In Vitro Techniques Using the DaisyII Incubator for the Assessment of Digestibility: A Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. The Ankom DaisyII Incubator
3. Inoculum Applied to the Use of the Ankom DaisyII Incubator
3.1. Rumen Fluid
3.2. Faecal Inocula
3.3. Enzymatic Inoculum
4. Sample Size, Sample Weight and Bag Type
5. Buffer Solutions and in Vitro Digestibility Methods Applied to the Ankom DaisyII Incubator
6. Precision and Accuracy of the Method Using the Ankom DaisyII Incubator
7. Comparison with other Methods
8. Use of DaisyII Incubator for Non-Ruminants
8.1. Horses
8.2. Donkeys
8.3. Camelids
8.4. Rabbits
8.5. Guinea Pigs
8.6. Pigs
8.7. Dogs
9. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tilley, J.M.A.; Terry, R.A. A two-stage technique for the in vitro digestion of forage crops. Grass Forage Sci. 1963, 18, 104–111. [Google Scholar] [CrossRef]
- Van Soest, P.J. Nutritional Ecology of the Ruminant, 2nd ed.; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Klopfenstein, T.J.; Krause, V.E.; Jones, M.J.; Woods, W. Chemical treatment of low quality forages. J. Anim. Sci. 1972, 35, 418–422. [Google Scholar] [CrossRef]
- Givens, D.I.; Cottyn, B.G.; Dewey, P.J.S.; Steg, A. A comparison of the neutral detergent-cellulase method with other laboratory methods for predicting the digestibility in vivo of maize silages from three European countries. Anim. Feed Sci. Technol. 1995, 54, 55–64. [Google Scholar] [CrossRef]
- Adesogan, A.T.; Givens, D.I.; Owen, E. Prediction of the in vivo digestibility of whole crop wheat from in vitro digestibility, chemical composition, in situ rumen degradability, in vitro gas production and near infrared reflectance spectroscopy. Anim. Feed Sci. Technol. 1998, 74, 259–272. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Wine, R.H.; Moore, L.A. Estimation of the true digestibility of forages by the in vitro digestion of cell walls. In Proceedings of the 10th International Grassland Congress, Finnish Grassland Association, Helsinki, Finland, 7–8 July 1966; pp. 438–441. [Google Scholar]
- Goering, M.K.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures and some Applications); Agricultural Handbook No. 379; USDA: Washington, DC, USA, 1970. [Google Scholar]
- Adesogan, A.T. What are feeds worth? A critical evaluation of selected nutritive value methods. In Proceedings of the 13th Annual Florida Ruminant Nutrition Symposium, Gainesville, FL, USA, 11–12 January 2002; pp. 33–47. [Google Scholar]
- Czerkawski, J.W.; Breckenridge, G. Design and development of a long-term rumen simulation technique (Rusitec). Br. J. Nutr. 1977, 38, 371–384. [Google Scholar] [CrossRef] [Green Version]
- Gray, F.V.; Weller, A.F.; Pilgrim, A.F.; Jones, G.E. A stringent test for the artificial rumen. Aust. J. Agric. Res. 1962, 13, 343–349. [Google Scholar] [CrossRef]
- Aafjes, J.H.; Nijhof, J.K. A simple artificial rumen giving good production of volatile fatty acids. Br. Vet. J. 1967, 123, 436–446. [Google Scholar] [CrossRef]
- Carro, M.D.; Ranilla, M.J.; Martin-García, A.I.; Molina-Alcaide, E. Comparison of microbial fermentation of high- and low-forage diets in Rusitec, single-flow continuous-culture fermenters and sheep rumen. Animal 2009, 3, 527–534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez, M.E.; Ranilla, M.J.; Tejido, M.L.; Saro, C.; Carro, M.D. Comparison of fermentation of diets of variable composition and microbial populations in the rumen of sheep and Rusitec fermenters. II. Protozoa population and diversity of bacterial communities. J. Dairy Sci. 2010, 93, 3699–3712. [Google Scholar] [CrossRef] [Green Version]
