Comparative Study of the Water-Soluble Antioxidants in Fodder Additives and Sheep Blood Serum by Amperometric and Biochemical Methods
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Feed Additives
2.2. Rumen-Fistulated Ewes
2.3. Animal Blood
2.4. Samples of Rumen Content
2.5. Sample Preparations
2.6. TAWSA Calculations and Correlations
- XG is the mass concentration of antioxidants found according to the calibration graph, mg/L;
- N is the dilution ratio of the analyzed sample;
- Vn is the volume of the solution (extract) of the analyzed sample, mL;
- mn is the amount of the analyzed sample, g.
- ±0.76–±1.0 = very strong positive (negative) correlations;
- ±0.51–±0.75 = strong positive (negative) correlations;
- ±0.26–±0.50 = moderate positive (negative) correlations;
- ±0.01–±0.25 = weak positive (negative) correlations.
3. Results
3.1. TAWSA Parameters of Chitosan Feed Additives and High Protein Concentrate
3.2. TAWSA Parameters of the Blood Serum of Rumen-Fistulated Ewes
3.3. The Major Biochemical Parameters of the Blood Serum of Rumen-fistulated Ewes
3.4. The Major Parameters of a Rumen Fluid of Rumen-Fistulated Ewes
3.5. The Correlations between the TAWSA and the Major Biochemical Parameters of a Blood Serum of Rumen-Fistulated Ewes
3.6. The Correlations between the TAWSA and the Rumen Content of Rumen-Fistulated Ewes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Araújo, A.; Venturelli, B.; Santos, M.; Gardinal, R.; Cônsolo, N.R.B.; Calomeni, G.; Freitas, J.; Barletta, R.; Gandra, J.; Paiva, P.; et al. Chitosan affects total nutrient digestion and ruminal fermentation in Nellore steers. Anim. Feed. Sci. Technol. 2015, 206, 114–118. [Google Scholar] [CrossRef]
- Dias, A.; Goes, R.H.; Gandra, J.; Takiya, C.; Branco, A.; Jacaúna, A.; Oliveira, R.; Souza, C.; Vaz, M. Increasing doses of chitosan to grazing beef steers: Nutrient intake and digestibility, ruminal fermentation, and nitrogen utilization. Anim. Feed. Sci. Technol. 2017, 225, 73–80. [Google Scholar] [CrossRef]
- Duffy, C.; O’Riordan, D.; O’Sullivan, M.; Jacquier, J.-C. In vitro evaluation of chitosan copper chelate gels as a multimicronutrient feed additive for cattle. J. Sci. Food Agric. 2018, 98, 4177–4183. [Google Scholar] [CrossRef] [PubMed]
- De Paiva, P.G.; De Jesus, E.F.; Del Valle, T.A.; De Almeida, G.F.; Costa, A.G.B.V.B.; Consentini, C.E.C.; Zanferari, F.; Takiya, C.; Bueno, I.C.D.S.; Rennó, F.P. Effects of chitosan on ruminal fermentation, nutrient digestibility, and milk yield and composition of dairy cows. Anim. Prod. Sci. 2017, 57, 301. [Google Scholar] [CrossRef] [Green Version]
- Goiri, I.; Oregui, L.; Garcia, A. Dose–response effects of chitosans on in vitro rumen digestion and fermentation of mixtures differing in forage-to-concentrate ratios. Anim. Feed. Sci. Technol. 2009, 151, 215–227. [Google Scholar] [CrossRef]
