Effects of Capsicum and Propyl-Propane Thiosulfonate on Rumen Fermentation, Digestion, and Milk Production and Composition in Dairy Cows
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Design
2.2. Sampling Procedures
2.2.1. Milk Production and Composition
2.2.2. Omasal and Total Tract Digestibility
2.3. Sample Preparation
2.4. Chemical Analyses
2.4.1. Milk Composition
2.4.2. Marker Analyses
2.4.3. Component Analyses
2.5. Calculation of Digestibility and Nitrogen Balance
2.6. Statistical Analyses
- For analysis of rumen fermentation characteristics, total tract digestibility and N balance, the model accounted for the fixed effects of treatments, experimental periods and squares, their interactions, and the random effect of the cow (n = 6).
- For omasal flows and rumen degradation, the same model was used without the square effect because the omasal sampling technique was performed with only one square (n = 3).
- For analysis of milk yield and composition, model (1) was used. Moreover, the three sets of samples taken from each cow in each period were considered repeated measures and, therefore, the model included also day as a fixed effect (n = 6).
- For the milk FA analysis, the square effect of model (1) was excluded due to the CoEDTA infusions performed for the omasal sampling (n = 3).
3. Results
3.1. Animal Performance
3.2. Ruminal Fermentation, and Omasal and Total Tract Digestibilities
4. Discussion
4.1. Effects of Capsicum Oleoresin
4.2. Effects of Propyl-Propane Thiosulfonate
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- European Commision. Regulation (EC) No. 1931/2003 of the European parliament and of the council of 22 September 2003 on additives for use in animal nutrition. Off. J. Eur. Union 2003, L268/229–L268/243. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32003R1831&from=EN (accessed on 14 May 2020).
- Foskolos, A.; Moorby, J.M. Evaluating lifetime nitrogen use efficiency of dairy cattle: A modelling approach. PLoS ONE 2018, 13, e0201638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benchaar, C.; Calsamiglia, S.; Chaves, A.V.; Fraser, G.R.; Colombatto, D.; McAllister, T.A.; Beauchemin, K.A. A review of plant-derived essential oils in ruminant nutrition and production. Anim. Feed Sci. Tech. 2008, 145, 209–228. [Google Scholar] [CrossRef]
- Calsamiglia, S.; Busquet, M.; Cardozo, P.W.; Castillejos, L.; Ferret, A. Invited review: Essential oils as modifiers of rumen microbial fermentation. J. Dairy Sci. 2007, 90, 2580–2595. [Google Scholar] [CrossRef] [Green Version]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Screening for the effects of natural plant extracts at different pH on in vitro rumen microbial fermentation of a high-concentrate diet for beef cattle. J. Anim. Sci. 2005, 83, 2572–2579. [Google Scholar] [CrossRef] [PubMed]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of alfalfa extract, anise, capsicum, and a mixture of cinnamaldehyde and eugenol on ruminal fermentation and protein degradation in beef heifers fed a high-concentrate diet. J. Anim. Sci. 2006, 84, 2801–2808. [Google Scholar] [CrossRef] [Green Version]
- Fandiño, I.; Calsamiglia, S.; Ferret, A.; Blanch, M. Anise and capsicum as alternatives to monensin to modify rumen fermentation in beef heifers fed a high concentrate diet. Anim. Feed Sci. Tech. 2008, 145, 409–417. [Google Scholar] [CrossRef]
