Prediction of Carcass Traits of Hair Sheep Lambs Using Body Measurements
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Location and Animals Management
2.2. Body Measurements
2.3. Slaughter of Animals
2.4. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scholz, A.M.; Bünger, L.; Kongsro, J.; Baulain, U.; Mitchell, A.D. Non-invasive methods for the determination of body and carcass composition in livestock: Dual-energy X-ray absorptiometry, computed tomography, magnetic resonance imaging, and ultrasound: Invited review. Animal 2015, 9, 1250–1264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chay-Canul, A.J.; Magaña-Monforte, J.G.; Chizzotti, M.L.; Piñeiro-Vázquez, A.T.; Canul-Solís, J.R.; Ayala-Burgos, A.J.; Ku-Vera, J.C.; Tedeschi, L.O. Energy requirements of hair sheep in the tropical regions of Latin America. Review. Rev. Mex. Cienc. Pecu. 2016, 7, 105–125. [Google Scholar] [CrossRef] [Green Version]
- Chay-Canul, A.J.; Sarmiento-Franco, L.S.; Salazar-Cuytún, E.R.; Tedeschi, L.O.; Moo-Huchin, V.; Canul Solís, J.R.; Piñeiro-Vázquez, A.T. Evaluation of equations to estimate fat content in soft tissues of carcasses and viscera in sheep based on carbon and nitrogen content. Small Rumin. Res. 2019, 178, 106–110. [Google Scholar] [CrossRef]
- Morales-Martínez, M.A.; Arce-Recinos, C.; Mendoza-Taco, M.M.; Luna-Palomera, C.; Ramírez-Bautista, M.A.; Piñeiro-Vazquez, A.T.; Vicente-Perez, R.; Tedeschi, L.O.; Chay-Canul, A.J. Developing equations for predicting internal body fat in Pelibuey sheep using ultrasound measurements. Small Rumin. Res. 2020, 183, 106031. [Google Scholar] [CrossRef]
- Aguilar-Hernández, E.; Chay-Canul, A.J.; Gómez-Vázquez, A.; Magaña-Monforte, J.G.; Ríos, F.G.; Cruz-Hernández, A. Relationship of ultrasound measurements and carcass traits in Pelibuey ewes. J. Anim. Plant Sci. 2016, 26, 325–330. [Google Scholar]
- Castilhos, A.M.; Francisco, C.L.; Branco, R.H.; Bonilha, S.F.M.; Mercadante, M.E.Z.; Meirelles, P.R.L.; Pariz, C.M.; Jorge, A.M. In vivo ultrasound and biometric measurements predict the empty body chemical composition in Nellore. J. Anim. Sci. 2018, 96, 1678–1687. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, F.R.B.; Tedeschi, L.O.; Rhoades, R.D.; Smith, S.B.; Martin, S.E.; Crouse, S.F. Evaluating the application of dual X-ray energy absorptiometry to assess dissectible and chemical fat and muscle from the 9th-to-11th rib section of beef cattle. Prof. Anim. Sci. 2011, 27, 472–476. [Google Scholar] [CrossRef]
- Bautista-Díaz, E.; Salazar-Cuytun, E.R.; Chay-Canul, A.J.; García-Herrera, R.A.; Piñeiro-Vázquez, A.T.; Magaña-Monforte, J.G.; Tedeschi, L.O.; Cruz-Hernández, A.; Gómez-Vázquez, A. Determination of carcass traits in Pelibuey ewes using biometric measurements. Small Rumin. Res. 2017, 147, 115–119. [Google Scholar] [CrossRef]