- Jull, A.; Ni Mhurchu, C.; Bennett, D.A.; Dunshea-Mooij, C.A.; Rodgers, A. Chitosan for overweight or obesity. Cochrane Database Syst. Rev. 2008, CD003892. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, S.M.; Thomas, M.; Reddy, K.K.; Sooraparaju, S.G.; Asthana, A.; Bhatnagar, I. Chitosan as biomaterial in drug delivery and tissue engineering. Int. J. Boil. Macromol. 2018, 110, 97–109. [Google Scholar] [CrossRef]
- Li, J.; Cai, C.; Li, J.; Li, J.; Li, J.; Sun, T.; Wang, L.; Wu, H.; Yu, G. Chitosan-Based Nanomaterials for Drug Delivery. Molecules 2018, 23, 2661. [Google Scholar] [CrossRef] [Green Version]
- Viju, S.; Thilagavathi, G. Effect of chitosan coating on the characteristics of silk-braided sutures. J. Ind. Text. 2012, 42, 256–268. [Google Scholar] [CrossRef]
- Younes, I.; Rinaudo, M. Chitin and Chitosan Preparation from Marine Sources. Structure, Properties and Applications. Mar. Drugs 2015, 13, 1133–1174. [Google Scholar] [CrossRef] [Green Version]
- Belanche, A.; Pinloche, E.; Preskett, D.; Newbold, C.J. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol. Ecol. 2016, 92, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghendon, Y.; Markushin, S.; Vasiliev, Y.; Akopova, I.; Koptiaeva, I.; Krivtsov, G.; Borisova, O.; Ahmatova, N.; Kurbatova, E.; Mazurina, S.; et al. Evaluation of properties of chitosan as an adjuvant for inactivated influenza vaccines administered parenterally. J. Med Virol. 2009, 81, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Krapivina, E.V.; Ivanov, D.V.; Krivopushkina, E.A.; Bobkov, G.N. Efficiency of using the “Proagen” probiotic and the complex of this probiotic with chitosan in calf breeding. Bull. Bryansk State Agric. Acad. 2011, 3, 58–65. [Google Scholar]
- Brainina, K.Z.; Ivanova, A.V.; Sharafutdinova, E.N. Evaluation of antioxidant activity of food products by potentiometry. Bull. Higher Educ. Food Technol. 2004, 4, 73–75. [Google Scholar]
- Zaitsev, S.Y. Biological Chemistry: From Biologically Active Substances to Organs and Tissues of Animals; Capital Print: Moscow, Russia, 2017; 517p. [Google Scholar]
- Grażyna, C.; Hanna, C.; Adam, A.; Magdalena, B.M. Natural antioxidants in milk and dairy products. Int. J. Dairy Technol. 2017, 70, 165–178. [Google Scholar] [CrossRef]
- Kohen, R.; Nyska, A. Invited Review: Oxidation of Biological Systems: Oxidative Stress Phenomena, Antioxidants, Redox Reactions, and Methods for Their Quantification. Toxicol. Pathol. 2002, 30, 620–650. [Google Scholar] [CrossRef] [Green Version]
- Chesnokova, N.P.; Ponukalina, E.V.; Byzenkova, M.N. Molecular-cellular mechanisms of inactivation of free radicals in biological systems. Adv. Curr. Nat. Sci. 2006, 7, 29–36. [Google Scholar]
- Zaitsev, S.Y. Tensiometric and Biochemical Analysis of Animal Blood: Fundamental and Applied Aspects; Agricultural Technologies: Moscow, Russia, 2016; p. 192. [Google Scholar]