- Rodríguez-Prado, M.; Ferret, A.; Zwieten, J.; Gonzalez, L.; Bravo, D.; Calsamiglia, S. Effects of dietary addition of capsicum extract on intake, water consumption, and rumen fermentation of fattening heifers fed a high-concentrate diet. J. Anim. Sci. 2012, 90, 1879–1884. [Google Scholar] [CrossRef]
- Tager, L.R.; Krause, K.M. Effects of essential oils on rumen fermentation, milk production, and feeding behavior in lactating dairy cows. J. Dairy Sci. 2011, 94, 2455–2464. [Google Scholar] [CrossRef] [Green Version]
- Oh, J.; Giallongo, F.; Frederick, T.; Pate, J.; Walusimbi, S.; Elias, R.J.; Wall, E.H.; Bravo, D.; Hristov, A.N. Effects of dietary Capsicum oleoresin on productivity and immune responses in lactating dairy cows. J. Dairy Sci. 2015, 98, 6327–6339. [Google Scholar] [CrossRef]
- Oh, J.; Harper, M.; Giallongo, F.; Bravo, D.M.; Wall, E.H.; Hristov, A.N. Effects of rumen-protected Capsicum oleoresin on productivity and responses to a glucose tolerance test in lactating dairy cows. J. Dairy Sci. 2017, 100, 1888–1901. [Google Scholar] [CrossRef] [PubMed]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Carro, M.D.; Kamel, C. Effect of garlic oil and four of its compounds on rumen microbial fermentation. J. Dairy Sci. 2005, 88, 4393–4404. [Google Scholar] [CrossRef] [Green Version]
- Cardozo, P.W.; Calsamiglia, S.; Ferret, A.; Kamel, C. Effects of natural plant extracts on ruminal protein degradation and fermentation profiles in continuous culture. J. Anim. Sci. 2004, 82, 3230–3236. [Google Scholar] [CrossRef] [PubMed]
- Lawson, L.D.; Gardner, C.D. Composition, stability, and bioavailability of garlic products used in a clinical trial. J. Agric. Food Chem. 2005, 53, 6254–6261. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisawa, H.; Suma, K.; Origuchi, K.; Kumagai, H.; Seki, T.; Ariga, T. Biological and chemical stability of garlic-derived allicin. J. Agric. Food Chem. 2008, 56, 4229–4235. [Google Scholar] [CrossRef] [PubMed]
- Foskolos, A.; Siurana, A.; Rodriquez-Prado, M.; Ferret, A.; Bravo, D.; Calsamiglia, S. The effects of a garlic oil chemical compound, propyl-propane thiosulfonate, on ruminal fermentation and fatty acid outflow in a dual-flow continuous culture system. J. Dairy Sci. 2015, 98, 5482–5491. [Google Scholar] [CrossRef] [Green Version]
- Siurana, A.; Ferret, A.; Rodriguez, M.; Vlaeminck, B.; Fievez, V.; Calsamiglia, S. Strategies to modify the ruminal biohydrogenation of polyunsaturated fatty acids and the production of trans-10, cis-12 C18:2 in vitro. Anim. Feed Sci. Tech. 2018, 235, 158–165. [Google Scholar] [CrossRef]
- Yang, W.Z.; Benchaar, C.; Ametaj, B.N.; Chaves, A.V.; He, M.L.; McAllister, T.A. Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. J. Dairy Sci. 2007, 90, 5671–5681. [Google Scholar] [CrossRef] [Green Version]
- Van Amburgh, M.E.; Collao-Saenz, E.A.; Higgs, R.J.; Ross, D.A.; Recktenwald, E.B.; Raffrenato, E.; Chase, L.E.; Overton, T.R.; Mills, J.K.; Foskolos, A. The Cornell Net Carbohydrate and Protein System: Updates to the model and evaluation of version 6.5. J. Dairy Sci. 2015, 98, 6361–6380. [Google Scholar] [CrossRef]
- Tyrrell, H.F.; Reid, J.T. Prediction of the energy value of cow’s milk. J. Dairy Sci. 1965, 48, 1215–1223. [Google Scholar] [CrossRef]