- Juárez, M.; López-Campos, Ó.; Roberts, J.C.; Prieto, N.; Larsen, I.L.; Uttaro, B.; Dugan, M.E.R.; Cancino-Baier, D.; Hosford, S.; Galbraith, J.; et al. Exploration of methods for lamb carcass yield estimation in Canada. Can. J. Anim. Sci. 2018, 98, 760–768. [Google Scholar] [CrossRef]
- Alves, A.A.C.; Pinzon, A.C.; da Costa, R.M.; da Silva, M.S.S.; Vieira, E.H.M.; de Mendonça, I.B.; Viana, V.S.S.; Lôbo, R.N.B. Multiple regression and machine learning based methods for carcass traits and saleable meat cuts prediction using non-invasive in vivo measurements in commercial lambs. Small Rumin. Res. 2019, 171, 49–56. [Google Scholar] [CrossRef]
- Janiszewski, P.; Borzuta, K.; Lisiak, D.; Grzéskowiak, E.; Stanislawski, D. Prediction of primal cuts by using an automatic ultrasonic device as a new method for estimating a pig-carcass slaughter and commercial value. Anim. Prod. Sci. 2019, 59, 1183–1189. [Google Scholar] [CrossRef]
- Barba, L.; Sánchez-Macías, D.; Barba, I.; Rodríguez, N. The potential of non-invasive pre- and post-mortem carcass measurements to predict the contribution of carcass components to slaughter yield of guinea pigs. Meat Sci. 2018, 140, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Ramos, I.O.; Gonçalves de Rezende, M.P.; Carneiro, P.L.S.; de Souza, J.C.; Sereno, J.R.; Bozzi, R.; Malhado, C.H.M. Body conformation of Santa Inês, Texel and Suffolk ewes raised in the Brazilian Pantanal. Small Rumin. Res. 2019, 172, 42–47. [Google Scholar] [CrossRef]
- Arcos-Álvarez, D.; Canul-Solís, J.; García-Herrera, R.; Sarmiento-Franco, L.; Piñeiro-Vazquez, Á.; Casanova-Lugo, F.; Tedeschi, L.O.; Gonzalez-Ronquillo, M.; Chay-Canul, A. Udder Measurements and Their Relationship with Milk Yield in Pelibuey Ewes. Animals 2020, 10, 518. [Google Scholar] [CrossRef] [Green Version]
- Chay-Canul, A.J.; García-Herrera, R.A.; Salazar-Cuytún, R.; Ojeda-Robertos, N.F.; Cruz-Hernández, A.; Fonseca, M.A.; Canul-Solís, J.R. Development and evaluation of equations to predict body weight of Pelibuey ewes using heart girth. Rev. Mex. Cienc. Pecu. 2019, 10, 767–777. [Google Scholar] [CrossRef]
- Canul-Solis, J.; Angeles-Hernandez, J.C.; García-Herrera, R.A.; Razo-Rodríguez, D.; del Razo-Rodríguez, Lee-Rangle, H.A.; Piñeiro-Vazquez, A.T.; Casanova-Lugo, F.; Rosales-Nieto, C.A.; Chay-Canul, A.J. Estimation of body weight in hair ewes using an indirect measurement method. Trop. Anim. Health Prod. 2020. [Google Scholar] [CrossRef]
- Del Salazar-Cuytun, E.R.; Chay-Canul, A.J.; Ptáček, M.; García-Herrera, R.A.; de Rivera-Alegría, F.M.; Aguilar-Caballero, A.J.; Sarmiento-Franco, L.A. Relationship between body mass index and body condition score in Pelibuey ewes. Ecosistemas Recur. Agropecu. 2020, 7, e2474. [Google Scholar] [CrossRef]
- SAS 9.3 Software; Institute Inc.: Cary, NC, USA, 2010.
