A Genetic Evaluation System for New Zealand White Rabbit Germplasm Resources Based on SSR Markers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and DNA Extraction
2.2. Microsatellite Genotyping
2.3. Data Analysis
3. Results
3.1. Determination of SSR Fluorescent Labeling Diversity by Capillary Electrophoresis
3.2. Hardy–Weinberg Equilibrium Test and Effective Population Size Calculation
3.3. Statistical Analysis of New Zealand White Rabbit Genetic Diversity Using Different Numbers of Records
3.4. Statistical Analysis of New Zealand White Rabbit Genetic Diversity with Different Loci Numbers
3.5. Statistical Analysis of Genetic Diversity of Different Combinations under the Optimal Loci Number
3.6. Monitoring Genetic Diversity of New Zealand White Rabbits in Different Generations
3.7. Application of Rabbit Genetic Evaluation System
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pandey, A.; Tantia, M.S.; Kumar, D.; Mishra, B.; Vijh, R.K. Microsatellite analysis of three poultry breeds of India. Asian Austral. J. Anim. 2002, 15, 1536–1542. [Google Scholar] [CrossRef]
- Becker, J.; Vos, P.; Kuiper, M.; Salamini, F.; Heun, M. Combined mapping of AFLP and RFLP markers in barley. Mol. Gen. Genet. 1995, 249, 65. [Google Scholar] [CrossRef] [PubMed]
- Pieter, V.; Rene, H.; Marjo, B.; Martin, R.; van de Lee, T.; Miranda, H.; Adrie, F.; Jerina, P.; Johan, P.; Martin, K. AFLP: A new technique for DNA fingerprinting. Nucleic Acids Res. 1995, 23, 4407–4414. [Google Scholar]
- Li, T.; Ball, D.; Zhao, J.; Murray, R.M.; Liu, X.; Sham, P.C.; Collier, D.A. Family-based linkage disequilibrium mapping using SNP marker haplotypes: Application to a potential locus for schizophrenia at chromosome 22q11. Mol. Psychiatr. 2000, 5, 77–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasegawa, M.; Kishino, H.; Yano, T.-A. Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 1985, 22, 160–174. [Google Scholar] [CrossRef]
- Tautz, D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res. 1989, 17, 6463–6471. [Google Scholar] [CrossRef]
- Gyapay, G.; Morissette, J.; Vignal, A.; Dib, C.; Fizames, C.; Millasseau, P.; Marc, S.; Bernardi, G.; Lathrop, M.; Weissenbach, J. The 1993–1994 Généthon human genetic linkage map. Nat. Genet. 1994, 7, 246–339. [Google Scholar] [CrossRef]
- Amos, B.; Schlotterer, C.; Tautz, D. Social structure of pilot whales revealed by analytical DNA profiling. Science 1993, 260, 670–672. [Google Scholar] [CrossRef]
- Teneva, A.; Dimitrov, K.; Petrović, V.C.; Petrović, M.P.; Dimitrova, I. Molecular genetics and SSR markers as a new practice in farm animal genomic analysis for breeding and control of disease disorders. Biotechnol. Anim. Husb. 2013, 29, 405–429. [Google Scholar] [CrossRef]
- Rico, C.; Rico, I.; Webb, N.; Smith, S.; Bell, D.; Hewitt, G. Four polymorphic microsatellite loci for the European wild rabbit, Oryctolagus cuniculus. Anim. Genet. 1994, 25, 367. [Google Scholar] [CrossRef]