- Ahvenjärvi, S.; Vanhatalo, A.; Shingfield, K.J.; Huhtanen, P. Determination of digesta flow entering the omasal canal of dairy cows using different marker systems. Br. J. Nutr. 2003, 90, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Udén, P.; Colucci, P.E.; Van Soest, P.J. Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. J. Sci. Food Agric. 1980, 31, 625–632. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, N.L.; Olson, V.M.; Schwab, C.G.; Chesbro, W.R.; Cunningham, K.D.; Lykos, T. Improved techniques for dissociating particle-associated mixed ruminal microorganisms from ruminal digesta solids. J. Anim. Sci. 1994, 72, 1335–1343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huhtanen, P.; Brotz, P.G.; Satter, L.D. Omasal sampling technique for assessing fermentative digestion in the forestomach of dairy cows. J. Anim. Sci. 1997, 75, 1380–1392. [Google Scholar] [CrossRef]
- Ahvenjärvi, S.; Vanhatalo, A.; Huhtanen, P.; Varvikko, T. Determination of reticulo-rumen and whole-stomach digestion in lactating cows by omasal canal or duodenal sampling. Br. J. Nutr. 2000, 83, 67–77. [Google Scholar] [CrossRef] [Green Version]
- Reynal, S.M.; Broderick, G.A. Effect of dietary level of rumen-degraded protein on production and nitrogen metabolism in lactating dairy cows. J. Dairy Sci. 2005, 88, 4045–4064. [Google Scholar] [CrossRef]
- ISO. ISO 14156: Milk and Milk Products. In Extraction Methods for Lipids and Liposoluble Compounds; International Organization for Standardization: Geneva, Switzerland, 2001. [Google Scholar]
- ISO. ISO 15884: Milk fat. In Preparation of Fatty Acid Methyl Esters; International Organization for Standardization: Geneva, Switzerland, 2002. [Google Scholar]
- ISO. ISO 15885: Milk fat. In Determination of the Fatty Acid Composition by Gas-Liquid Chromatography; International Organization for Standardization: Geneva, Switzerland, 2002. [Google Scholar]
- Leskinen, H.; Viitala, S.; Mutikainen, M.; Kairenius, P.; Tapio, I.; Taponen, J.; Bernard, L.; Vilkki, J.; Shingfield, K.J. Ruminal Infusions of Cobalt EDTA Modify Milk Fatty Acid Composition via Decreases in Fatty Acid Desaturation and Altered Gene Expression in the Mammary Gland of Lactating Cows. J. Nutr. 2016, 146, 976–985. [Google Scholar] [CrossRef] [Green Version]
- Shingfield, K.J.; Arölä, A.; Ahvenjärvi, S.; Vanhatalo, A.; Toivonen, V.; Griinari, J.M.; Huhtanen, P. Ruminal Infusions of Cobalt-EDTA Reduce Mammary Δ9-Desaturase Index and Alter Milk Fatty Acid Composition in Lactating Cows. J. Nutr. 2008, 138, 710–717. [Google Scholar] [CrossRef]
- Raffrenato, E.; Ross, D.A.; Van Amburgh, M.E. Development of an in vitro method to determine rumen undigested aNDFom for use in feed evaluation. J. Dairy Sci. 2018, 101, 9888–9900. [Google Scholar] [CrossRef]
- Fessenden, S.W.; Foskolos, A.; Hackmann, T.J.; Ross, D.A.; Block, E.; Van Amburgh, M.E. Effects of a commercial fermentation byproduct or urea on milk production, rumen metabolism, and omasal flow of nutrients in lactating dairy cattle. J. Dairy Sci. 2019, 102, 3023–3035. [Google Scholar] [CrossRef] [Green Version]
- Fessenden, S.W.; Hackmann, T.J.; Ross, D.A.; Block, E.; Foskolos, A.; Van Amburgh, M.E. Rumen digestion kinetics, microbial yield, and omasal flows of nonmicrobial, bacterial, and protozoal amino acids in lactating dairy cattle fed fermentation by-products or urea as a soluble nitrogen source. J. Dairy Sci. 2019, 102, 3036–3052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fessenden, S.W.; Hackmann, T.J.; Ross, D.A.; Foskolos, A.; Van Amburgh, M.E. Ruminal bacteria and protozoa composition, digestibility, and amino acid profile determined by multiple hydrolysis times. J. Dairy Sci. 2017, 100, 7211–7226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- France, J.; Siddons, R.C. Determination of digesta flow by continuous market infusion. J. Theor. Biol. 1986, 121, 105–119. [Google Scholar] [CrossRef]