- Tedeschi, L.O. Assessment of the adequacy of mathematical models. Agric. Syst. 2006, 89, 225–247. [Google Scholar] [CrossRef]
- Fonseca, M.A.; Tedeschi, L.O.; Valadares-Filho, S.C.; De-Paula, N.F.; Silva, L.D.; Sathler, D.F.T. Evaluation of equations to estimate body composition in beef cattle using live, linear and standing-rib cut measurements. Anim. Prod. Sci. 2017, 57, 378–390. [Google Scholar] [CrossRef]
- Cochran, W.G.; Cox, G.M. Experimental Design; John Wiley & Sons: New York, NY, USA, 1957. [Google Scholar]
- Loague, K.; Green, R.E. Statistical and graphical methods for evaluating solute transport models: Overview and application. J. Contam. Hydrol. 1991, 7, 51–73. [Google Scholar] [CrossRef]
- Mayer, D.G.; Butler, D.G. Statistical validation. Ecol. Model. 1993, 68, 21–32. [Google Scholar] [CrossRef]
- Lin, K. A concordance correlation coefficient to evaluate reproducibility. Biometrics 1989, 45, 255–268. [Google Scholar] [CrossRef]
- Bonilha, S.F.M.; Tedeschi, L.O.; Packer, I.U.; Razook, A.G.; Nardon, R.F.; Figueiredo, L.A.; Alleoni, G.F. Chemical composition of whole body and carcass of Bos indicus and tropically adapted Bos taurus breeds. J. Anim. Sci. 2011, 89, 2859–2866. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, L.O.; Fox, D.G.; Kononoff, P.J. A dynamic model to predict fat and protein fluxes associated with body reserve changes in cattle. J. Dairy Sci. 2013, 96, 2448–2463. [Google Scholar] [CrossRef] [PubMed]
- Hernandez-Espinoza, D.F.; Oliva-Hernández, J.; Pascual-córdova, A.; Hinojosa-Cuéllar, J.A. Descripción de medidas corporales y composición de la canal en corderas Pelibuey: Preeliminar study. Rev. Cient. 2012, 22, 24–31. [Google Scholar]
- Shehata, M.F. Prediction of live body weight and carcass traits by some live body measurements in Barki lambs. Egypt. J. Anim. Prod. 2013, 50, 69–75. [Google Scholar]
- Rashad, A.M.A.; EL-Hedainy, D.K.; Mahdy, A.E.; Badran, A.E.; El-Barbary, A.S.A. Utilization of live body weight, measurements, and eye muscle components to predict carcass performance of fattened Egyptian male buffalo calves. Trop. Anim. Health Prod. 2019, 51, 2405–2412. [Google Scholar] [CrossRef]
Variable | Description | Mean ± SD | Maximum | Minimum | CV (%) |
---|---|---|---|---|---|
Body measurements | |||||
SBW | Shrunk body weight (kg) | 10.78 ± 2.58 | 16.85 | 6.08 | 23.93 |