- Spanghero, M.; Chiaravalli, M.; Colombini, S.; Fabro, C.; Froldi, F.; Mason, F.; Moschini, M.; Sarnataro, C.; Schiavon, S.; Tagliapietra, F. Rumen inoculum collected from cows at slaughter or from a continuous fermenter and preserved in warm, refrigerated, chilled or freeze-dried environments for in vitro tests. Animals 2019, 9, 815. [Google Scholar] [CrossRef] [Green Version]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. [Google Scholar]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B. A new laboratory procedure for estimating kinetic parameters associated with the digestibility of forages. In Proceedings of the International Symposium on Forage Cell Wall Structure and Digestibility, USD-ARS, Madison, WI, USA, 7–10 October 1991. [Google Scholar]
- Hungate, R.E. The Rumen and Its Microbes; Academic Press: New York, NY, USA, 1966. [Google Scholar]
- Menke, K.H.; Raab, A.; Salewski, H.; Steingass, D.; Fritz, D.; Scneider, W. The estimation of digestibility and metabolizable energy content of ruminant feedstuffs from the gas production when they are incubated with rumen liquor in vitro. J. Agric. Sci. 1979, 193, 217–225. [Google Scholar] [CrossRef] [Green Version]
- Pell, A.N.; Schofield, P. Computerized monitoring of gas production to measure forage digestion in vitro. J. Dairy Sci. 1993, 76, 1063–1073. [Google Scholar] [CrossRef]
- Schofield, P.; Pell, A.N. Measurement and kinetic analysis of the neutral detergent-soluble carbohydrate fraction of legumes and grasses. J. Anim. Sci. 1995, 73, 3455–3463. [Google Scholar] [CrossRef]
- Layton, B.; Ankom Technology Corporation Fairport, NY, USA. Personal communication, 2019.
- Holden, L.A. Comparison of methods of in vitro dry matter digestibility for ten feeds. J. Dairy Sci. 1999, 82, 1791–1794. [Google Scholar] [CrossRef]
- Wilman, D.; Adesogan, A. A comparison of filter bag methods with conventional tube methods of determining the in vitro digestibility of forages. Anim. Feed Sci. Technol. 2000, 84, 33–47. [Google Scholar] [CrossRef]
- Vogel, K.P.; Pedersen, J.F.; Masterson, S.D.; Toy, J.J. Evaluation of a filter bag system for NDF, ADF, and IVDMD forage analysis. Crop. Sci. 1999, 39, 276–279. [Google Scholar] [CrossRef]
- Alende, M.; Lascano, G.J.; Jenkins, T.C.; Koch Pas, L.E.; Andrae, J.G. Comparison of 4 methods for determining in vitro ruminal digestibility of annual ryegrass. Prof. Anim. Sci. 2018, 34, 306–309. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Akins, M.S.; Ogden, R.K.; Bauman, L.M.; Stammer, A.J. Effects of sample size on neutral detergent fiber digestibility of triticale forages using the Ankom DaisyII Incubator system. J. Dairy Sci. 2019, 102, 6987–6999. [Google Scholar] [CrossRef]
- Hall, M.B.; Mertens, D.R. In vitro fermentation vessel type and method alter fiber digestibility estimates. J. Dairy Sci. 2008, 91, 301–307. [Google Scholar] [CrossRef] [Green Version]
- Valentine, M.E.; Karayilandli, E.; Cherney, J.H.; Cherney, D.J. Comparison of in vitro long digestion methods and digestion rates for diverse forages. Crop. Sci. 2019, 59, 422–435. [Google Scholar] [CrossRef]
- Raffrenato, E.; Ross, D.A.; Van Amburgh, M.E. Development of an in vitro method to determine rumen undigested aNDFom for use in feed evaluation. J. Dairy Sci. 2018, 101, 9888–9900. [Google Scholar] [CrossRef]