- Williams, C.H.; David, D.J.; Iismaa, O. The determination of chromic oxide in faeces samples by atomic absorption spectrophotometry. J. Agri. Sci. 1962, 59, 381–385. [Google Scholar] [CrossRef]
- Balcells, J.; Guada, J.A.; Peiró, J.M.; Parker, D.S. Simultaneous determination of allantoin and oxypurines in biological fluids by high-performance liquid chromatography. J. Chromatogr. B Biom. Sci. Appl. 1992, 575, 153–157. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 1990. [Google Scholar]
- Chaney, A.L.; Marbach, E.P. Modified reagents for determination of urea and ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef]
- Jouany, J.P. Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents [microbial fermentation, biological liquids, analytic method using gas-liquid chromatography]. Sci. Aliments 1982, 2, 131–134. [Google Scholar]
- Vlaeminck, B.; Braeckman, T.; Fievez, V. Rumen metabolism of 22:6n-3 in vitro is dependent on its concentration and inoculum size, but less dependent on substrate carbohydrate composition. Lipids 2014, 49, 517–525. [Google Scholar] [CrossRef]
- Oh, J.; Harper, M.; Giallongo, F.; Bravo, D.M.; Wall, E.H.; Hristov, A.N. Effects of rumen-protected Capsicum oleoresin on immune responses in dairy cows intravenously challenged with lipopolysaccharide. J. Dairy Sci. 2017, 100, 1902–1913. [Google Scholar] [CrossRef]
- Lourenço, M.; Cardozo, P.W.; Calsamiglia, S.; Fievez, V. Effects of saponins, quercetin, eugenol, and cinnamaldehyde on fatty acid biohydrogenation of forage polyunsaturated fatty acids in dual-flow continuous culture fermenters. J. Anim. Sci. 2008, 86, 3045–3053. [Google Scholar] [CrossRef]
- Benchaar, C.; Chouinard, P.Y. Short communication: Assessment of the potential of cinnamaldehyde, condensed tannins, and saponins to modify milk fatty acid composition of dairy cows1. J. Dairy Sci. 2009, 92, 3392–3396. [Google Scholar] [CrossRef] [PubMed]
- Lopez, S. In vitro and in situ techniques for estimating digestibility. In Quantitative Aspects of Ruminant Nutrition and Metabolism; Dijkstra, J., Forbes, J.M., France, J., Eds.; CAB International Publishing: Wallingford, UK, 2005; pp. 87–121. [Google Scholar]
- Hristov, A.N.; Lee, C.; Hristova, R.; Huhtanen, P.; Firkins, J.L. A meta-analysis of variability in continuous-culture ruminal fermentation and digestibility data. J. Dairy Sci. 2012, 95, 5299–5307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltan, Y.A.; Natel, A.S.; Araujo, R.C.; Morsy, A.S.; Abdalla, A.L. Progressive adaptation of sheep to a microencapsulated blend of essential oils: Ruminal fermentation, methane emission, nutrient digestibility, and microbial protein synthesis. Anim. Feed Sci. Tech. 2018, 237, 8–18. [Google Scholar] [CrossRef]
- Oh, J.; Harper, M.; Lang, C.H.; Wall, E.H.; Hristov, A.N. Effects of phytonutrients alone or in combination with monensin on productivity in lactating dairy cows. J. Dairy Sci. 2018, 101, 7190–7198. [Google Scholar] [CrossRef] [PubMed]
- Busquet, M.; Calsamiglia, S.; Ferret, A.; Cardozo, P.W.; Kamel, C. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture. J. Dairy Sci. 2005, 88, 2508–2516. [Google Scholar] [CrossRef]
- Pawar, M.M.; Kamra, D.N.; Agarwal, N.; Chaudhary, L.C. Effects of essential oils on in vitro methanogenesis and feed fermentation with buffalo rumen liquor. Agric. Res. 2014, 3, 67–74. [Google Scholar] [CrossRef]