EBW | Empty body weight (kg) | 9.64 ± 2.33 | 14.88 | 5.18 | 24.18 |
HW | Height at withers (cm) | 48.47 ± 3.46 | 56.00 | 34.00 | 7.14 |
RD | Rib depth (cm) | 17.96 ± 2.68 | 26.00 | 14.00 | 14.92 |
BDL | Body diagonal length (cm) | 36.68 ± 3.13 | 44.00 | 29.00 | 8.53 |
BL | Body length (cm) | 29.29 ± 2.61 | 35.00 | 23.00 | 8.91 |
PGL | Pelvic girdle length (cm) | 13.55 ± 2.14 | 17.00 | 10.00 | 15.79 |
RuD | Rump depth (cm) | 15.20 ± 2.92 | 23.00 | 8.00 | 19.21 |
RH | Rump height (cm) | 48.00 ± 3.09 | 55.00 | 41.00 | 6.44 |
PBW | Pin bone width (cm) | 5.72 ± 1.08 | 8.00 | 3.50 | 18.88 |
HBW | Hook bone width (cm) | 8.84 ± 1.18 | 12.50 | 6.60 | 13.35 |
AW | Abdomen width (cm) | 10.92 ± 1.58 | 14.00 | 7.00 | 14.47 |
GC | Girth circumference (cm) | 51.22 ± 4.63 | 61.00 | 34.00 | 9.04 |
AC | Abdomen circumference (cm) | 51.33 ± 5.63 | 65.00 | 40.00 | 10.97 |
Carcass characteristics | |||||
HCW | Hot carcass weight (kg) | 5.28 ± 1.36 | 8.56 | 2.85 | 25.76 |
CCW | Cold carcass weight (kg) | 5.02 ± 1.33 | 8.09 | 2.68 | 26.49 |
TST | Total soft tissues (muscle + fat), (kg) | 3.54 ± 1.08 | 5.99 | 1.71 | 30.51 |
BON | Bone (kg) | 1.46 ± 0.27 | 2.25 | 0.93 | 18.49 |
IF | Internal fat (kg) | 0.28 ± 0.18 | 0.79 | 0.02 | 64.29 |
VIS | Organs and viscera (kg) | 1.26 ± 0.32 | 2.25 | 0.71 | 25.40 |
OFF | Offals (kg) | 2.61 ± 0.54 | 3.98 | 1.71 | 20.69 |
EBW | HCW | CCW | TST | BON | IF | VIS | OFF | HW | RD | BL | BDL | PGL | RuD | RH | GC | AC | PBW | HBW | AW | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SBW | 0.98 | 0.95 | 0.92 | 0.90 | 0.86 | 0.68 | 0.84 | 0.96 | 0.68 | 0.32 ** | 0.75 | 0.79 | 0.49 | 0.49 | 0.62 | 0.87 | 0.84 | 0.47 | 0.67 | 0.72 |
EBW | 0.96 | 0.94 | 0.93 | 0.85 | 0.73 | 0.80 | 0.95 | 0.68 | 0.34 ** | 0.72 | 0.77 | 0.46 | 0.46 | 0.61 | 0.88 | 0.81 | 0.45 | 0.66 | 0.70 | |
HCW | 0.96 | 0.95 | 0.84 | 0.76 | 0.72 | 0.93 | 0.65 | 0.40 | 0.70 | 0.76 | 0.38 ** | 0.38 ** | 0.58 | 0.84 | 0.74 | 0.40 | 0.67 | 0.70 | ||
CCW | 0.98 | 0.88 | 0.75 | 0.69 | 0.90 | 0.65 | 0.36 ** | 0.67 | 0.72 | 0.38 ** | 0.37 ** | 0.57 | 0.81 | 0.68 | 0.33 ** | 0.64 | 0.65 | |||
TST | 0.83 | 0.77 | 0.64 | 0.88 | 0.63 | 0.34 ** | 0.65 | 0.70 | 0.37 ** | 0.34 * | 0.54 | 0.81 | 0.66 | 0.31 * | 0.64 | 0.65 | ||||
BON | 0.54 | 0.69 | 0.85 | 0.68 | 0.41 | 0.63 | 0.66 | 0.33 ** | 0.39 ** | 0.62 | 0.70 | 0.69 | 0.38 ** | 0.61 | 0.61 | |||||