- Robinson, P.H.; Campbell Matthews, M.; Fadel, J.G. Influence of storage time and temperature on in vitro digestion of neutral detergent fibre at 48 h, and comparison to 48 h in sacco neutral detergent fibre digestion. Anim. Feed Sci. Technol. 1999, 80, 257–266. [Google Scholar] [CrossRef]
- Goeser, J.P.; Combs, D.K. An alternative method to assess 24-h ruminal in vitro neutral detergent fiber digestibility. J. Dairy Sci. 2009, 92, 3833–3841. [Google Scholar] [CrossRef] [Green Version]
- Goeser, J.P.; Hoffman, P.C.; Combs, D.K. Modification of a rumen fluid priming technique for measuring in vitro neutral detergent fiber digestibility. J. Dairy Sci. 2009, 92, 3842–3848. [Google Scholar] [CrossRef]
- Trujillo, A.I.; Marichal, M.D.J.; Carriquiry, M. Comparison of dry matter and neutral detergent fibre degradation of fibrous feedstuffs as determined with in situ and in vitro gravimetric procedures. Anim. Feed Sci. Technol. 2010, 161, 49–57. [Google Scholar] [CrossRef]
- Bender, R.W.; Cook, D.E.; Combs, D.K. Comparison of in situ versus in vitro methods of fiber digestion at 120 and 288 h to quantify the indigestible neutral detergent fiber fraction of corn silage samples. J. Dairy Sci. 2016, 99, 5394–5400. [Google Scholar] [CrossRef]
- Raffrenato, E.; Nicholson, C.F.; Van Amburgh, M.E. Development of a mathematical model to predict pool sizes and rates of digestion of 2 pools of digestible neutral detergent fiber and an undigested neutral detergent fiber fraction within various forages. J. Dairy Sci. 2019, 102, 351–364. [Google Scholar] [CrossRef] [Green Version]
- Mertens, D.R. Using uNDF to predict dairy cow performance and design rations. In Proceedings of the Four-State Dairy Nutrition and Management Conference, Dubuque, IA, USA, 12–13 June 2016; pp. 12–19. [Google Scholar]
- Mould, F.L.; Kliem, K.E.; Morgan, R.; Mauricio, R.M. In vitro microbial inoculum: A review of its function and properties. Anim. Feed Sci. Technol. 2005, 123–124, 31–50. [Google Scholar] [CrossRef]
- López, S. In vitro and in situ techniques for estimating digestibility. In Quantitative Aspects of Ruminant Digestion and Metabolism, 2nd ed.; CAB International: Wallingford, UK, 2005; pp. 87–121. [Google Scholar]
- Ramos-Morales, E.; Arco-Pérez, A.; Martín-García, A.I.; Yáñez-Ruiz, D.R.; Frutos, P.; Hervás, G. Use of stomach tubing as an alternative to rumen cannulation to study ruminal fermentation and microbiota in sheep and goats. Anim. Feed Sci. Technol. 2014, 198, 57–66. [Google Scholar] [CrossRef] [Green Version]
- Beyihayo, G.A.; Omaria, R.; Namazzi, C.; Atuhaire, A. Comparison of in vitro digestibility using slaughtered and fistulated cattle as sources of inoculum. Uganda J. Agric. Sci. 2015, 16, 93–98. [Google Scholar] [CrossRef]
- Alba, H.D.R.; Oliveira, R.L.; de Carvalho, S.T.; Ítavo, L.C.V.; Ribeiro, O.L.; do Nascimento Júnior, N.G.; Freitas, M.D.; Bezerra, L.R. Can ruminal inoculum from slaughtered cattle replace inoculum from cannulated cattle for feed evaluation research? Semin. Ciênc. Agrár. 2018, 39, 2133–2144. [Google Scholar] [CrossRef]
- RMG Network. A Report in Support of the Rumen Microbial Genomics (RMG) Network Describing Standard Guidelines and Protocols for Data Acquisition, Analysis and Storage. Available online: http://www.rmgnetwork:user/file/37/pdf (accessed on 25 February 2020).
