley, D.E.; Isherwood, P.; Sykes, A.R.; Robson, A.B. Effect of in vitro manipulation of pH on magnesium solubility in ruminal and caecal digesta in sheep. J. Agric. Sci. 1997, 129, 107–111. [Google Scholar] [CrossRef] [Green Version]
- Leonhard-Marek, S.; Gäbel, G.; Martens, H. Effects of short chain fatty acids and carbon dioxide on magnesium transport across sheep rumen epithelium. Exp. Physiol. 1998, 83, 155–164. [Google Scholar] [CrossRef] [Green Version]
- Olson, O.E. Selenium as a toxic factor in animal nutrition. In Proceedings of the Georgia Nutrition Conference, University of Georgia, Athens, GA, USA, 1989; p 68. Cited by: Combs, D.K. Hair analyses as an indicator of mineral status of livestock. J. Anim. Sci. 1987, 65, 1753–1758. [Google Scholar]
- Carter, D.L.; Brown, M.J.; Robbins, C.W. Selenium Concentrations in Alfalfa from several sources applied to a low selenium, alkaline soil. Soil Sci. Amer. Proc. 1969, 33, 715–717. [Google Scholar] [CrossRef] [Green Version]
- Hall, J.A.; Bobe, G.; Hunter, J.K.; Vorachek, W.R.; Stewart, W.C. Effect of feeding Selenium-fertilized alfalfa hay on performance of weaned beef calves. PLoS ONE 2013, 8, e58188. [Google Scholar] [CrossRef] [Green Version]
- Anke, M.; Regiusné, M.Á.; Gundel, J. A szelén szerepe és előfordulása a táplálékláncban (növény- állat- ember). Állattenyésztés és Takarmányozás 2003, 52, 255–273. [Google Scholar]
- Regiusné-Mőcsényi, Á. A mikroelemek, ásványianyagok és vitaminok szerepe a lovak takarmányozásában (in Hungarian). Állattenyésztés és Takarmányozás 1990, 39, 247–254. [Google Scholar]
- Mézes, M. Gazdasági állatok mikroelem ellátottsága és egyes mikroelemek szerepe a termelésben. Agro. Napló 2008, 12, 95–96. [Google Scholar]
- Qi, K.; Lupton, C.J. A Review of the Effects of Sulfur nutrition on wool production and quality. Sheep Goat Res. J. 1994, 10, 133–134. [Google Scholar]
- Kellaway, R.C.; Sitorius, P.; Leibholz, J.M.L. The use of copper levels in hair to diagnose hypocuprosis. Res. Vet. Sci. 1978, 24, 352–357. [Google Scholar] [CrossRef]
- Suttle, N.F.; McMurray, C.H. Use of erythrocyte copper:zinc superoxide dismutase activity and hair or fleece copper concentrations in the diagnosis of hypocuprosis in ruminants. Res. Vet. Sci. 1983, 35, 47–52. [Google Scholar] [CrossRef]
- Suttle, N.F. Mineral Nutrition of Livestock, 4th ed.; CAB International: Oxfordshire, UK, 2010. [Google Scholar]
- Suttle, N.F.; Peter, D.W. Rumen sulphide metabolism as a major determinant of copper availability in the diets of sheep. In Trace Elements in Man and Animals; Mills, C.F., Bremner, I., Chesters, J.K., Eds.; Commonwealth Agricultural Bureaux: Farnham Royal, UK, 1985; pp. 367–370. [Google Scholar]
- Suttle, N.F.; Angus, K.W. Experimental cooper deficiency in the calf. J. Comp. Pathol. 1976, 86, 595–608. [Google Scholar] [CrossRef]
Nutrients | Dietary Supply | Requirement a | Difference |
---|---|---|---|
TDN b, g | 1264 | 1110 | 154 |
NEm c, Mcal | 2.0 | 2.0 | 0 |