IF | 0.45 | 0.61 | 0.45 | 0.29 * | 0.39 | 0.56 | 0.24 * | 0.27 * | 0.30 * | 0.63 | 0.41 | 0.17 ns | 0.53 | 0.51 | ||||||
VIS | 0.82 | 0.55 | 0.12 ns | 0.72 | 0.62 | 0.49 | 0.58 | 0.51 | 0.72 | 0.83 | 0.50 | 0.47 * | 0.57 | |||||||
OFF | 0.64 | 0.31 ** | 0.72 | 0.76 | 0.48 | 0.48 * | 0.56 | 0.83 | 0.79 | 0.46 * | 0.63 | 0.69 | ||||||||
HW | 0.50 | 0.64 | 0.67 | 0.25 * | 0.21 ns | 0.77 | 0.66 | 0.66 | 0.42 | 0.59 | 0.47 | |||||||||
RD | 0.22 ns | 0.37 * | 0.039 ** | −0.36 ** | 0.60 | 0.41 | 0.34 ** | 0.19 ns | 0.44 | 0.39 | ||||||||||
BL | 0.60 | 0.45 | 0.38 ** | 0.57 | 0.69 | 0.70 | 0.49 | 0.53 | 0.57 | |||||||||||
BDL | 0.31 ** | 0.25 * | 0.59 | 0.74 | 0.72 | 0.41 | 0.53 | 0.63 | ||||||||||||
PGL | 0.68 | 0.07 ns | 0.40 | 0.37 ** | 0.24 * | 0.20 ns | 0.22 ns | |||||||||||||
RuD | 0.11 ns | 0.30 * | 0.41 | 0.39 | 0.34 ** | 0.31 ** | ||||||||||||||
RH | 0.63 | 0.62 | 0.46 | 0.50 | 0.45 | |||||||||||||||
GC | 0.81 | 0.47 | 0.63 | 0.70 | ||||||||||||||||
AC | 0.55 | 0.64 | 0.69 | |||||||||||||||||
PBW | 0.39 ** | 0.39 ** | ||||||||||||||||||
HBW | 0.64 |
No. Equation | Equation | n | RMSE | r2 | P |
---|---|---|---|---|---|
EBW | |||||
1 | EBW (kg) = 0.89 (±0.004 ***) × SBW | 66 | 0.34 | 0.99 | <0.0001 |
2 | EBW (kg) = 1.29 (±0.46 **) + 0.97 (±0.03 ***) × SBW − 0.04 (±0.01 **) × AC | 66 | 0.33 | 0.98 | <0.0001 |
3 | EBW (kg) = 0.91 (±0.02 ***) × SBW + 0.04 (±0.01 ***) × GC − 0.04 (±0.01 ***) × AC | 65 | 0.29 | 0.99 | <0.0001 |
HCW | |||||
4 | HCW (kg) = 0.49(±0.004 ***) × SBW | 66 | 0.40 | 0.99 | <0.0001 |
5 | HCW (kg) = 1.78 (±0.52 **) + 0.62 (±0.03 ***) × SBW − 0.06 (±0.01 **) × AC | 66 | 0.37 | 0.92 | <0.0001 |
6 | HCW (kg) = 1.13 (±0.46 *) + 0.61 (±0.03 ***) × SBW + 0.06 (±0.02 ***) × RD − 0.07 (±0.01 ***) × AC | 65 | 0.30 | 0.95 | <0.0001 |
CCW | |||||
7 | CCW (kg) = 0.47 (±0.005 ***) × SBW | 66 | 0.50 | 0.99 | <0.0001 |
8 | CCW (kg) = 2.45 (±0.63 ***) + 0.63 (±0.04 ***) × SBW − 0.08 (±0.02 ***) × AC | 66 | 0.45 | 0.89 | <0.0001 |
9 | CCW (kg) = 2.53 (±0.52 ***) + 0.65 (±0.03 ***) × SBW − 0.08 (±0.02 ***) × PGL − 0.07 (±0.01 ***) × AC | 64 | 0.31 | 0.94 | <0.0001 |
TST | |||||
10 | TST (kg) = −0.55 (±0.24 *) + 0.38 (±0.02 ***) × SBW | 66 | 0.46 | 0.82 | <0.0001 |
11 | TST (kg) = 1.66 (±0.58 **) + 0.51 (±0.03 ***) × SBW − 0.07 (±0.02 ***) × AC | 66 | 0.41 | 0.85 | <0.0001 |