- Yáñez Ruiz, D.R.; Bannink, A.; Dijkstra, J.; Kebreab, E.; Morgavi, D.P.; O’Kiely, P.; Reynolds, C.K.; Schwarm, A.; Shingfield, K.J.; Yu, Z.; et al. Design, implementation and interpretation of in vitro batch culture experiments to assess enteric methane mitigation in ruminants—A review. Anim. Feed Sci. Technol. 2016, 216, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bioscreen Technologies Research Laboratories—Artificial Rumen by-Pass. Available online: https://www.youtube.com/watch?v=AAT63sytI0w (accessed on 25 February 2020).
- Marinucci, M.T.; Dehority, B.A.; Loerch, S.C. In vitro and in vivo studies of factors affecting digestion of feeds in synthetic fiber bags. J. Anim. Sci. 1992, 70, 296–307. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Plaizier, J.C. Effects of source of rumen fluid on in vitro dry matter digestibility of feeds determined using the DAISYII Incubator. Can. J. Anim. Sci. 2006, 86, 439–441. [Google Scholar] [CrossRef]
- Ammar, H.; Lopez, S.; Andres, S.; Ranilla, M.J.; Boda, R.; Gonzalez, J.S. In vitro digestibility and fermentation kinetics of some browse plants using sheep or goat ruminal fluid as the source of inoculum. Anim. Feed Sci. Technol. 2008, 147, 90–104. [Google Scholar] [CrossRef]
- Hervas, G.; Frutos, P.; Giraldez, F.J.; Mora, M.J.; Fernandez, B.; Mantecon, A.R. Effect of preservation on fermentative activity of rumen fluid inoculum for in vitro gas production techniques. Anim. Feed Sci. Technol. 2005, 123–124, 107–118. [Google Scholar] [CrossRef]
- Chaudhry, A.S.; Mohamed, R.A.I. Fresh of frozen rumen contents from slaughtered cattle to estimate in vitro degradation of two contrasting feeds. Czech. J. Anim. Sci. 2012, 6, 265–273. [Google Scholar] [CrossRef] [Green Version]
- Denek, N.; Can, A.; Avci, M. Frozen rumen fluid as microbial inoculum in the two-stage in vitro digestibility assay of ruminant feeds. S. Afr. J. Anim. Sci. 2010, 40, 251–256. [Google Scholar] [CrossRef]
- Belanche, A.; Palma-Hidalgo, J.M.; Nejjam, I.; Serrano, R.; Jiménez, E.; Martín-García, I.; Yáñez-Ruiz, D.R. In vitro assessment of the factors that determine the activity of the rumen microbiota for further applications as inoculum. J. Sci. Food Agric. 2019, 99, 163–172. [Google Scholar] [CrossRef] [Green Version]
- Soto, E.C.; Molina-Alcaide, E.; Khelil, H.; Yáñez-Ruiz, D.R. Ruminal microbiota developing in different in vitro simulation systems inoculated with goats rumen liquor. Anim. Feed Sci. Technol. 2013, 185, 9–18. [Google Scholar] [CrossRef]
- Mauricio, R.M.; Owen, E.; Mould, F.L.; Givens, I.; Theodorou, M.K.; France, J.; Davi, D.R.; Dhanoa, M.S. Comparison of bovine rumen liquor and bovine faeces as inoculum for an in vitro gas production technique for evaluating forages. Anim. Feed Sci. Technol. 2001, 89, 33–48. [Google Scholar] [CrossRef]
- Hughes, M.M.; Mlambo, V.; Lallo, C.H.O.; Jennings, P.G.A. Potency of microbial inocula from bovine faeces and rumen fluid for in vitro digestion of different tropical forage substrates. Grass Forage Sci. 2012, 67, 263–273. [Google Scholar] [CrossRef]
- Ramin, M.; Lerose, D.; Tagliapietra, F.; Huhtanen, P. Comparison of rumen fluid inoculum vs. faecal inoculum on predicted methane production using a fully automated in vitro gas production system. Livest. Sci. 2015, 181, 65–71. [Google Scholar] [CrossRef]
