Evaluation of the Modified LIVestock SIMulator for Stall-Fed Dairy Cattle in the Tropics
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Overview of the LIVSIM Model
2.1.1. LIVSIM Input Component
2.1.2. LIVSIM Modules
2.1.3. LIVSIM Output Component
2.2. Modification of LIVSIM
2.2.1. Metabolizable Energy Partitioning Sub-Module
2.2.2. Body Weight Change Module
2.2.3. Lactation Module
2.2.4. Metabolizable Energy and Protein Requirement Module
2.2.5. Dry Matter Intake Module
2.3. Evaluation of LIVSIM-Mod
2.3.1. Dataset Used for Model Evaluation
2.3.2. Statistical Evaluation
3. Results
3.1. Voluntary Dry Matter Intake Predictions
3.2. Animal Productive Performance: Final Body Weight and Milk Yield Predictions
4. Discussion
4.1. Accuracy of Models’ Prediction
4.2. Relevance of the Modifications Made in LIVSIM-Mod
4.3. Limitations of the Present Study
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gouel, C.; Guimbard, H. Nutrition Transition and the Structure of Global Food Demand. Am. J. Agric. Econ. 2018, 101, 383–403. [Google Scholar] [CrossRef] [Green Version]
- Masikati, P.; Tui, S.H.-K.; Descheemaeker, K.; Sisito, G.; Senda, T.S.; Crespo, O.; Nhamo, N. Integrated Assessment of Crop–Livestock Production Systems Beyond Biophysical Methods. In Smart Technologies for Sustainable Smallholder Agriculture; Elsevier BV: London, UK, 2017; pp. 257–278. [Google Scholar]
- Herrero, M.; Thornton, P.K. Livestock and global change: emerging issues for sustainable food systems. Proc. Natl. Acad. Sci. USA 2013, 110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bateki, C.A.; Cadisch, G.; Dickhoefer, U. Modelling sustainable intensification of grassland-based ruminant production systems: A review. Glob. Food Secur. 2019, 23, 85–92. [Google Scholar] [CrossRef]
- Mayberry, D.; Syahniar, T.M.; Antari, R.; Ningrum, G.P.; Marsetyo; Pamungkas, D.; Poppi, D.P. Predicting feed intake and liveweight gain of Ongole (Bos indicus) cattle in Indonesia. Anim. Prod. Sci. 2014, 54, 2089–2096. [Google Scholar] [CrossRef]
- Oliveira, A.S. Meta-analysis of feeding trials to estimate energy requirements of dairy cows under tropical condition. Anim. Feed. Sci. Technol. 2015, 210, 94–103. [Google Scholar] [CrossRef]
- Chizzotti, M.L.; Filho, S.V.; Tedeschi, L.O.; Chizzotti, F.H.M.; Carstens, G.E. Energy and protein requirements for growth and maintenance of F1 Nellore × Red Angus bulls, steers, and heifers1. J. Anim. Sci. 2007, 85, 1971–1981. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Tamminga, S.; Zemmelink, G. Degradation of tropical roughages and concentrate feeds in the rumen. Anim. Feed. Sci. Technol. 1995, 54, 81–92. [Google Scholar] [CrossRef]
- Mulindwa, H.; Galukande, E.; Wurzinger, M.; Ojango, J.; Okeyo, A.M.; Sölkner, J. Stochastic simulation model of Ankole pastoral production system: Model development and evaluation. Ecol. Model. 2011, 222, 3692–3700. [Google Scholar] [CrossRef]
- Rufino, M.C. Quantifying the Contribution of Crop-Livestock Integration to African Farming. Ph.D. Theses, Wageningen University, Wageningen, The Netherlands, 2008. [Google Scholar]
- Silva, S.D.T.G.D. Ruminants as Part of the Global Food System: How Evolutionary Adaptations and Diversity of the Digestive System Brought them to the Future. J. Dairy Vet. Anim. Res. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Salah, N.; Sauvant, D.; Archimède, H. Nutritional requirements of sheep, goats and cattle in warm climates. A meta-analysis. Animal 2014, 8, 1439–1447. [Google Scholar] [CrossRef]
- Bateki, C.A.; Dickhoefer, U. Predicting dry matter intake using conceptual models for cattle kept under tropical and subtropical conditions1. J. Anim. Sci. 2019, 97, 3727–3740. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M. Modelling Dairy Grazing Systems: An Integrated Approach. Ph.D. Thesis, University of Edinburgh, Edinburgh, UK, 1998. Available online: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.652383 (accessed on 27 December 2018).