12 | TST (kg) = 2.16 (±0.58 ***) + 0.54 (±0.04 ***) × SBW − 0.05 (±0.02 **) × RuD − 0.07 (±0.02 ***)AC | 66 | 0.39 | 0.87 | <0.0001 |
13 | TST (kg) = 1.52 (±0.53 **) + 0.53 (±0.03 ***) × SBW − 0.06 (±0.02 ***) × RuD − 0.07 (±0.01 ***) × AC + 0.10 (±0.05 *) × HBW | 65 | 0.33 | 0.91 | <0.0001 |
BON | |||||
14 | BON (kg) = 0.47 (±0.07 ***) + 0.09 (±0.01 ***) × SBW | 66 | 0.14 | 0.74 | <0.0001 |
15 | BON (kg) = 0.26 (±0.12 *) + 0.09 (±0.01 ***) × SBW + 0.01 (±0.01 *) × RD | 66 | 0.14 | 0.76 | <0.0001 |
16 | BON (kg) = 0.79 (±0.20 ***) + 0.12 (±0.01 ***) × SBW + 0.02 (±0.01 ***) × RD − 0.02 (±0.01 ***) × GC | 64 | 0.10 | 0.86 | <0.0001 |
IF | |||||
17 | IF (kg) = −0.24 (±0.07 **) + 0.05 (±0.01 ***) × SBW | 66 | 0.14 | 0.47 | <0.0001 |
18 | IF (kg) = 0.37 (±0.17 *) + 0.09 (±0.01 ***) × SBW − 0.02 (±0.01 ***) × AC | 66 | 0.11 | 0.65 | <0.0001 |
19 | IF (kg) = 0.08 (±0.008 ***) × SBW + 0.01 (±0.004 **) × GC − 0.02 (±0.004 ***) × AC | 64 | 0.10 | 0.90 | <0.0001 |
VIS | |||||
20 | VIS (kg) = 0.11 (±0.002 ***) × SBW | 66 | 0.17 | 0.98 | <0.0001 |
21 | VIS (kg) = −0.66 (±0.23 **) + 0.06 (±0.02 ***) × SBW + 0.03 (±0.01 ***) × AC | 66 | 0.17 | 0.76 | <0.0001 |
22 | VIS (kg) = −0.89 (±0.22 ***) + 0.05 (±0.01 **) × SBW + 0.02 (±0.01 ***) × RuD + 0.03 (±0.01 ***) × AC | 66 | 0.14 | 0.79 | <0.0001 |
23 | VIS (kg) = −0.53 (±0.15 **) + 0.07 (±0.01 ***) × SBW + 0.02 (±0.004 ***) × RuD + 0.02 (±0.004 ***) × AC − 0.05 (±0.02 **) × HBW | 62 | 0.09 | 0.90 | <0.0001 |
OFF | |||||
24 | OFF (kg) = 0.41 (±0.07 ***) + 0.20 (±0.01 ***) × SBW | 64 | 0.12 | 0.94 | <0.0001 |
Variable 1 | Equation (3) EBW | Equation (6) HCW | Equation (9) CCW | Equation (13) TST | Equation (16) BON | Equation (19) IF | Equation (23) VIS | Equation (24) OFF |
---|---|---|---|---|---|---|---|---|
Mean | 9.64 | 5.18 | 4.88 | 3.62 | 1.42 | 0.34 | 1.11 | 2.56 |
SD | 2.24 | 1.32 | 1.28 | 1.05 | 0.25 | 0.16 | 0.28 | 0.52 |
Maximum | 15.01 | 8.54 | 8.15 | 6.13 | 2.07 | 0.75 | 1.73 | 3.78 |
Minimum | 5.57 | 2.94 | 2.64 | 1.72 | 0.96 | −0.02 | 0.61 | 1.63 |
r2 | 0.98 | 0.95 | 0.94 | 0.91 | 0.86 | 0.66 | 0.90 | 0.94 |
CCC | 0.99 | 0.97 | 0.93 | 0.95 | 0.91 | 0.76 | 0.86 | 0.97 |
Cb | 0.99 | 0.99 | 0.98 | 0.99 | 0.98 | 0.94 | 0.90 | 0.99 |
MEF | 0.98 | 0.95 | 0.93 | 0.90 | 0.84 | 0.56 | 0.71 | 0.94 |