- Akhter, S.; Owen, E.; Theodorou, M.K.; Butler, E.A.; Minson, D.J. Bovine faeces as a source of micro-organisms for the in vitro digestibility assay of forages. Grass Forage Sci. 1999, 54, 219–226. [Google Scholar] [CrossRef]
- Tufarelli, V.; Cazzato, E.; Ficco, A.; Laudadio, V. Assessing nutritional value and in vitro digestibility of Mediterranean pasture species using yak (Bos grunniens) faeces as alternative microbial inoculum in a DaisyII incubator. J. Food Agric. Environ. 2010, 8, 477–481. [Google Scholar] [CrossRef]
- Laudadio, V.; Lacalandra, G.M.; Monaco, D.; Khorchani, T.; Hammadi, M.; Tufarelli, V. Faecal liquor as alternative microbial inoculum source for in vitro (DaisyII) technique to estimate the digestibility of feeds for camels. J. Camelid Sci. 2009, 2, 1–7. [Google Scholar]
- Cone, J.W.; Van Gelder, A.H.; Bachmann, H. Influence of inoculum source on gas production profiles. Anim. Feed Sci. Technol. 2002, 99, 221–231. [Google Scholar] [CrossRef]
- Chiaravalli, M.; Rapetti, L.; Rota Graziosi, A.; Galassi, G.; Crovetto, G.M.; Colombini, S. Comparison of faecal versus rumen inocula for the estimation of NDF digestibility. Animals 2019, 9, 928. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, M.L.; Sager, R.L. Ruminant Fecal Inolucum for In Vitro Feed Digestibility Analysis. 2016. Available online: https://unsl.academia.edu/RicardoSager (accessed on 25 February 2020).
- Kim, M.; Kim, J.; Kuehn, L.A.; Bono, J.L.; Berry, E.D.; Kalchayanand, N.; Freetly, H.C.; Benson, A.K.; Wells, J.E. Investigation of bacterial diversity in the feces of cattle fed different diets. J. Anim. Sci. 2014, 92, 683–694. [Google Scholar] [CrossRef] [Green Version]
- Lowman, R.S.; Theodorou, M.K.; Hyslop, J.J.; Dhanoa, M.S.; Cuddeford, D. Evaluation of an in vitro batch culture technique for estimating the in vivo digestibility and digestible energy content of equine feeds using equine faeces as the source of microbial inoculum. Anim. Feed Sci. Technol. 1999, 80, 11–27. [Google Scholar] [CrossRef]
- Earing, J.E.; Cassill, B.D.; Hayes, S.H.; Vanzant, E.S.; Lawrence, L.M. Comparison of in vitro digestibility estimates using the DaisyII incubator with in vivo digestibility estimates in horses. J. Anim. Sci. 2010, 88, 3954–3963. [Google Scholar] [CrossRef]
- Tassone, S.; Renna, M.; Barbera, S.; Valle, E.; Fortina, R. In vitro digestibility measurement of feedstuffs in donkeys using the DaisyII incubator. J. Equine Vet. Sci. 2019, 75, 122–126. [Google Scholar] [CrossRef] [Green Version]
- Varadyova, Z.; Baran, M.; Zelenak, I. Comparison of two in vitro fermentation gas production methods using both rumen fluid and faecal inoculum from sheep. Anim. Feed Sci. Technol. 2005, 123–124, 81–94. [Google Scholar] [CrossRef]
- De Boever, J.L.; Cottyn, B.G.; Andries, J.I.; Buysse, F.X.; Vanacker, J.M. The use of a cellulase technique to predict digestibility, metabolizable and net energy of forages. Anim. Feed Sci. Technol. 1988, 19, 247–260. [Google Scholar] [CrossRef]
- Akinsola, M.P. Development of an In Vitro Technique to Determine Digestibility of High Fiber Pig Feed. Ph.D. Thesis, Tshwane University of Technology, Pretoria, South Africa, 2013. [Google Scholar]