- Ramos-Morales, E.; Martínez-Fernández, G.; Abecia, L.; Martin-García, A.I.; Molina-Alcaide, E.; Yáñez-Ruiz, D.R. Garlic derived compounds modify ruminal fatty acid biohydrogenation and induce shifts in the Butyrivibrio community in continuous-culture fermenters. Anim. Feed Sci. Tech. 2013, 184, 38–48. [Google Scholar] [CrossRef]
- Blanch, M.; Carro, M.D.; Ranilla, M.J.; Viso, A.; Vázquez-Añón, M.; Bach, A. Influence of a mixture of cinnamaldehyde and garlic oil on rumen fermentation, feeding behavior and performance of lactating dairy cows. Anim. Feed Sci. Tech. 2016, 219, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Rossi, G.; Schiavon, S.; Lomolino, G.; Cipolat-Gotet, C.; Simonetto, A.; Bittante, G.; Tagliapietra, F. Garlic (Allium sativum L.) fed to dairy cows does not modify the cheese-making properties of milk but affects the color, texture, and flavor of ripened cheese. J. Dairy Sci. 2018, 101, 2005–2015. [Google Scholar] [CrossRef]
- Wanapat, M.; Khejornsart, P.; Pakdee, P.; Wanapat, S. Effect of supplementation of garlic powder on rumen ecology and digestibility of nutrients in ruminants. J. Sci. Food Agric. 2008, 88, 2231–2237. [Google Scholar] [CrossRef]
- Manasri, N.; Wanapat, M.; Navanukraw, C. Improving rumen fermentation and feed digestibility in cattle by mangosteen peel and garlic pellet supplementation. Livest. Sci. 2012, 148, 291–295. [Google Scholar] [CrossRef]
- Oh, J.; Hristov, A.N.; Lee, C.; Cassidy, T.; Heyler, K.; Varga, G.A.; Pate, J.; Walusimbi, S.; Brzezicka, E.; Toyokawa, K.; et al. Immune and production responses of dairy cows to postruminal supplementation with phytonutrients. J. Dairy Sci. 2013, 96, 7830–7843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivaroli, D.C.; Guerrero, A.; Velandia Valero, M.; Zawadzki, F.; Eiras, C.E.; Campo, M.d.M.; Sañudo, C.; Mendes Jorge, A.; Nunes do Prado, I. Effect of essential oils on meat and fat qualities of crossbred young bulls finished in feedlots. Meat Sci. 2016, 121, 278–284. [Google Scholar] [CrossRef] [Green Version]
g/kg DM | Fatty Acid | mg/kg DM | |
---|---|---|---|
Ingredients | Saturated Fatty Acids | ||
Corn silage | 318 | C14:0 | 0.16 |
Dehydrated alfalfa | 119 | C15:0 | 0.04 |
Corn grain ground | 196 | C16:0 | 7.60 |
Soybean meal | 173 | C17:0 | 0.06 |
Soy hulls | 117 | C18:0 | 1.10 |
Beet molasses | 32 | C20:0 | 0.17 |
Megalac 1 | 12 | C22:0 | 0.13 |
Vitamin and mineral mix 2 | 9 | C23:0 | 0.07 |
NaCl | 4.0 | C24:0 | 0.15 |
MgO | 2.5 | Total | 9.48 |
CaCO3 | 4.5 | Unsaturated Fatty Acids | |
NaHCO3 | 8.6 | C15:1 | 0.10 |
Ca2PO4 | 4.4 | cis-8 C16:1 | 0.12 |
Nutrient composition | cis-9 C16:1 | 0.01 | |
Dry matter | 529 | C18:1n-9 | 6.35 |
Organic matter | 916 | cis-11 C:18:1 | 0.27 |
Crude protein | 151 | C18:2n-6 | 6.40 |
NDF | 318 | C18:3n-3 | 1.00 |
Metabolizable | Total | 14.25 | |
Energy 3, MJ/kg DM | 2.61 |
Item | CTR | CAP | PTSO | SEM | p-Value |
---|---|---|---|---|---|
DMI 2, kg/d | 20.9 | 21.3 | 20.0 | 0.67 | 0.08 |
Milk yield, kg/d | 31.5 | 30.1 | 33.7 | 3.10 | 0.11 |
FCM 3, kg/d | 32.0 | 31.6 | 34.2 | 3.10 | 0.23 |
Milk true protein, kg/d | 1.04 | 1.01 | 1.09 | 0.089 | 0.30 |
Milk fat, kg/d | 1.14 | 1.16 | 1.21 | 0.129 | 0.36 |
Milk lactose, kg/d | 1.50 | 1.43 | 1.57 | 0.159 | 0.24 |
Feed efficiency 4 | 1.51 ab | 1.41 b | 1.65 a | 0.138 | 0.01 |
Milk composition, g/kg | |||||
Fat | 36.3 | 38.8 | 36.8 | 1.89 | 0.11 |
True Protein | 33.1 | 34.0 | 32.8 | 0.81 | 0.06 |
Lactose | 47.7 a | 47.3 ab | 46.4 b | 0.30 | 0.05 |