CD | 1.07 | 1.05 | 1.07 | 1.05 | 1.14 | 1.16 | 0.98 | 1.08 |
Regression analysis | ||||||||
Intercept (β0) | ||||||||
Estimate | −0.30 | 0.06 | 0.07 | −0.04 | 0.02 | −0.03 | 0.08 | −0.01 |
SE | 0.16 | 0.15 | 0.15 | 0.14 | 0.07 | 0.03 | 0.05 | 0.07 |
P-value (β0 = 0) | 0.07 | 0.69 | 0.61 | 0.75 | 0.68 | 0.32 | 0.09 | 0.93 |
Slope (β1) | ||||||||
Estimate | 1.02 | 1.00 | 1.01 | 0.98 | 1.00 | 0.93 | 1.03 | 1.02 |
SE | 0.02 | 0.03 | 0.03 | 0.04 | 0.05 | 0.08 | 0.04 | 0.03 |
P-value (β1 = 1) | 0.12 | 0.91 | 0.59 | 0.72 | 0.85 | 0.41 | 0.38 | 0.54 |
MSEP source, % MSEP | ||||||||
Mean bias | 2.39 | 6.36 | 20.67 | 8.14 | 16.01 | 21.51 | 65.10 | 9.68 |
Systematic bias | 6.47 | 1.46 | 2.64 | 1.04 | 3.80 | 3.63 | 2.58 | 3.31 |
Random error | 91.13 | 92.61 | 76.68 | 90.81 | 80.18 | 74.85 | 32.32 | 87.00 |
Root MSEP | ||||||||
Estimate | 0.09 | 0.09 | 0.11 | 0.11 | 0.01 | 0.01 | 0.03 | 0.02 |
% of the mean | 3.22 | 5.89 | 7.00 | 9.18 | 7.57 | 35.19 | 14.38 | 5.06 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bautista-Díaz, E.; Mezo-Solis, J.A.; Herrera-Camacho, J.; Cruz-Hernández, A.; Gomez-Vazquez, A.; Tedeschi, L.O.; Lee-Rangel, H.A.; Vargas-Bello-Pérez, E.; Chay-Canul, A.J. Prediction of Carcass Traits of Hair Sheep Lambs Using Body Measurements. Animals 2020, 10, 1276. https://doi.org/10.3390/ani10081276
Bautista-Díaz E, Mezo-Solis JA, Herrera-Camacho J, Cruz-Hernández A, Gomez-Vazquez A, Tedeschi LO, Lee-Rangel HA, Vargas-Bello-Pérez E, Chay-Canul AJ. Prediction of Carcass Traits of Hair Sheep Lambs Using Body Measurements. Animals. 2020; 10(8):1276. https://doi.org/10.3390/ani10081276
Chicago/Turabian StyleBautista-Díaz, Emmanuel, Jesús Alberto Mezo-Solis, José Herrera-Camacho, Aldenamar Cruz-Hernández, Armando Gomez-Vazquez, Luis Orlindo Tedeschi, Héctor Aarón Lee-Rangel, Einar Vargas-Bello-Pérez, and Alfonso Juventino Chay-Canul. 2020. "Prediction of Carcass Traits of Hair Sheep Lambs Using Body Measurements" Animals 10, no. 8: 1276. https://doi.org/10.3390/ani10081276
APA StyleBautista-Díaz, E., Mezo-Solis, J. A., Herrera-Camacho, J., Cruz-Hernández, A., Gomez-Vazquez, A., Tedeschi, L. O., Lee-Rangel, H. A., Vargas-Bello-Pérez, E., & Chay-Canul, A. J. (2020). Prediction of Carcass Traits of Hair Sheep Lambs Using Body Measurements. Animals, 10(8), 1276. https://doi.org/10.3390/ani10081276