- Rufino, M.; Herrero, M.; Van Wijk, M.; Hemerik, L.; De Ridder, N.; Giller, K.E. Lifetime productivity of dairy cows in smallholder farming systems of the Central highlands of Kenya. Animal 2009, 3, 1044–1056. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AFRC. Energy and Protein Requirements of Ruminants; An Advisory Manual Prepared by the AFRC Technical Committee on Response to Nutrients; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Brody, S. Bioenergetics and Growth with Special Reference to the Efficiency Complex in Domestic Animals; Reinhold: Oxford, UK, 1945. [Google Scholar]
- Conrad, H.R. Symposium on Factors Influencing the Voluntary Intake of Herbage by Ruminants. Physiological and Physical Factors Limiting Feed Intake. J. Anim. Sci. 1966, 25, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Oldenbroek, J.K. Feed Intake and Energy Utilization in Dairy Cattle of Different Breeds. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 1988. [Google Scholar]
- Parker, R. Body Condition Scoring of Dairy Cattle; Factsheet, Agdex 410/20; OMAFRA: Guelph, ON, Canada, 2012. Available online: http://www.omafra.gov.on.ca/english/livestock/dairy/facts/94-053.htm. (accessed on 17 July 2019).
- López, S.; France, J.; Gerrits, W.J.J.; Dhanoa, M.S.; Humphries, D.J.; Dijkstra, J. A generalized Michaelis-Menten equation for the analysis of growth. J. Anim. Sci. 2000, 78, 1816–1828. [Google Scholar] [CrossRef]
- Teleken, J.T.; Galvão, A.C.; Robazza, W.D.S. Comparing non-linear mathematical models to describe growth of different animals. Acta Sci. Anim. Sci. 2017, 39, 73. [Google Scholar] [CrossRef]
- Forni, S.; Piles, M.; Blasco, A.; Varona, L.; Oliveira, H.; Lôbo, R.B.; De Albuquerque, L.G. Comparison of different nonlinear functions to describe Nelore cattle growth1. J. Anim. Sci. 2009, 87, 496–506. [Google Scholar] [CrossRef]
- Winsor, C.P. The Gompertz Curve as a Growth Curve. Proc. Natl. Acad. Sci. USA 1932, 18, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Von Bertalanffy, L. Quantitative Laws in Metabolism and Growth. Q. Rev. Biol. 1957, 32, 217–231. [Google Scholar] [CrossRef]
- France, J.; Dijkstra, J.; Dhanoa, M.S. Growth functions and their application in animal science. Ann. Zootech. 1996, 45, 165–174. [Google Scholar] [CrossRef]
- De Ridder, N.; Sanogo, O.M.; Rufino, M.; Van Keulen, H.; Giller, K.E. Milk: The new white gold? Milk production options for smallholder farmers in Southern Mali. Animal 2015, 9, 1221–1229. [Google Scholar] [CrossRef] [Green Version]
- Johnson, I.R.; France, J.; Thornley, J.H.M.; Bell, M.; Eckard, R.J. A generic model of growth, energy metabolism, and body composition for cattle and sheep1. J. Anim. Sci. 2012, 90, 4741–4751. [Google Scholar] [CrossRef] [PubMed]
- Poppi, D.P.; McLennan, S.R. Protein and energy utilization by ruminants at pasture. J. Anim. Sci. 1995, 73, 278. [Google Scholar] [CrossRef] [PubMed]
- Macciotta, N.P.P.; Vicario, D.; Cappio-Borlino, A. Detection of Different Shapes of Lactation Curve for Milk Yield in Dairy Cattle by Empirical Mathematical Models. J. Dairy Sci. 2005, 88, 1178–1191. [Google Scholar] [CrossRef] [Green Version]
- GfE. Empfehlungen zur Energie und Nährstoffversorgung der Milchkühe und Aufzuchtrinder; Energie- und Nährstoffbedarf Landwirtschaftlicher Nutztiere, Nr. 8; DLG Verlag: Frankfurt (Main), Germany, 2001. (In German) [Google Scholar]
- INRA feeding system for ruminants; Wageningen Academic Publishers: Wageningen, the Netherlands, 2016.