- Van Lith, H.; Van Zutphen, L. Characterization of rabbit DNA micros extracted from the EMBL nucleotide sequence database. Anim. Genet. 1996, 27, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Andersson, A.C.; Thulin, C.G.; Tegelstrom, H. Applicability of rabbit microsatellite primers for studies of hybridisation between an introduced and a native hare species. Hereditas 1999, 130, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Surridge, A.; Ibrahim, K.; Bell, D.; Webb, N.; Rico, C.; Hewitt, G. Fine-scale genetic structuring in a natural population of European wild rabbits (Oryctolagus cuniculus). Mol. Ecol. 1999, 8, 299–307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zenger, K.; Richardson, B.; Vachot-Griffin, A.M. A rapid population expansion retains genetic diversity within European rabbits in Australia. Mol. Ecol. 2003, 12, 789–794. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Liu, S.; Zou, F.; Zeng, B.; Yue, B. Genetic diversity of captive forest musk deer (moschus berezovskii) inferred from the mitochondrial DNA control region & nbsp. Anim. Genet. 2008, 40, 65–72. [Google Scholar]
- Warzecha, J.; Oczkowicz, M.; Rubis, D.; Fornal, A.; Szmatola, T.; Bugno-Poniewierska, M. An evaluation of the genetic structure of geese maintained in poland on the basis of microsatellite markers. Animals 2019, 9, 737. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Yang, J.; Wang, J.; Yang, Y.; Fu, W.; Zheng, C.; Cheng, J.; Zeng, Y.; Zhang, Y.; Xu, L.; et al. Changes in the population genetic structure of captive forest musk deer (moschus berezovskii) with the increasing number of generation under closed breeding conditions. Animals 2020, 10, 255. [Google Scholar] [CrossRef] [Green Version]
- Ceccobelli, S.; Lasagna, E.; Demir, E.; Rovelli, G.; Albertini, E.; Veronesi, F.; Sarti, F.M.; Rosellini, D. Molecular identification of the "Facciuta Della Valnerina" local goat population reared in the Umbria Region, Italy. Animals 2020, 10, 601. [Google Scholar] [CrossRef] [Green Version]
- Rendo, F.; Iriondo, M.; Manzano, C.; Estonba, A. Effects of a 10-year conservation programme on the genetic diversity of the Pottoka pony—New clues regarding their origin. J. Anim. Breed. Genet. 2012, 129, 234–243. [Google Scholar] [CrossRef]
- Davidson, J.; Spreadbury, D. Nutrition of the New Zealand white rabbit. Proc. Nutr. Soc. 1975, 34, 75–83. [Google Scholar] [CrossRef] [Green Version]
- Yin, L.-Y.; Calhoun, J.H.; Thomas, T.S.; Wirtz, E.D. Efficacy of telavancin in the treatment of methicillin-resistant Staphylococcus aureus osteomyelitis: Studies with a rabbit model. J. Antimicrob. Chemoth. 2008, 63, 357–360. [Google Scholar] [CrossRef] [Green Version]
- Worlock, P.; Slack, R.; Harvey, L.; Mawhinney, R. An experimental model of post-traumatic osteomyelitis in rabbits. Br. J. Exp. Pathol. 1988, 69, 235–244. [Google Scholar] [PubMed]