SCC 5, 1000 cells/mL | 485 | 154 | 397 | 186.4 | 0.18 |
Milk FA 6 profile, g/100 g FA measured | |||||
SFA | 71.48 | 70.97 | 65.96 | 2.020 | 0.23 |
MUFA | 23.87 | 24.19 | 28.95 | 1.710 | 0.27 |
PUFA | 4.65 b | 4.84 ab | 5.09 a | 0.528 | 0.04 |
UFA | 28.52 | 29.03 | 34.04 | 2.020 | 0.23 |
Item | CTR | CAP | PTSO | SEM | p-Value |
---|---|---|---|---|---|
Average pH | 6.2 | 6.2 | 6.3 | 0.09 | 0.57 |
NH3-N, mg/100 mL | 12.7 | 11.7 | 11.2 | 1.23 | 0.57 |
VFA 2, mM | 132 | 129 | 126 | 5.5 | 0.77 |
VFA profile, mol/100 mol | |||||
Acetate | 63.2 | 62.7 | 62.7 | 0.88 | 0.93 |
Propionate | 20.4 | 20.9 | 21.0 | 0.67 | 0.83 |
Butyrate | 12.7 | 12.9 | 11.9 | 0.51 | 0.43 |
Valerate | 1.5 | 1.6 | 1.7 | 0.15 | 0.44 |
BCVFA 3 | 1.5 | 1.3 | 1.6 | 0.19 | 0.62 |
Item | CTR | CAP | PTSO | SEM | p-Value |
---|---|---|---|---|---|
Dry matter | |||||
Intake, kg/d | 18.7 | 18.9 | 18.0 | 0.9 | 0.29 |
Omasal flow, kg/d | 12.7 | 13.3 | 12.9 | 0.36 | 0.24 |
True degradability, g/kg | 415 | 408 | 404 | 13 | 0.78 |
Organic matter | |||||
Intake, kg/d | 17.4 | 17.4 | 16.6 | 0.8 | 0.31 |
Omasal flow, kg/d | 10.5 | 10.9 | 10.5 | 0.3 | 0.44 |
True degradability, g/kg | 489 | 489 | 492 | 11 | 0.97 |
Nitrogen (N) | |||||
Intake, g/d | 488 | 492 | 464 | 23 | 0.23 |
Omasal flow, g/d | 415 | 427 | 427 | 17 | 0.86 |
Ammonia N flow, g/d | 12.4 | 13.0 | 11.4 | 0.9 | 0.62 |
Non-ammonia N flow, g/d | 403 | 415 | 415 | 17 | 0.85 |
Microbial N flow, g/d | 267 | 299 | 285 | 16 | 0.50 |
NANM 2 N flow, g/d | 136 | 115 | 130 | 18 | 0.60 |
True degradability, g/kg | 721 | 763 | 727 | 37 | 0.70 |
EMPS 2, g N/kg OMTD | 31.5 | 35.5 | 35.2 | 3.5 | 0.66 |
aNDFom | |||||
Intake, kg/d | 6.0 | 6.2 | 5.9 | 0.3 | 0.29 |
Omasal flow, kg/d | 3.7 | 4.0 | 3.7 | 0.2 | 0.52 |
Degradability, g/kg | 374 | 344 | 369 | 24.9 | 0.66 |
Fatty acids 3 | |||||
Intake, g/d | 444 | 449 | 428 | 23 | 0.53 |
SFA omasal flows, g/d | 393 | 371 | 351 | 22 | 0.48 |
UFA omasal flows, g/d | 119 | 125 | 115 | 8 | 0.52 |
Total FA omasal flows, g/d | 513 | 496 | 465 | 24 | 0.47 |
Item | CTR | CAP | PTSO | SEM | p-Value |
---|---|---|---|---|---|
Dry matter | 684 a | 659 b | 682 a | 8.4 | 0.03 |
Organic matter | 728 a | 705 b | 726 a | 7.0 | <0.01 |
Crude protein | 649 | 626 | 640 | 10.6 | 0.20 |
aNDFom | 518 a | 454 b | 525 a | 17.8 | 0.04 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Foskolos, A.; Ferret, A.; Siurana, A.; Castillejos, L.; Calsamiglia, S. Effects of Capsicum and Propyl-Propane Thiosulfonate on Rumen Fermentation, Digestion, and Milk Production and Composition in Dairy Cows. Animals 2020, 10, 859. https://doi.org/10.3390/ani10050859
Foskolos A, Ferret A, Siurana A, Castillejos L, Calsamiglia S. Effects of Capsicum and Propyl-Propane Thiosulfonate on Rumen Fermentation, Digestion, and Milk Production and Composition in Dairy Cows. Animals. 2020; 10(5):859. https://doi.org/10.3390/ani10050859
Chicago/Turabian StyleFoskolos, Andreas, Alfred Ferret, Adriana Siurana, Lorena Castillejos, and Sergio Calsamiglia. 2020. "Effects of Capsicum and Propyl-Propane Thiosulfonate on Rumen Fermentation, Digestion, and Milk Production and Composition in Dairy Cows" Animals 10, no. 5: 859. https://doi.org/10.3390/ani10050859
APA StyleFoskolos, A., Ferret, A., Siurana, A., Castillejos, L., & Calsamiglia, S. (2020). Effects of Capsicum and Propyl-Propane Thiosulfonate on Rumen Fermentation, Digestion, and Milk Production and Composition in Dairy Cows. Animals, 10(5), 859. https://doi.org/10.3390/ani10050859