- Abad, R.; Ibáñez, M.A.; Carabaño, R.; García, J. Quantification of soluble fibre in feedstuffs for rabbits and evaluation of the interference between the determinations of soluble fibre and intestinal mucin. Anim. Feed Sci. Technol. 2013, 182, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, F.N.A.; Ferreira, W.M.; Silva Neta, C.S.; Inácio, D.F.S.; Mota, K.C.N.; Costa Júnior, M.B.; Rocha, L.F.; Lara, L.B.; Fontes, D.O. Effect of dietary inclusion of dried or autoclaved sugarcane bagasse and vinasse on live performance and in vitro evaluations on growing rabbits. Anim. Feed Sci. Technol. 2017, 230, 87–95. [Google Scholar] [CrossRef]
- Candellone, A.; Prola, L.; Peiretti, P.G.; Tassone, S.; Longato, E.; Pattono, D.; Russo, N.; Meineri, G. In vivo and in vitro digestibility, palatability and nutritive quality of extruded dog food based on mechanically separated chicken meat or meat by-product. Ital. J. Anim. Sci. 2019, 18 (Suppl. 1), 109. [Google Scholar]
- Figueiredo, M.; Mbhele, A.; Zondi, J. An evaluation of the Daisy II-220 technique for determining in vitro digestibility of animal feeds in comparison with the Minson & McLeod technique. S. Afr. J. Anim. Sci. 2000, 30, 45–46. [Google Scholar]
- Mabjeesh, S.J.; Cohen, M.; Arieli, A. In vitro methods for measuring the dry matter digestibility of ruminant feedstuffs: Comparison of methods and inoculum source. J. Dairy Sci. 2000, 83, 2289–2294. [Google Scholar] [CrossRef]
- Vanzant, E.S.; Cochran, R.C.; Titgemeyer, E.C. Standardization of in situ techniques for ruminant feedstuff evaluation. J. Anim. Sci. 1998, 76, 2717–2729. [Google Scholar] [CrossRef]
- In Vitro True Digestibility Using the DaisyII Incubator. Available online: https://www.ankom.com/sites/default/files/document-files/Method_3_Invitro_D200_D200I.pdf (accessed on 25 February 2020).
- Coblentz, W.; Akins, M. Comparisons of fiber digestibility for triticale forages at two different sample sizes using the Ankom Daisy Incubator II System. In Proceedings of the ADSA Annual Meeting, Cincinnati, OH, USA, 23–26 June 2019. Abstract T69. [Google Scholar]
- Cattani, M.; Tagliapietra, F.; Bailoni, L.; Schiavon, S. In vitro rumen feed degradability assessed with DaisyII and batch culture: Effect of sample size. Ital. J. Anim. Sci. 2009, 8, 169–171. [Google Scholar] [CrossRef] [Green Version]
- Coblentz, W.K.; Akins, M.S.; Kalscheur, K.F.; Brink, G.E.; Cavadini, J.S. Effects of growth stage and growing degree day accumulations on triticale forages: 1) Dry matter yield, nutritive value, and in vitro dry matter disappearance. J. Dairy Sci. 2018, 101, 8965–8985. [Google Scholar] [CrossRef]
- Adesogan, A.T. Effect of bag type on the apparent digestibility of feeds in Ankom DaisyII incubators. Anim. Feed Sci. Technol. 2005, 119, 333–344. [Google Scholar] [CrossRef]
- Anassori, E.; Dalir-Naghadeh, B.; Pirmohammadi, R.; Taghizadeh, A.; Asri-Rezaei, S.; Farahmand-Azar, S.; Besharati, M.; Tahmoozi, M. In vitro assessment of the digestibility of forage based sheep diet, supplemented with raw garlic, garlic oil and monensin. Vet. Res. Forum 2012, 3, 5–11. [Google Scholar]