- Zaitsev, S.Y.; Bogolyubova, N.V.; Zhang, X.; Brenig, B. Biochemical parameters, dynamic tensiometry and circulating nucleic acids for cattle blood analysis: A review. PeerJ 2020, 8, e8997. [Google Scholar] [CrossRef]
- Zaitsev, S.Y.; Savina, A.A.; Zaitsev, I.S. Biochemical aspects of lipase immobilization at polysaccharides for biotechnology. Adv. Colloid Interface Sci. 2019, 272, 102016. [Google Scholar] [CrossRef]
- Zaitsev, S.Y.; Savina, A.A.; Garnashevich, L.S.; Tsarkova, M.S.; Zaitsev, I.S. Effect of Some Charged Polymers on the Activity of Pancreatic Porcine Lipase. BioNanoScience 2019, 9, 773–777. [Google Scholar] [CrossRef]
- Eremeev, N.L.; Zaitsev, S.Y. Porcine Pancreatic Lipase as a Catalyst in Organic Synthesis. Mini-Rev. Org. Chem. 2016, 13, 73–85. [Google Scholar] [CrossRef]
- Zaitsev, S.Y.; Gorokhova, I.V.; Kashtigo, T.V.; Zintchenko, A.; Dautzenberg, H. General approach for lipases immobilization in polyelectrolyte complexes. Colloids Surf. A Physicochem. Eng. Asp. 2003, 221, 209–220. [Google Scholar] [CrossRef]
- Zaitsev, S.Y. Dynamic surface tension measurements as general approach to the analysis of animal blood plasma and serum. Adv. Colloid Interface Sci. 2016, 235, 201–213. [Google Scholar] [CrossRef]
- Váradyová, Z.; Mravčáková, D.; Holodová, M.; Grešáková, Ľ.; Pisarčíková, J.; Barszcz, M.; Taciak, M.; Tuśnio, A.; Kišidayová, S.; Čobanová, K. Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1131–1145. [Google Scholar] [CrossRef] [PubMed]
- Petrič, D.; Mravčáková, D.; Kucková, K.; Čobanová, K.; Kišidayová, S.; Cieslak, A.; Ślusarczyk, S.; Váradyová, Z. Effect of dry medicinal plants (wormwood, chamomile, fumitory and mallow) on in vitro ruminal antioxidant capacity and fermentation patterns of sheep. J. Anim. Physiol. Anim. Nutr. 2020. [Google Scholar] [CrossRef]
- Hosoda, K.; Matsuo, M.; Miyaji, M.; Matsuyama, H.; Maeda, H.; Ohta, H.; Kato, H.; Nonaka, K. Fermentative quality of purple rice (Oryza sativa L.) silage and its effects on digestibility, ruminal fermentation and oxidative status markers in sheep: A preliminary study. Grassl. Sci. 2012, 58, 161–169. [Google Scholar] [CrossRef]
- Qiao, G.H.; Zhou, X.H.; Li, Y.; Zhang, H.S.; Li, J.H.; Wang, C.M.; Lu, Y. Effect of several supplemental Chinese herbs additives on rumen fermentation, antioxidant function and nutrient digestibility in sheep. J. Anim. Physiol. Anim. Nutr. 2011, 96, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, K.; Zhao, J.; Deng, W. Effects of polyphenolic extract from Eucommia ulmoides Oliver leaf on growth performance, digestibility, rumen fermentation and antioxidant status of fattening lambs. Anim. Sci. J. 2018, 89, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Shvakel, E.V.; Kharitonova, O.V. Influence of beta-alanine infusion and its mixture with histidine in the intestine on nitrogen metabolism and productivity of lactating cows. Prob. Biol. Prod. Anim. 2010, 1, 38–44. [Google Scholar]
