Glucocorticoid Receptor Agonists to Improve the Productivity and Health of Early-Weaned Pigs: What Is the Best Method of Delivery?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Treatment
2.2. Measurements
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moeser, A.J.; Klok, C.V.; Ryan, K.A.; Wooten, J.G.; Little, D.; Cook, V.L.; Blikslager, A.T. Stress signaling pathways activated by weaning mediate intestinal dysfunction in the pig. Am. J. Physiol. Gastrointest. Liver Physiol. 2007, 292, G173–G181. [Google Scholar] [CrossRef] [PubMed]
- Wooten, H.; McGlone, J.J.; Wachtel, M.; Thompson, G.; Rakhshandeh, A.R.; Rakhshandeh, A. A glucocorticoid receptor agonist improves post-weaning growth performance in segregated early-weaned pigs. Anim. Int. J. Anim. Biosci. 2019, 13, 1972–1981. [Google Scholar] [CrossRef] [PubMed]
- Williams, I. Growth of the weaned pig. In Weaning the Pig: Concepts and Consequences; Pluske, J.R., Le Dividich, J., Verstegen, M.W.A., Eds.; Wageningen Academic: Wageningen, The Netherlands, 2003; pp. 17–35. ISBN 978-90-76998-17-6. [Google Scholar]
- Moeser, A.J.; Pohl, C.S.; Rajput, M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim. Nutr. 2017, 3, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Wooten, H.; Kim, H.; Rakhshandeh, A.R.; Rakhshandeh, A. The Effects of a Glucocorticoid Receptor Agonist (GRA) on the Immune Function, Nutrient Digestibility, and Wean-to-Finish Growth Performance of Early-Weaned Pigs. Animals 2020, 10, 953. [Google Scholar] [CrossRef] [PubMed]
- Wooten, H.; McGlone, J.J.; Garcia, A.; Rakhshandeh, A.R.; Rakhshandeh, A. 82 Glucocorticoid receptor agonist (GRA): An alternative to in-feed antibiotics (ANT) for newly weaned pigs. J. Anim. Sci. 2019, 97, 46–47. [Google Scholar] [CrossRef]
- Wyns, H.; Meyer, E.; Watteyn, A.; Plessers, E.; De Baere, S.; De Backer, P.; Croubels, S. Pharmacokinetics of dexamethasone after intravenous and intramuscular administration in pigs. Vet. J. 2013, 198, 286–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosén, A.; Brodin, K.; Eneroth, P.; Brodin, E. Short-term restraint stress and s.c. saline injection alter the tissue levels of substance P and cholecystokinin in the peri-aqueductal grey and limbic regions of rat brain. Acta Physiol. Scand. 1992, 146, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Merlot, E.; Mounier, A.M.; Prunier, A. Endocrine response of gilts to various common stressors: A comparison of indicators and methods of analysis. Physiol. Behav. 2011, 102, 259–265. [Google Scholar] [CrossRef]
- Robert, S.; Passillé, A.-M.B.D.; St-Pierre, N.; Pelletier, G.; Petitclerc, D.; Dubreuil, P.; Brazeau, P. Effect of the Stress of Injections on the Serum Concentration of Cortisol, Prolactin, and Growth Hormone in Gilts and Lactating Sows. Can. J. Anim. Sci. 1989, 69, 663–672. [Google Scholar] [CrossRef]