- Coles, L.T.; Moughan, P.J.; Darragh, A.J. In vitro digestion and fermentation methods incuding gas production techniques, as applied to nutritive evaluation of foods in the hindgut of humans and other simple-stomached animals. Anim. Feed Sci. Technol. 2005, 123–124, 421–444. [Google Scholar] [CrossRef]
- Marten, G.C.; Barnes, R.F. Prediction of energy digestibility of forages in vitro rumen fermentation and fungal enzyme systems. In Proceedings of the International Workshop on Standardization of Analytical Methodology for Feeds, Ottawa, ON, Canada, 12–14 March 1979; Pigden, W.J., Balch, C.C., Graham, M., Eds.; Unipub: New York, NY, USA, 1979; pp. 61–71. [Google Scholar]
- Minson, D.J.; Mcleod, M.N. Division of Tropical Pastures Technical; Paper No. 8; Commonwealth Scientific and Industrial Research Organization: Melbourne, Australia, 1972. [Google Scholar]
- Calsamiglia, S.; Stern, M.D. A three-step in vitro procedure for estimating intestinal digestion of protein in ruminants. J. Anim. Sci. 1995, 73, 1459–1465. [Google Scholar] [CrossRef] [Green Version]
- Gargallo, S.; Calsamiglia, S.; Ferret, A. A modified three-step in vitro procedure to determine intestinal digestion of proteins. J. Anim. Sci. 2006, 84, 2163–2167. [Google Scholar] [CrossRef] [Green Version]
- Slyter, L.L.; Bryant, M.P.; Wolin, M.J. Effect of pH on population and fermentation in a continuously cultured rumen ecosystem. Appl. Microbiol. 1966, 14, 573–578. [Google Scholar] [CrossRef] [Green Version]
- Damiran, D.; DelCurto, T.; Bohnert, D.W.; Findholt, S.L. Comparison of techniques and grinding size to estimate digestibility of forage based ruminant diets. Anim. Feed Sci. Technol. 2008, 141, 15–35. [Google Scholar] [CrossRef]
- Tagliapietra, F.; Cattani, M.; Hindrichsen, I.K.; Hansen, H.H.; Colombini, S.; Bailoni, L.; Schiavon, S. True dry matter digestibility of feeds evaluated in situ with different bags and in vitro using rumen fluid collected from intact donor cows. Anim. Prod. Sci. 2012, 52, 338–346. [Google Scholar] [CrossRef]
- Spanghero, M.; Boccalon, S.; Gracco, L.; Gruber, L. NDF degradability of hays measured in situ and in vitro. Anim. Feed Sci. Technol. 2003, 104, 201–208. [Google Scholar] [CrossRef]
- Bovera, F.; Spanghero, M.; Galassi, G.; Masoero, F.; Buccioni, A. Repeatability and reproducibility of the Cornell Net Carbohydrate and Protein System analytical determinations. Ital. J. Anim. Sci. 2003, 2, 41–50. [Google Scholar] [CrossRef]
- Spanghero, M.; Gruber, L.; Zanfi, C. Precision and accuracy of the NDF rumen degradability of hays measured by the Daisy fermenter. Ital. J. Anim. Sci. 2007, 6, 363–365. [Google Scholar] [CrossRef]
- Spanghero, M.; Berzaghi, P.; Fortina, R.; Masoero, F.; Rapetti, L.; Zanfi, C.; Tassone, S.; Gallo, A.; Colombini, S.; Ferlito, J.C. Precision and accuracy of in vitro digestion of neutral detergent fiber and predicted net energy of lactation content of fibrous feeds. J. Dairy Sci. 2010, 93, 4855–4859. [Google Scholar] [CrossRef] [Green Version]
- Cişmileanu, A.E.; Toma, S. Validation of the in vitro ruminant digestibility method applied on Daisy incubator. Anim. Sci. Biotech. 2017, 50, 8–10. [Google Scholar]
- Ankom. Technical FAQs. Available online: https://www.ankom.com/technical-support/daisy-incubator (accessed on 15 February 2020).