- Shaydullin, R.F. Change in biochemical parameters of blood serum of dairy cows when feeding amido-vitamin-mineral concentrate. Sci. Notes Kazan State Acad. Vet. Med. Named N.E. Bauman. 2012, 212, 425–432. [Google Scholar]
- Russell, J.B.; Rychlik, J.L. Factors That Alter Rumen Microbial Ecology. Science 2001, 292, 1119–1122. [Google Scholar] [CrossRef] [PubMed]
- Chiba, L. Animal Nutrition Handbook, 3rd ed.; Wiley-Blackwell: Ames, IA, USA, 2014; pp. 57–79. [Google Scholar]
- Rode, L.M. Maintaining a healthy rumen—An overview. Adv. Dairy. Technol. 2000, 12, 101–108. [Google Scholar]
- Wanapat, M.; Boonnop, K.; Promkot, C.; Cherdthong, A. Effects of alternate protein sources on rumen microbes and productivity of dairycows. Maejo Int. J. Sci. Technol. 2011, 5, 13–23. [Google Scholar]
Sample | S Peaksa a.u. | y mg/L | x mg/g |
---|---|---|---|
Chitosan 1 | 476 | 0.186 | 0.047 |
Chitosan 2 | 939 ** | 0.325 ** | 0.081 ** |
High-protein concentrate | 8028 | 2.553 | 0.638 |
M-1, i.e., chitosan 1 & high-protein concentrate | 5080 | 1.668 | 0.834 |
M-2, i.e., chitosan 2 & high-protein concentrate | 5419 * | 1.770 * | 0.885 * |
Group 1 | Group 2 | Group 3 | ||||||
---|---|---|---|---|---|---|---|---|
Sample № | S Peaks, a.u. | x, mg/g | Sample № | S Peaks, a.u. | x, mg/g | Sample № | S Peaks, a.u. | x, mg/g |
1 | 2677 | 23.2 | 7 | 2256 | 19.8 | 13 | 2423 | 21.2 |
2 | 2357 | 20.6 | 8 | 2459 | 21.5 | 14 | 1356 | 12.6 |
3 | 2200 | 19.4 | 9 | 2918 | 25.1 | 15 | 3250 | 27.8 |
4 | 2542 | 22.1 | 10 | 2210 | 19.5 | 16 | 2580 | 22.4 |
5 | 2149 | 19.0 | 11 | 2244 | 19.7 | 17 | 2936 | 25.3 |
6 | 2046 | 18.2 | 12 | 1941 | 17.3 | 18 | 2502 | 21.8 |
Average values | 20.4 | 20.5 | 21.9 * |
Parameters | Groups | |||||
---|---|---|---|---|---|---|
1 (Control) | 2 (Exp. M-1) | 3 (Exp. M-2) | ||||
M | m | M | m | M | m | |
Total protein, g/L | 80.77 | 1.77 | 83.44 | 1.62 | 77.38 | 1.14 |
Albumins, g/L | 37.08 | 1.08 | 35.89 | 0.83 | 36.23 | 1.05 |
Globulins, g/L | 43.69 | 1.51 | 47.54 | 1.82 | 41.15 | 0.62 |
Albumins/Globulins | 0.85 | 0.04 | 0.76 | 0.04 | 0.88 | 0.03 |
Urea, mM/L | 5.51 | 0.61 | 7.71 | 0.58 | 6.37 | 0.39 |
Creatinine, µM/L | 68.40 | 5.08 | 94.59 * | 7.41 | 77.29 | 7.29 |
Glucose, mM/L | 2.70 | 0.11 | 1.27 | 0.20 | 2.34 | 0.15 |
Triglycerides, mM/L | 0.28 | 0.01 | 0.27 | 0.01 | 0.28 | 0.01 |
Cholesterol, mM/L | 1.66 | 0.12 | 1.71 | 0.13 | 1.47 | 0.05 |
Alanine aminotransferase, U/L | 12.94 | 1.06 | 8.38 | 1.74 | 19.93 ** | 1.08 |
Aspartate aminotransferase, U/L | 62.85 | 3.53 | 66.86 | 3.55 | 67.11 | 5.31 |
Alkaline phosphatase, U/L | 135.95 | 23.80 | 126.40 | 17.74 | 101.91 | 17.61 |
Calcium, mM/L | 2.40 | 0.18 | 2.36 | 0.16 | 2.51 | 0.15 |
Phosphorus, mM/L | 2.06 | 0.23 | 2.18 | 0.23 | 2.55 | 0.26 |
Magnesium, mM/L | 1.04 | 0.06 | 0.96 | 0.05 | 0.94 | 0.02 |
Iron, µM/L | 27.78 | 1.97 | 25.73 | 2.06 | 27.41 | 1.54 |