- King, T.L.; Eackles, M.; Aunins, A.; McGreevy, T.J.; Husband, T.P.; Tur, A.; Kovach, A.I. Microsatellite marker development from next-generation sequencing in the New England cottontail (sylvilagus transitionalis) and cross-amplification in the eastern cottontail (S. floridanus). BMC Res. Notes 2017, 10, 741. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mougel, F.; Mounolou, J.; Monnerot, M. Nine polymorphic microsatellite loci in the rabbit, oryctolagus cuniculus. Anim. Genet. 1997, 28, 59. [Google Scholar]
- Chantry-Darmon, C.; Urien, C.; Hayes, H.; Bertaud, M.; Chadi-Taourit, S.; Chardon, P.; Vaiman, D.; Rogel-Gaillard, C. Construction of a cytogenetically anchored microsatellite map in rabbit. Mamm. Genome 2005, 16, 442–459. [Google Scholar] [CrossRef]
- Rousset, F. Genepop’007: A complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef]
- Tucker, K.P.; Hunter, M.E.; Bonde, R.K.; Austin, J.D.; Clark, A.M.; Beck, C.A.; McGuire, P.M.; Oli, M.K. Low genetic diversity and minimal population substructure in the endangered Florida manatee: Implications for conservation. J. Mammal. 2012, 93, 1504–1511. [Google Scholar] [CrossRef] [Green Version]
- Raymond, M.; Rousset, F. GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Chenyambuga, S.W.; Hanotte, O.; Hirbo, J.; Watts, P.C.; Rege, J.E.O. Genetic characterization of indigenous goats of sub-saharan Africa using microsatellite DNA markers. Asian Austral. J. Anim. 2004, 17, 137–140. [Google Scholar] [CrossRef]
- Cervantes, I.; Meuwissen, T.H.E. Maximization of total genetic variance in breed conservation programmes. J. Anim. Breed. Genet. 2011, 128, 465–472. [Google Scholar] [CrossRef]
- Gvozdanovic, K.; Margeta, V.; Margeta, P.; Kusec, I.D.; Galovic, D.; Dovc, P.; Kusec, G. Genetic diversity of autochthonous pig breeds analyzed by microsatellite markers and mitochondrial DNA D-loop sequence polymorphism. Anim. Biotechnol. 2019, 30, 242–251. [Google Scholar] [CrossRef] [PubMed]
- Stevanov-Pavlovic, M.; Dimitrijević, V.; Marić, S.; Dejan, R.; Stevanović, J.; Stanimirovic, Z. Applicability assessment of a standardized microsatellite marker set in endangered busha cattle. Slov. Vet. Res. 2015, 52, 133–139. [Google Scholar]
- Parker, H.G.; Kim, L.V.; Sutter, N.B.; Carlson, S.; Lorentzen, T.D.; Malek, T.B. Genetic structure of the purebred domestic dog. Science 2004, 304, 1160–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leroy, G.; Verrier, E.; Meriaux, J.C.; Rognon, X. Genetic diversity of dog breeds: Between-breed diversity, breed assignation and conservation approaches. Anim. Genet. 2009, 40, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Nei, M. Sampling variances of heterozygosity and genetic distance. Genetics 1974, 76, 379–390. [Google Scholar] [PubMed]
- Nei, M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 1978, 89, 583–590. [Google Scholar] [PubMed]