- Donaldson, D.; Poleski, D.; Knipple, E.; Filips, K.; Reetz, L.; Pascual, R.G.; Jackson, R.E. Intramuscular versus oral dexamethasone for the treatment of moderate-to-severe croup: A randomized, double-blind trial. Acad. Emerg. Med. Off. J. Soc. Acad. Emerg. Med. 2003, 10, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Egerman, R.S.; Pierce, W.F.; Andersen, R.N.; Umstot, E.S.; Carr, T.L.; Sibai, B.M. A comparison of the bioavailability of oral and intramuscular dexamethasone in women in late pregnancy. Obstet. Gynecol. 1997, 89, 276–280. [Google Scholar] [CrossRef]
- Federation of Animal Science Societies. Chapter 11: Swine. In Guide for the Care and Use of Laboratory Animals; Federation of Animal Science Societies: Champaign, IL, USA, 2010; p. 148. [Google Scholar]
- National Research Council. Nutrient Requirements of Swine: Eleventh Revised Edition, 11th ed.; National Academic Press: Washington, DC, USA, 2012; ISBN 978-0-309-48903-4. [Google Scholar]
- Sterndale, S.O.; Miller, D.W.; Mansfield, J.P.; Kim, J.C.; Pluske, J.R. Dexamethasone administrations can reduce intestinal permeability in weaner pigs exposed to mixing stress. Adv. Anim. Biosci. 2019, 10, s78. [Google Scholar]
- De Kruijf, D.M.; Welling, A.A. Incidence of chronic inflammations in gilts and castrated boars. Tijdschr. Diergeneeskd. 1988, 113, 415–417. [Google Scholar]
- Bruininx, E.M.A.M.; van der Peet-Schwering, C.M.C.; Schrama, J.W.; Vereijken, P.F.G.; Vesseur, P.C.; Everts, H.; den Hartog, L.A.; Beynen, A.C. Individually measured feed intake characteristics and growth performance of group-housed weanling pigs: Effects of sex, initial body weight, and body weight distribution within groups. J. Anim. Sci. 2001, 79, 301–308. [Google Scholar] [CrossRef]
- Ruis, M.A.W.; Te Brake, J.H.A.; Engel, B.; Ekkel, E.D.; Buist, W.G.; Blokhuis, H.J.; Koolhaas, J.M. The Circadian Rhythm of Salivary Cortisol in Growing Pigs: Effects of Age, Gender, and Stress. Physiol. Behav. 1997, 62, 623–630. [Google Scholar] [CrossRef]
Ingredients and Nutrient Contents | Diets 2 | ||
---|---|---|---|
Phase 1 | Phase 2 | Phase 3 | |
Ingredient, % (as fed) | |||
Corn | 34.5 | 44.7 | 60.7 |
SBM | 22 | 29.15 | 34.0 |
Whey powder | 27.5 | 17.59 | - |
Plasma powder | 4 | 3.02 | - |
Fish meal | 4.5 | - | - |
Fat | 2.0 | 1.5 | 1.0 |
Dicalcium phosphate | 0.4 | 1.51 | 1.4 |
Calcium carbonate | 0.7 | 0.7 | 0.7 |
Salt | 0.45 | 0.35 | 0.25 |
Swine premix 1 | 4.0 | 3.0 | 2.0 |
Total | 100 | 100 | 100 |
Calculated nutrient contents | |||
Metabolizable energy, MJ/kg | 14.0 | 14.1 | 13.7 |
Crude protein (N × 6.25), g/kg | 206 | 193 | 181 |
SID Lys 3, g/kg | 13.6 | 12 | 10.1 |
Calcium, g/kg | 8.2 | 8.6 | 7.4 |
STTD Phosphorus, g/kg | 5.0 | 5.2 | 4.5 |
Calcium: STTD P | 1.6 | 1.6 | 1.6 |
Measurement | CON | I.M. | ANT | LF | HF | LW | HW | SE | p ≤ | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gilt | Barrow | Gilt | Barrow | Gilt | Barrow | Gilt | Barrow | Gilt | Barrow | Gilt | Barrow | Gilt | Barrow | DM | Sex | DM × Sex | ||
ADG kg/d | ||||||||||||||||||
Overall | 0.19 f,g | 0.17 g | 0.33 a | 0.28 a–d | 0.31 a,b | 0.25 c–e | 0.31 a–c | 0.28 a–d | 0.28 a–d | 0.24 d–f | 0.27 b–d | 0.27 b–d | 0.20 e–g | 0.27 c,d | 0.028 | 0.01 | 0.06 | 0.05 |
