Impact of Stress on Health and Final Weight in Fattening Lambs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Hematological Parameters
2.3. Biochemical Parameters
2.4. Acute Phase Proteins and Hormonal Parameters
2.5. Statistical Analysis
3. Results
3.1. Hematological Parameters
3.2. Biochemical Parameters
3.3. Acute Phase Proteins and Hormonal Parameters
3.4. Final Weight and Health Condition
3.5. Individual Responses to Stress, Final Weight and Health Condition
4. Discussion
4.1. Hematological Parameters
4.2. Biochemical Parameters
4.3. Acute Phase Proteins and Hormonal Parameters
4.4. Health Condition and Final Weight
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- González, J.M.; Bello, J.M.; Rodríguez, M.; Navarro, T.; Lacasta, D.; Fernández, A.; De las Heras, M. Lamb feedlot production in Spain: Most relevant health issues. Small Rumin. Res. 2016, 142, 83–87. [Google Scholar] [CrossRef]
- Sevi, A.; Taibi, L.; Albenzio, M.; Muscio, A.; Dell’Aquila, S.; Napolitano, F. Behavioral, adrenal, immune and productive responses of lactating ewes to regrouping and relocation. J. Anim. Sci. 2001, 79, 1457–1465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glendinning, L.; Wright, S.; Pollock, J.; Tennant, P.; Collie, D.; McLachlan, G. Variability of the sheep lung microbiota. Appl. Environ. Microbiol. 2016, 82, 3225–3238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bórnez, R.; Linares, M.B.; Vergara, H. Haematological, hormonal and biochemical blood parameters in lamb: Effect of age and blood sampling time. Livest. Sci. 2009, 121, 200–206. [Google Scholar] [CrossRef]
- Moran, L.; Andrés, S.; Bodas, R.; Benavides, J.; Prieto, N.; Pérez, V. Antioxidants included in the diet of fattening lambs: Effects on immune response, stress, welfare and distal gut microbiota. Anim. Feed Sci. Technol. 2012, 173, 177–185. [Google Scholar] [CrossRef]
- Dalmau, A.; Di Nardo, A.; Realini, C.A.; Rodriguez, P.; Llonch, P.; Temple, D.; Velarde, A.; Giansante, D.; Messori, S.; Dalla Villa, P. Effect of the duration of road transport on the physiology and meat quality of lambs. Anim. Prod. Sci. 2014, 55, 179–186. [Google Scholar] [CrossRef]
- Miranda-de la Lama, G.C.; Rivero, L.; Chacón, G.; García-Belenguer, S.; Villarroel, M.; María, G.A. Effect of the pre-slaughter logistic chain on some indicators of welfare in lambs. Livest. Sci. 2010, 128, 52–59. [Google Scholar] [CrossRef]
- Miranda-de la Lama, G.C.; Villarroel, M.; María, G.A. Behavioural and physiological profiles following exposure to novel environment and social mixing in lambs. Small Rumin. Res. 2012, 103, 158–163. [Google Scholar] [CrossRef]
- Galapero, J.; Fernández, S.; Pérez, C.J.; García-Sanchez, A.; García-Sanchez, L.; Gómez, L. Valuation of immune response by using phagocytosis index and parameters associated as markers of animal stress in fattening lambs. Small Rumin. Res. 2015, 133, 58–61. [Google Scholar] [CrossRef]
- Fernández, S.; Galapero, J.; Rey, J.; Pérez, C.J.; Ramos, A.; Gómez, L. Feedlot conditions and their influence on blood parameter values in Merino lambs in Extremadura, Spain over a specific time-period. J. Hell. Vet. Med. Soc. 2017, 68, 621–628. [Google Scholar] [CrossRef] [Green Version]
- Möstl, E.; Messmann, S.; Bagu, E.; Robia, C.; Palme, R. Measurement of glucocorticoid metabolite concentrations in faeces of domestic livestock. J. Vet. Med. A 1999, 46, 621–631. [Google Scholar] [CrossRef]
- Morrow, C.J.; Kolver, E.S.; Verkerk, G.A.; Matthews, L.R. Fecal glucocorticoid metabolites as a measure of adrenal activity in dairy cattle. Gen. Comp. Endocrinol. 2002, 126, 229–241. [Google Scholar] [CrossRef]
- Lepherd, M.L.; Canfield, P.J.; Hunt, G.B.; Bosward, K.L. Haematological, biochemical and selected acute phase protein reference intervals for weaned female Merino lambs. Aust. Vet. J. 2009, 87, 5–11. [Google Scholar] [CrossRef] [PubMed]