- Barker, J.S.F. Animal breeding and conservation genetics. EXS 1994, 68, 381–395. [Google Scholar]
- Barkerjs, B. An Integrated Global Programme to Establish the Genetic Relationships among the Breeds of Each Domestic Animal Species; FAO: Rome, Italy, 1993. [Google Scholar]
Loci | NA | Ne | He | Ho | PIC | p-Value |
---|---|---|---|---|---|---|
L8B5 | 2.000 | 1.289 | 0.224 | 0.246 | 0.198 | 0.002 |
SAT8 | 4.000 | 1.928 | 0.481 | 0.531 | 0.404 | n.s. |
D7UTR5 | 8.000 | 2.914 | 0.657 | 0.669 | 0.596 | n.s. |
SAT3 | 2.000 | 1.589 | 0.371 | 0.385 | 0.301 | 0.004 |
SAT4 | 2.000 | 2.000 | 0.500 | 0.985 | 0.374 | 0.000 |
SOL62 | 2.000 | 1.762 | 0.432 | 0.415 | 0.338 | 0.000 |
SAT2 | 2.000 | 1.822 | 0.451 | 0.400 | 0.349 | n.s. |
INRACCDDV0003 | 3.000 | 1.142 | 0.125 | 0.146 | 0.118 | 0.005 |
INRACCDDV0007 | 3.000 | 1.142 | 0.125 | 0.146 | 0.118 | n.s. |
INRACCDDV0010 | 2.000 | 1.609 | 0.378 | 0.415 | 0.306 | 0.000 |
INRACCDDV0087 | 3.000 | 2.466 | 0.595 | 0.631 | 0.508 | 0.009 |
INRACCDDV0018 | 3.000 | 2.578 | 0.612 | 0.554 | 0.531 | n.s. |
INRACCDDV0192 | 2.000 | 1.991 | 0.498 | 0.442 | 0.373 | 0.000 |
INRACCDDV0185 | 3.000 | 1.359 | 0.264 | 0.254 | 0.231 | 0.036 |
INRACCDDV0190 | 2.000 | 1.518 | 0.341 | 0.323 | 0.282 | 0.000 |
INRACCDDV0152 | 2.000 | 1.599 | 0.375 | 0.400 | 0.304 | 0.004 |
INRACCDDV0309 | 3.000 | 1.858 | 0.462 | 0.315 | 0.412 | 0.001 |
INRACCDDV0313 | 4.000 | 2.743 | 0.635 | 0.515 | 0.562 | n.s. |
INRACCDDV0314 | 3.000 | 1.172 | 0.147 | 0.169 | 0.141 | 0.000 |
INRACCDDV0346 | 2.000 | 1.548 | 0.354 | 0.462 | 0.291 | 0.006 |
INRACCDDV0160 | 2.000 | 1.830 | 0.454 | 0.685 | 0.350 | n.s. |
INRACCDDV0157 | 6.000 | 1.606 | 0.377 | 0.385 | 0.328 | 0.014 |
SOL44 | 7.000 | 2.154 | 0.536 | 0.515 | 0.425 | 0.022 |
12L4A1 | 8.000 | 1.927 | 0.481 | 0.415 | 0.456 | 0.048 |
6L1F10 | 10.000 | 3.431 | 0.709 | 0.600 | 0.684 | 0.001 |
6L7C11 | 10.000 | 2.615 | 0.618 | 0.538 | 0.557 | 0.042 |
6L3F8 | 9.000 | 2.882 | 0.653 | 0.415 | 0.599 | 0.005 |
6L2H3 | 6.000 | 1.459 | 0.314 | 0.269 | 0.281 | 0.000 |
D3UTR2 | 6.000 | 1.251 | 0.201 | 0.169 | 0.191 | n.s. |
7L1B10 | 5.000 | 2.203 | 0.546 | 0.462 | 0.488 | 0.000 |
D6UTR4 | 9.000 | 2.310 | 0.567 | 0.485 | 0.535 | n.s. |
SOL08 | 3.000 | 1.797 | 0.442 | 0.400 | 0.346 | 0.025 |
12L1C2 | 4.000 | 1.939 | 0.484 | 0.500 | 0.380 | n.s. |
SAT12 | 3.000 | 1.943 | 0.485 | 0.508 | 0.377 | 0.001 |
19L1C5 | 2.000 | 1.008 | 0.008 | 0.008 | 0.008 | 0.000 |
SOL33 | 3.000 | 2.618 | 0.618 | 0.538 | 0.537 | 0.000 |
12L5A6 | 3.000 | 1.973 | 0.493 | 0.462 | 0.374 | 0.028 |
SAT7 | 3.000 | 1.919 | 0.478 | 0.454 | 0.370 | 0.000 |
SOL03 | 3.000 | 2.136 | 0.532 | 0.515 | 0.447 | n.s. |
SOL30 | 5.000 | 2.349 | 0.574 | 0.485 | 0.478 | 0.005 |
5LIE8 | 7.000 | 2.005 | 0.501 | 0.400 | 0.396 | n.s. |
12LIE11 | 4.000 | 2.695 | 0.629 | 0.546 | 0.557 | 0.000 |
SAT5 | 4.000 | 2.652 | 0.623 | 0.638 | 0.553 | 0.003 |