Day 7 | 0.07 | 0.05 | 0.10 | 0.11 | 0.10 | 0.11 | 0.06 | 0.08 | 0.07 | 0.05 | 0.07 | 0.13 | 0.07 | 0.05 | 0.055 | |||
Day 14 | 0.14 b,c | 0.14 b,c | 0.25 a | 0.20 a,b | 0.23 a,b | 0.20 a,b | 0.25 a | 0.22 a,b | 0.17 a–c | 0.17 a–c | 0.16 a–c | 0.13 b,c | 0.09 c | 0.17 b,c | 0.050 | |||
Day 21 | 0.26 c,d | 0.24 d | 0.41 a | 0.38 a,b | 0.43 a | 0.32 b,c | 0.42 a | 0.40 a | 0.43 a | 0.37 a,b | 0.39 a,b | 0.35 b,c | 0.31 c | 0.40 a | 0.036 | |||
Day 28 | 0.28 d,e | 0.26 e | 0.55 a | 0.43 b | 0.50 a,b | 0.35 c–e | 0.50 ab | 0.43 b,c | 0.47 a,b | 0.38 b–d | 0.45 a–c | 0.48 a,b | 0.38 b–d | 0.44 a–c | 0.051 | |||
ADFI kg/d | ||||||||||||||||||
Overall | 0.47 a–c | 0.53 a | 0.48 a,b | 0.42 c,d | 0.49 a–c | 0.37 c,d | 0.47 a–d | 0.45 b,c | 0.46 a–d | 0.47 b,c | 0.46 a–d | 0.45 b–d | 0.40 c,d | 0.45 a–c | 0.037 | 0.01 | 0.67 | 0.01 |
Day 7 | 0.17 | 0.19 | 0.15 | 0.16 | 0.19 | 0.11 | 0.18 | 0.16 | 0.16 | 0.17 | 0.17 | 0.18 | 0.17 | 0.18 | 0.060 | |||
Day 14 | 0.30 | 0.35 | 0.31 | 0.29 | 0.25 a | 0.23 | 0.33 | 0.27 | 0.26 | 0.31 | 0.29 | 0.25 | 0.23 | 0.29 | 0.065 | |||
Day 21 | 0.57 | 0.64 | 0.58 | 0.53 | 0.68 | 0.52 | 0.60 | 0.59 | 0.57 | 0.60 | 0.61 | 0.51 | 0.50 | 0.57 | 0.044 | |||
Day 28 | 0.84 a–c | 0.94 a | 0.89 a,b | 0.72 d,e | 0.84 a–c | 0.63 e | 0.74 d | 0.78 b–d | 0.83 a–c | 0.78 b–d | 0.76 c,d | 0.86 a,bc | 0.72 d,e | 0.77 c,d | 0.055 | |||
G:F | ||||||||||||||||||
Overall | 0.42 | 0.32 | 0.66 | 0.66 | 0.78 | 0.79 | 0.60 | 0.65 | 0.58 | 0.47 | 0.53 | 0.60 | 0.40 | 0.52 | 0.069 | 0.01 | 0.90 | 0.21 |
Day 7 | 0.41 | 0.26 | 0.55 | 0.68 | 0.46 | 1.15 | 0.32 | 0.56 | 0.40 | 0.27 | 0.32 | 0.75 | 0.11 | 0.27 | 0.310 | |||
Day 14 | 0.47 | 0.39 | 0.78 | 0.68 | 1.42 | 0.84 | 0.72 | 0.81 | 0.59 | 0.53 | 0.55 | 0.43 | 0.36 | 0.57 | 0.349 | |||
Day 21 | 0.48 | 0.37 | 0.70 | 0.70 | 0.63 | 0.61 | 0.69 | 0.68 | 0.76 | 0.62 | 0.64 | 0.66 | 0.61 | 0.70 | 0.253 | |||
Day 28 | 0.33 | 0.27 | 0.61 | 0.58 | 0.59 | 0.56 | 0.69 | 0.55 | 0.56 | 0.48 | 0.58 | 0.55 | 0.52 | 0.56 | 0.229 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wooten, H.; Kim, H.; Rakhshandeh, A.R.; Rakhshandeh, A. Glucocorticoid Receptor Agonists to Improve the Productivity and Health of Early-Weaned Pigs: What Is the Best Method of Delivery? Animals 2020, 10, 1124. https://doi.org/10.3390/ani10071124
Wooten H, Kim H, Rakhshandeh AR, Rakhshandeh A. Glucocorticoid Receptor Agonists to Improve the Productivity and Health of Early-Weaned Pigs: What Is the Best Method of Delivery? Animals. 2020; 10(7):1124. https://doi.org/10.3390/ani10071124
Chicago/Turabian StyleWooten, Hailey, Hwanhee Kim, Amanda R. Rakhshandeh, and Anoosh Rakhshandeh. 2020. "Glucocorticoid Receptor Agonists to Improve the Productivity and Health of Early-Weaned Pigs: What Is the Best Method of Delivery?" Animals 10, no. 7: 1124. https://doi.org/10.3390/ani10071124
APA StyleWooten, H., Kim, H., Rakhshandeh, A. R., & Rakhshandeh, A. (2020). Glucocorticoid Receptor Agonists to Improve the Productivity and Health of Early-Weaned Pigs: What Is the Best Method of Delivery? Animals, 10(7), 1124. https://doi.org/10.3390/ani10071124