- Flachowsky, G.; Kirchgessner, M. The energetic feed evaluation in Germany. Arch. Anim. Nutr. 1998, 51, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Kebreab, E.; Smith, T.; Tanner, J.; Osuji, P. Review of Undernutrition in Smallholder Ruminant Production Systems in the Tropics. In Coping with Feed Scarcity in Smallholder Livestock Systems in Developing Countries; Ayantunde, A.A., Fernández-Rivera, S., McCrabb, G., Eds.; International Livestock Research Institute: Nairobi, Kenya, 2005; pp. 3–94. [Google Scholar]
- Lebzien, P.; Voigt, J.; Gabel, M.; Gädeken, D. Prediction of duodenal flow of utilizable crude protein in dairy cows. J. Anim. Physiol. Anim. Nutr. 1996, 76, 218–223. [Google Scholar] [CrossRef]
- Valente, E.; Paulino, M.F.; Detmann, E.; Filho, S.V.; Cardenas, J.E.G.; Dias, I.F.T. Requirement of energy and protein of beef cattle on tropical pasture. Acta Sci. Anim. Sci. 2013, 35. [Google Scholar] [CrossRef] [Green Version]
- Faverdin, P.; Baratte, C.; Delagarde, R.; Peyraud, J.L. GrazeIn: A model of herbage intake and milk production for grazing dairy cows. 1. Prediction of intake capacity, voluntary intake and milk production during lactation. Grass Forage Sci. 2011, 66, 29–44. [Google Scholar] [CrossRef]
- Mpairwe, D.; Sabiiti, E.; Ummuna, N.; Tegegne, A.; Osuji, P. Integration of forage legumes with cereal crops. I. Effects of supplementation with graded levels of lablab hay on voluntary food intake, digestibility, milk yield and milk composition of crossbred cows fed maize–lablab stover or oats–vetch hay ad libitum. Livest. Prod. Sci. 2003, 79, 193–212. [Google Scholar] [CrossRef]
- Cochran, W.G.; Cox, G.M. Experimental Designs, 2nd ed.; Wiley Classics Library: Chichester, NY, USA, 1992. [Google Scholar]
- Tedeschi, L. Assessment of the adequacy of mathematical models. Agric. Syst. 2006, 89, 225–247. [Google Scholar] [CrossRef]
- Jamieson, P.; Porter, J.; Wilson, D. A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crop. Res. 1991, 27, 337–350. [Google Scholar] [CrossRef]
- Tess, M.W.; Kolstad, B.W. Simulation of cow-calf production systems in a range environment: I. Model development. J. Anim. Sci. 2000, 78, 1159–1169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zom, R.; Andre, G.; Van Vuuren, A. Development of a model for the prediction of feed intake by dairy cows: 1. Prediction of feed intake. Livest. Sci. 2012, 143, 43–57. [Google Scholar] [CrossRef]
- Mertens, D.R. Predicting Intake and Digestibility Using Mathematical Models of Ruminal Function. J. Anim. Sci. 1987, 64, 1548–1558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tedeschi, L.; Cavalcanti, L.; Fonseca, M.A.; Herrero, M.; Thornton, P.K. The evolution and evaluation of dairy cattle models for predicting milk production: an agricultural model intercomparison and improvement project (AgMIP) for livestock. Anim. Prod. Sci. 2014, 54, 2052–2067. [Google Scholar] [CrossRef]
- Benchaar, C.; Rivest, J.; Pomar, C.; Chiquette, J. Prediction of methane production from dairy cows using existing mechanistic models and regression equations. J. Anim. Sci. 1998, 76, 617–627. [Google Scholar] [CrossRef]
- Jensen, L.; Nielsen, N.; Nadeau, E.; Markussen, B.; Nørgaard, P. Evaluation of five models predicting feed intake by dairy cows fed total mixed rations. Livest. Sci. 2015, 176, 91–103. [Google Scholar] [CrossRef]
Sex | Species | Age (Years) | ||||||
---|---|---|---|---|---|---|---|---|
0.0 | 0.1 | 1.5 | 3.0 | 4.5 | 5.5 | 20.0 | ||