Genetic Diversity Parameter | 43 Loci | 22 Loci | p-Value |
---|---|---|---|
NA | 3.370 ± 1.915 | 3.318 ± 1.729 | 0.974 |
Ne | 2.100 ± 0.785 | 2.177 ± 0.833 | 0.913 |
He | 0.473 ± 0.151 | 0.483 ± 0.171 | 0.943 |
Ho | 0.497 ± 0.202 | 0.519 ± 0.231 | 0.907 |
PIC | 0.401 ± 0.144 | 0.413 ± 0.163 | 0.928 |
Group 1 | Ne | He | PIC |
---|---|---|---|
C1 | 2.031 | 0.481 | 0.406 |
C2 | 1.978 | 0.439 | 0.379 |
C3 | 1.976 | 0.451 | 0.382 |
C4 | 2.090 | 0.493 | 0.418 |
C5 | 1.933 | 0.440 | 0.377 |
C6 | 1.892 | 0.440 | 0.370 |
C7 | 2.000 | 0.462 | 0.400 |
C8 | 2.024 | 0.467 | 0.396 |
C9 | 2.016 | 0.463 | 0.394 |
C10 | 1.906 | 0.435 | 0.367 |
C11 | 2.017 | 0.462 | 0.394 |
C12 | 1.885 | 0.412 | 0.352 |
C13 | 1.836 | 0.411 | 0.346 |
C14 | 2.023 | 0.476 | 0.400 |
C15 | 1.937 | 0.435 | 0.375 |
C16 | 1.992 | 0.436 | 0.380 |
C17 | 2.065 | 0.473 | 0.409 |
C18 | 1.982 | 0.462 | 0.386 |
C19 | 1.959 | 0.466 | 0.390 |
C20 | 1.913 | 0.442 | 0.370 |
C21 | 1.930 | 0.431 | 0.366 |
C22 | 1.928 | 0.430 | 0.369 |
C23 | 1.986 | 0.451 | 0.386 |
C24 | 2.022 | 0.481 | 0.406 |
C25 | 2.022 | 0.481 | 0.406 |
C26 | 1.904 | 0.444 | 0.370 |
C27 | 1.907 | 0.446 | 0.371 |
C28 | 2.084 | 0.478 | 0.412 |
C29 | 2.123 | 0.500 | 0.429 |
C30 | 1.940 | 0.441 | 0.374 |
43 SSR markers | 1.974 | 0.450 | 0.385 |
Genetic Diversity Parameter | 43 Loci | 22 Loci | p-Value |
---|---|---|---|
NA | 4.047 ± 2.382 | 3.409 ± 1.817 | 0.731 |
Ne | 1.969 ± 0.546 | 1.875 ± 0.573 | 0.847 |
He | 0.449 ± 0.162 | 0.416 ± 0.182 | 0.826 |
Ho | 0.506 ± 0.220 | 0.498 ± 0.265 | 0.970 |
PIC | 0.384 ± 0.146 | 0.351 ± 0.159 | 0.804 |
Genetic Diversity Parameter | F0 | F1 | p-Value |
---|---|---|---|
NA | 3.318 ± 1.729 | 3.409 ± 1.817 | 0.953 |
Ne | 2.177 ± 0.833 | 1.875 ± 0.573 | 0.632 |
He | 0.483 ± 0.171 | 0.416 ± 0.182 | 0.666 |
Ho | 0.519 ± 0.231 | 0.498 ± 0.265 | 0.923 |
PIC | 0.413 ± 0.163 | 0.351 ± 0.159 | 0.662 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Zhao, B.; Chen, Y.; Zhao, B.; Yang, N.; Hu, S.; Shen, J.; Wu, X. A Genetic Evaluation System for New Zealand White Rabbit Germplasm Resources Based on SSR Markers. Animals 2020, 10, 1258. https://doi.org/10.3390/ani10081258
Li J, Zhao B, Chen Y, Zhao B, Yang N, Hu S, Shen J, Wu X. A Genetic Evaluation System for New Zealand White Rabbit Germplasm Resources Based on SSR Markers. Animals. 2020; 10(8):1258. https://doi.org/10.3390/ani10081258
Chicago/Turabian StyleLi, Jiali, Bin Zhao, Yang Chen, Bohao Zhao, Naisu Yang, Shuaishuai Hu, Jinyu Shen, and Xinsheng Wu. 2020. "A Genetic Evaluation System for New Zealand White Rabbit Germplasm Resources Based on SSR Markers" Animals 10, no. 8: 1258. https://doi.org/10.3390/ani10081258
APA StyleLi, J., Zhao, B., Chen, Y., Zhao, B., Yang, N., Hu, S., Shen, J., & Wu, X. (2020). A Genetic Evaluation System for New Zealand White Rabbit Germplasm Resources Based on SSR Markers. Animals, 10(8), 1258. https://doi.org/10.3390/ani10081258