- Minka, N.S.; Ayo, J.O. Physiological responses of erythrocytes of goats to transportation and the mondulatory role of ascorbic acid. J. Vet. Med. Sci. 2010, 72, 875–881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davis, A.K.; Maney, D.L.; Maerz, J.C. The use of leukocyte profiles to measure stress in vertebrates: A review for ecologist. Funct. Ecol. 2008, 22, 760–772. [Google Scholar] [CrossRef]
- Idrus, Z.; Bahyuddin, N.; Wai, C.Y.; Farjam, A.S.; Sazili, A.Q.; Rajion, M.A.; Meng, G.Y. Physiological responses in goats subjected to road transportation under the hot, humid tropical conditions. Int. J. Agric. Biol. 2010, 12, 840–844. [Google Scholar]
- Piccione, G.; Casella, S.; Giannetto, C.; Guidice, E.; Fazio, F. Utility of acute phase proteins as biomarkers of transport stress in ewes. Small Rumin. Res. 2012, 107, 167–171. [Google Scholar] [CrossRef]
- Hickey, M.C.; Drennan, M.; Earley, B. The effect of abrupt weaning of suckler calves on the plasma concentrations of cortisol, catecholamines, leukocytes, acute-phase proteins and in vitro interferon-gamma production. J. Anim. Sci. 2003, 81, 2847–2855. [Google Scholar] [CrossRef]
- Lynch, E.M.; Earley, B.; McGee, M.; Doyle, S. Effect of abrupt weaning at housing on leukocyte distribution, functional activity of neutrophils and acute phase proteins response of beef calves. BMC Vet. Res. 2010, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Kannan, G.; Terrill, T.H.; Kouakou, B.; Gelaye, S.; Amoah, E.A. Simulated preslaughter holding and isolation effects on stress responses and live weight shrinkage in meat goats. J. Anim. Sci. 2002, 80, 1771–1780. [Google Scholar] [CrossRef]
- Petersen, H.H.; Nielsen, J.P.; Heegaard, P.M.H. Application of acute phase protein measurements in veterinary clinical chemistry. Vet. Res. 2004, 35, 163–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tothova, C.; Nagy, O.; Kovac, G. Serum proteins and their diagnostic utility in veterinary medicine: A review. Vet. Med. 2016, 61, 475–496. [Google Scholar] [CrossRef] [Green Version]
- Murata, H.; Shimada, N.; Yoshioka, M. Current research on acute phase proteins in veterinary diagnosis: An overview. Vet. J. 2004, 168, 28–40. [Google Scholar] [CrossRef]
- Ceciliani, F.; Ceron, J.J.; Eckersall, P.D.; Sauerwein, H. Acute phase proteins in ruminants. J. Proteom. 2012, 75, 4207–4231. [Google Scholar] [CrossRef]
- Tothova, C.; Nagy, O.; Kovac, G. Acute phase proteins and their use in the diagnosis of diseases in ruminants: A review. Vet. Med. 2014, 59, 163–180. [Google Scholar] [CrossRef] [Green Version]
- Palme, R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Anim. Welf. 2012, 21, 331–337. [Google Scholar] [CrossRef]
- Napolitano, F.; Marino, V.; De Rosa, G.; Capparelli, R.; Bordi, A. Influence of artificial rearing on behavioural and immune response of lambs. Appl. Anim. Behav. Sci. 1995, 45, 245–253. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, C.; Niu, X.; Zhang, Z.; Li, F.; Li, F. An intensive milk replacer feeding program benefits immune response and intestinal microbiota of lambs during weaning. BMC Vet. Res. 2018, 14, 366. [Google Scholar] [CrossRef] [Green Version]
- Luzón, J. Influencia de las Afecciones Respiratorias en los Principales Parámetros Productivos de los Corderos Tipo Ternasco (Influence of Respiratory Diseases on the Main Productive Parameters of Ternasco-Type Lambs). Ph.D. Thesis, University of Zaragoza, Zaragoza, Spain, 1999. [Google Scholar]
- Bello, J.M.; Mantecón, A.R.; Rodriguez, M.; Cuestas, R.; Beltran, J.A.; González, J.M. Fatteneing lamb nutrition. Approaches and strategies in feedlot. Small Rumin. Res. 2016, 142, 78–82. [Google Scholar] [CrossRef]
- Koolhaas, J.; Korte, S.M.; De Boer, S.F.; Van Der Vegt, B.J.; Van Reenen, C.G.; Hopster, H.; De Jong, I.C.; Ruie, M.A.W.; Blokhuis, H.J. Coping styles in animals: Current status in behaviour and stress-physiology. Neurosci. Biobehav. Rev. 1999, 23, 925–935. [Google Scholar] [CrossRef]