Chlorine, mM/L | 117.08 | 1.94 | 118.59 | 1.87 | 111.17 | 1.16 |
Parameters | Group 1 | Group 2 | Group 3 | |||
---|---|---|---|---|---|---|
M | m | M | m | M | m | |
pH, a.u. | 6.88 | 0.08 | 6.96 | 0.09 | 6.57 | 0.10 |
VFA, a.u. | 7.33 | 0.23 | 7.75 | 0.32 | 9.49 | 0.37 |
Amylolytic activity, U/mL | 21.30 | 0.84 | 19.20 | 1.28 | 19.74 | 0.85 |
Ammonia, mg/dL | 16.89 | 0.47 | 16.26 | 0.35 | 17.84 | 0.26 |
Infusoria (I), a.u. | 0.45 | 0.07 | 0.37 | 0.05 | 0.34 | 0.07 |
Bacteria (B), a.u. | 0.30 | 0.05 | 0.25 | 0.03 | 0.23 | 0.05 |
Total (I&B), a.u. | 0.75 | 0.07 | 0.62 | 0.05 | 0.57 | 0.07 |
Total Amount of Water-Soluble Antioxidants | Group 1 | Group 2 | Group 3 * |
---|---|---|---|
Total protein, g/L | 0.23 | 0.40 | −0.67 ** |
Albumins, g/L | 0.01 | −0.81 ** | −0.16 |
Globulins, g/L | 0.26 | 0.73 ** | −0.86 ** |
Albumins/globulins | −0.78 ** | −0.85 ** | 0.25 |
Urea, mM/L | −0.78 ** | −0.84 ** | −0.96 |
Creatinine, µM/L | −0.77 ** | −0.60 * | −0.45 * |
Glucose, mM/L | −0.50 * | 0.04 | −0.39 |
Triglycerides, mM/L | 0.47 * | −0.67 ** | −0.84 ** |
Cholesterol, mM/L | 0.15 | 0.27 | −0.37 |
Alanine aminotransferase, U/L | 0.40 | −0.53 * | 0.07 |
Aspartate aminotransferase, U/L | −0.47 * | −0.72 ** | 0.01 |
Alkaline phosphatase, U/L | 0.68 ** | 0.38 | −0.34 |
Calcium, mM/L | 0.62 ** | 0.06 | −0.32 |
Phosphorus, mM/L | −0.33 | 0.18 | 0.26 |
Magnesium, mM/L | −0.07 | 0.02 | −0.56 * |
Iron, µM/L | 0.69 ** | 0.74 ** | 0.58 * |
Chlorine, mM/L | −0.67 ** | −0.65 ** | −0.57 * |
TAWSA | Ingesta pH | Ammonia Nitrogen | Amylolytic Activity | Total VFA |
---|---|---|---|---|
Group 1 | 0.38 | 0.33 | −0.27 | −0.25 |
Group 2 | 0.77 * | 0.04 | 0.10 | 0.42 * |
Group 3 | −0.01 | 0.82 ** | −0.04 | −0.32 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaitsev, S.Y.; Savina, A.A.; Volnin, A.A.; Voronina, O.A.; Bogolyubova, N.V. Comparative Study of the Water-Soluble Antioxidants in Fodder Additives and Sheep Blood Serum by Amperometric and Biochemical Methods. Animals 2020, 10, 1186. https://doi.org/10.3390/ani10071186
Zaitsev SY, Savina AA, Volnin AA, Voronina OA, Bogolyubova NV. Comparative Study of the Water-Soluble Antioxidants in Fodder Additives and Sheep Blood Serum by Amperometric and Biochemical Methods. Animals. 2020; 10(7):1186. https://doi.org/10.3390/ani10071186
Chicago/Turabian StyleZaitsev, Sergei Yu., Anastasia A. Savina, Andrei A. Volnin, Oksana A. Voronina, and Nadezhda V. Bogolyubova. 2020. "Comparative Study of the Water-Soluble Antioxidants in Fodder Additives and Sheep Blood Serum by Amperometric and Biochemical Methods" Animals 10, no. 7: 1186. https://doi.org/10.3390/ani10071186
APA StyleZaitsev, S. Y., Savina, A. A., Volnin, A. A., Voronina, O. A., & Bogolyubova, N. V. (2020). Comparative Study of the Water-Soluble Antioxidants in Fodder Additives and Sheep Blood Serum by Amperometric and Biochemical Methods. Animals, 10(7), 1186. https://doi.org/10.3390/ani10071186