Female | Bos indicus × Bos taurus | 3.4 | 4.0 | 9.6 | 16.5 | 23.4 | 23.4 | 23.4 |
Bos indicus | 3.4 | 3.9 | 8.6 | 12.9 | 16.2 | 17.0 | 17.0 | |
Male | Bos indicus × Bos taurus | 3.4 | 4.0 | 9.1 | 15.5 | 21.8 | 25.1 | 25.1 |
Bos indicus | 3.4 | 3.9 | 7.9 | 11.9 | 14.8 | 18.8 | 18.8 |
Sex | Species | Age (Years) | ||||||
---|---|---|---|---|---|---|---|---|
0.0 | 0.1 | 1.5 | 3.0 | 4.5 | 5.5 | 20.0 | ||
Female | Bos indicus × Bos taurus | 236 | 182 | 174 | 171 | 170 | 170 | 170 |
Bos indicus | 236 | 182 | 173 | 170 | 168 | 168 | 168 | |
Male | Bos indicus × Bos taurus | 236 | 182 | 175 | 172 | 170 | 169 | 169 |
Bos indicus | 236 | 182 | 174 | 168 | 167 | 167 | 167 |
Parameter | Treatment | |
---|---|---|
Maize–Lablab | Oats–Vetch | |
Animal | ||
Number of cows | 6 | 6 |
Age 1, years | 5.2 | 5.2 |
Body weight at calving, kg | 415 | 432 |
Body weight at 140 days postpartum, kg | 386 | 399 |
Voluntary dry matter intake, kg/animal and day | 9.8 | 9.7 |
Lactation length, months | 10 | 10 |
Peak milk yield 2, kg/animal and day | 20 | 20 |
Month of peak milk yield 2 | 2 | 2 |
Milk yield, kg/animal and day | 8.25 | 6.82 |
Milk fat, g/kg milk | 46.3 | 46.6 |
Milk protein, g/kg milk | 29.0 | 31.2 |
Diet | ||
DM, g/kg as fed | 890 | 888 |
CP, g/kg DM | 93.1 | 87.5 |
Undegradable CP 3, g/kg CP | 250 | 220 |
Acid detergent insoluble nitrogen 3, g/kg DM | 0.9 | 1.1 |
CP fraction a 4 | 0.24 | 0.18 |
CP fraction b 5 | 0.57 | 0.57 |
CP fraction c 6 | 0.04 | 0.05 |
Neutral detergent fiber, g/kg DM | 550 | 610 |
Gross energy 3, MJ/kg DM | 17.2 | 17.6 |
Metabolizable energy, MJ/kg DM | 9.4 | 9.6 |
Fermentable metabolizable energy of diet 3, MJ/kg DM | 7.2 | 7.4 |
DM digestibility, g/kg DM | 659 | 683 |
Phosphorus, g/kg DM | 4.5 | 3.6 |
Potassium, g/kg DM | 25.0 | 29.8 |
Experimental Diet | Parameter | ||||||||
---|---|---|---|---|---|---|---|---|---|
Voluntary DMI (Kg/Animal and Day) | Final Body Weight (Kg/Animal) | Milk Yield (Kg/Animal and Day) | |||||||
Observed | LIVSIM | LIVSIM -Mod | Observed | LIVSIM | LIVSIM -Mod | Observed | LIVSIM | LIVSIM -Mod | |
Maize-lablab | 9.8 | 14.4 | 10.2 | 386 | 454 | 385 | 8.3 | 13.1 | 8.1 |
Oats-vetch | 9.7 | 14.2 | 9.6 | 399 | 430 | 383 | 6.8 | 12.6 | 7.8 |
Statistical Measure | LIVSIM | LIVSIM-Mod |
---|---|---|
MBE †, kg/animal and day | −4.6 | −0.2 |
RMSEP ††, kg/animal and day | 4.6 | 0.3 |
RPE †††, % mean observed value | 47.0 | 3.0 |
Statistical Measure | Predicted Parameter | |||
---|---|---|---|---|
Final Body Weight | Daily Milk Yield | |||
LIVSIM | LIVSIM-Mod | LIVSIM | LIVSIM-Mod | |
MBE † | −49.5 | 8.5 | −5.3 | −0.4 |
RMSEP †† | 52.8 | 11.3 | 5.3 | 0.7 |
RPE †††, % mean observed value | 13.5 | 2.9 | 70.5 | 10.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bateki, C.A.; Dickhoefer, U. Evaluation of the Modified LIVestock SIMulator for Stall-Fed Dairy Cattle in the Tropics. Animals 2020, 10, 816. https://doi.org/10.3390/ani10050816
Bateki CA, Dickhoefer U. Evaluation of the Modified LIVestock SIMulator for Stall-Fed Dairy Cattle in the Tropics. Animals. 2020; 10(5):816. https://doi.org/10.3390/ani10050816
Chicago/Turabian StyleBateki, Christian A., and Uta Dickhoefer. 2020. "Evaluation of the Modified LIVestock SIMulator for Stall-Fed Dairy Cattle in the Tropics" Animals 10, no. 5: 816. https://doi.org/10.3390/ani10050816
APA StyleBateki, C. A., & Dickhoefer, U. (2020). Evaluation of the Modified LIVestock SIMulator for Stall-Fed Dairy Cattle in the Tropics. Animals, 10(5), 816. https://doi.org/10.3390/ani10050816