Variable † | Sampling Time ‡ | ||||
---|---|---|---|---|---|
Group § | T0 | T1 | T2 | T3 | |
RBC (1012 cells/L) | C | 10.77 (10.12–11.07) | 10.48 (10.03–11.29) | 11.02x (10.30–11.75) | |
F | 10.24a (9.19–10.74) | 9.81b (8.51–10.39) | 10.33a (9.63–11.10) | 10.23a,y (9.81–11.05) | |
HGB (g/L) | C | 104.50a (99.00–111.50) | 107.50b(103.00–116.00) | 110.00ab (102.25–116.75) | |
F | 105.50a (97.00–114.00) | 101.00b (91.25–106.75) | 110.00c (103.00–117.25) | 109.00ac (99.00–115.50) | |
Hematocrit (%) | C | 33.50ab (32.00–35.36) | 33.75a (30.00–35.00) | 35.25b,x (31.13–36.86) | |
F | 33.00a (30.00–35.00) | 31.00b (28.50–33.00) | 32.45a (30.50–35.50) | 34.00a,y (30.38–36.00) | |
WBC (109 cells/L) | C | 7.20a (5.65–8.50) | 6.05b (4.73–7.63) | 6.40ab (5.70–7.45) | |
F | 7.00a (5.75–8.05) | 8.20b (6.43–9.38) | 6.10c (5.35–7.40) | 6.50ac (5.30–7.60) | |
Neutrophils (109 cells/L) | C | 2.76a (2.17–4.00) | 2.28b (1.46–2.93) | 2.03b (1.67–2.61) | |
F | 2.80a (2.12–3.91) | 4.20b (3.02–5.39) | 2.04c (1.70–2.59) | 2.38c (1.65–3.41) | |
Lymphocytes (109 cells/L) | C | 3.40 (2.67–4.59) | 3.12 (2.55–4.84) | 3.90 (3.12–4.47) | |
F | 3.46a (2.83–4.21) | 3.10b (2.58–3.96) | 3.48a (2.77–4.29) | 3.54a (2.98–4.17) | |
N/L ratio | C | 0.81a (0.59–1.32) | 0.66b (0.47–0.87) | 0.58b (0.40–0.78) | |
F | 0.83a (0.58–1.20) | 1.35b (0.88–1.77) | 0.67c (0.43–0.82) | 0.71c (0.41–1.02) |
Variable † | Sampling Time ‡ | ||||
---|---|---|---|---|---|
Group § | T0 | T1 | T2 | T3 | |
Glucose (mmol/L) | C | 5.12 (3.99–5.73) | 5.19 (4.35–5.71) | 4.97 (4.52–5.69) | |
F | 4.76a (4.35–5.27) | 4.89ab (4.18–5.63) | 4.91a (4.40–5.58) | 5.22b (4.86–5.65) | |
NEFA (mmol/L) | C | 0.24a (0.13–0.34) | 0.12b(0.10–0.17) | 0.14b,x (0.10–0.18) | |
F | 0.28a (0.21–0.68) | 0.43b (0.31–0.80) | 0.10c (0.07–0.14) | 0.23d,y (0.13.0.37) | |
Total protein (g/L) | C | 54.85a (49.58–58.15) | 52.35b (48.43–56.73) | 56.30a,x (50.38–59.80) | |
F | 54.15a (51.25–58.63) | 53.50ab (51.00–57.00) | 53.25b (51.10–56.48) | 57.15c,x (54.08–60.50) | |
Albumin (g/L) | C | 35.46a (31.54–38.95) | 34.14a (31.03–37.63) | 37.64b (31.82–40.20) | |
F | 34.57a (31.73–34.37) | 34.37a (32.33–37.13) | 34.84a (32.36–36.53) | 35.41b (34.21–37.68) | |
α-globulins (g/L) | C | 2.45a (2.27–2.76) | 2.64b (2.25–2.92) | 2.66b,x (2.41–3.05) | |
F | 2.50a (2.22–2.70) | 2.45a (2.22–2.71) | 2.67b (2.50–2.99) | 2.98c,y (2.72–3.24) | |
β-globulins (g/L) | C | 11.25a (10.42–12.38) | 10.66b (9.83–11.44) | 10.92a,x (10.17–11.90) | |
F | 11.73a (10.85–12.88) | 11.41b (10.19–12.47) | 10.52c (9.78–11.08) | 11.65ab,y (10.68–12.53) | |
γ-globulins (g/L) | C | 4.91 (4.22–6.07) | 4.91 (4.19–5.95) | 5.01x (4.46–6.13) | |
F | 5.18a (4.20–6.44) | 5.02a (4.15–6.19) | 5.05b (4.61–6.25) | 6.65c,x (0.41–1.02) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro, T.; González, J.M.; Ramos, J.J.; Marca, M.C.; Figliola, L.; de Arcaute, M.R.; Borobia, M.; Ortín, A. Impact of Stress on Health and Final Weight in Fattening Lambs. Animals 2020, 10, 1274. https://doi.org/10.3390/ani10081274
Navarro T, González JM, Ramos JJ, Marca MC, Figliola L, de Arcaute MR, Borobia M, Ortín A. Impact of Stress on Health and Final Weight in Fattening Lambs. Animals. 2020; 10(8):1274. https://doi.org/10.3390/ani10081274
Chicago/Turabian StyleNavarro, Teresa, José María González, Juan José Ramos, María Carmen Marca, Lucia Figliola, Marta Ruiz de Arcaute, Marta Borobia, and Aurora Ortín. 2020. "Impact of Stress on Health and Final Weight in Fattening Lambs" Animals 10, no. 8: 1274. https://doi.org/10.3390/ani10081274
APA StyleNavarro, T., González, J. M., Ramos, J. J., Marca, M. C., Figliola, L., de Arcaute, M. R., Borobia, M., & Ortín, A. (2020). Impact of Stress on Health and Final Weight in Fattening Lambs. Animals, 10(8), 1274. https://doi.org/10.3390/ani10081274