NEg d, Mcal | 0.31 | 0.34 | −0.03 b |
MP e, g | 108.9 | 92 | 16.9 |
CF f, g | 667.5 | - | - |
Mineral | Concentrate Mix a | Hay b | Premix c | Corn Grain Rolled d | Wheat Grain d | Meadow Hay d |
---|---|---|---|---|---|---|
Ca | 386 | 3786 | 120,000 | 200 | 500 | 6100 |
P | 2416 | 2683 | 60,000 | 3000 | 4300 | 1800 |
Na | 177 | 535 | 44,000 | - | - | - |
Mg | 1270 | 1712 | 13,800 | 1500 | 1500 | 1800 |
Zn | 35.6 | 44.2 | 1050 | 18 | 40 | 24 |
Se | 0.129 | 0.181 | 5 | 0.030 | 0.030 | 0.024 |
Mineral | Total Daily Mineral Intake (mg) | NRC, 2007 a | Mineral Daily Intake Share among Feedstuffs (mg/kg) | ||||||
---|---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | Hay | Concentrate | Premix | ||
Ca | 8764 | 9123 | 9482 | 9841 | 10,200 | 4200 | 7572 | 112–108 | 1080–2520 |
P | 6609 | 6782 | 6954 | 7127 | 7300 | 2500 | 5366 | 703–674 | 540–1260 |
Na | 1517 | 1649 | 1780 | 1912 | 2043 | 800 | 1070 | 51–49 | 396–924 |
Mg | 3918 | 3955 | 3993 | 4031 | 4068 | 1200 | 3424 | 370–354 | 124–290 |
Zn | 108.2 | 111.2 | 114.3 | 117.3 | 120.4 | 40 | 88.4 | 10.4–9.9 | 9.5–22.1 |
Se | 0.444 | 0.459 | 0.474 | 0.488 | 0.503 | 0.15 b | 0.362 | 0.037–0.036 | 0.045–0.105 |
Mineral | Premix Inclusion, % | IMC e | Effect of Dietary Treatment | Difference from Initial Mineral Content (IMC) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
3 | 4 | 5 | 6 | 7 | p | RMSE f | p | RMSE | ||
Ca | 379 b | 593 abD | 541 abD | 539 abD | 713 aD | 303 | 0.008 | 95.9 | <0.001 | 79.4 |
P | 128 b | 141 ab | 127 b | 117 b | 194 aD | 124 | 0.021 | 27.0 | 0.007 | 26.6 |
Na | 835 | 1264 D | 987 | 1019 | 1345 D | 753 | 0.207 | 285 | 0.013 | 287 |
Mg | 128 | 148 | 135 | 117 | 186 D | 88.6 | 0.501 | 50.4 | 0.013 | 45.4 |
Se | 0.183 D | 0.214 D | 0.237 D | 0.253 D | 0.236 D | 0.072 | 0.856 | 0.077 | <0.001 | 0.050 |
Zn | 53.8 b | 55.2 b | 58.4 b | 63.6 b | 78.0 aD | 56.9 | <0.001 | 5.21 | 0.002 | 7.51 |
Cu | 4.79 ab | 4.44 ab | 3.21 bc | 2.02 cD | 5.34 a | 4.14 | <0.001 | 0.82 | <0.001 | 0.86 |
S | 25,085 | 19,751 D | 17719 D | 18988 D | 23,522 | 25,240 | 0.051 | 3436 | <0.001 | 2754 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szigeti, E.; Kátai, J.; Komlósi, I.; Oláh, J.; Szabó, C. Newly Grown Wool Mineral Content Response to Dietary Supplementation in Sheep. Animals 2020, 10, 1390. https://doi.org/10.3390/ani10081390
Szigeti E, Kátai J, Komlósi I, Oláh J, Szabó C. Newly Grown Wool Mineral Content Response to Dietary Supplementation in Sheep. Animals. 2020; 10(8):1390. https://doi.org/10.3390/ani10081390
Chicago/Turabian StyleSzigeti, Erika, János Kátai, István Komlósi, János Oláh, and Csaba Szabó. 2020. "Newly Grown Wool Mineral Content Response to Dietary Supplementation in Sheep" Animals 10, no. 8: 1390. https://doi.org/10.3390/ani10081390
APA StyleSzigeti, E., Kátai, J., Komlósi, I., Oláh, J., & Szabó, C. (2020). Newly Grown Wool Mineral Content Response to Dietary Supplementation in Sheep. Animals, 10(8), 1390. https://doi.org/10.3390/ani10081390