- Komarek, A.R.; Robertson, J.B.; Van Soest, P.J. Comparison of filter bag technique to conventional filtration in the Van Soest analysis of 21 feeds. In Proceedings of the National Conference on Forage Quality, Evaluation and Utilization, Lincoln, NE, USA, 13–15 April 1994. [Google Scholar]
- Cherney, D.J.R.; Traxler, M.J.; Robertson, J.B. Use of Ankom fiber determination systems to determine digestibility. In Proceedings of the NIRS Forage and feed Testing Consortium Annual Conference, Madison, WI, USA, 19–20 February 1997. [Google Scholar]
- Ayangbile, O.A.; Meier, J.C.; Vogel, M.K.; Robertson, J.; McElroy, A.R.; Komarek, A.R. Cryogenically protected and fresh rumen inoculum for digestibility study. In Proceedings of the 23rd Biennial Conference on Rumen Function, Chicago, IL, USA, 14–16 November 1995. [Google Scholar]
- Traxler, M.J.; Robertson, J.B.; Van Soest, P.J.; Fox, D.G.; Pell, A.N. A comparison of methods for determining IVDMD at three time periods using the filter bag technique versus conventional methods. J. Dairy Sci. 1995, 78, 274. [Google Scholar]
- Cohen, M.A.; Maslanka, H.E.; Kung, L. An evaluation of automated and manual in vitro methods for estimation of NDF digestion. In Proceedings of the Conference on Rumen Physiology, Chicago, IL, USA, 11–13 November 1997. [Google Scholar]
- Traxler, M.J. Predicting the Effect of Lignin on the Extent of Digestion and the Evaluation of Alternative Intake Models for Lactating Dairy Cows Consuming High NDF Forages. Ph.D. Thesis, Cornell University, Ithaca, NY, USA, 1997. [Google Scholar]
- Brons, E.; Plaizier, J.C. Comparisons of methods for in vitro dry matter digestibility of ruminant feeds. Can. J. Anim. Sci. 2005, 85, 243–245. [Google Scholar] [CrossRef]
- Ammar, H.; López, S.; Gonzales, J.S.; Ranilla, M.J. Seasonal variations in the chemical composition and in vitro digestibility of some Spanish leguminous shrub species. Anim. Feed Sci. Technol. 2004, 115, 327–340. [Google Scholar] [CrossRef]
- Ammar, H.; López, S.; Bochi-Brum, O.; Garcia, R.; Ranilla, M.J. Composition and in vitro digestibility of leaves and stems of grasses and legumes harvested from permanent mountain meadows at different stages of maturity. J. Anim. Feed Sci. 1999, 8, 599–610. [Google Scholar] [CrossRef]
- Ankom Procedures for Fiber and In Vitro Analysis. Available online: http://www.ankom.com (accessed on 25 February 2020).
- Ricci, P.; Romera, A.J.; Burges, J.C.; Fernández, H.H.; Cangiano, C.A. Case study: Precision and accuracy of methodologies for estimating in vitro digestibility of Thinopyrum ponticum (Tall Wheatgrass) hay and haylage fed to beef cattle. Prof. Anim. Sci. 2009, 25, 625–632. [Google Scholar] [CrossRef]
- Rowe, J.; Bird, S.; Brown, W. Safe and Effective Grain Feeding for Horses: A Report for the Rural Industries Research and Development Corporation; RIRDC Project No. UNE-62A; RIRDC: Barton, Australia, 2001. [Google Scholar]
- Macheboeuf, D.; Jestin, M.; Martin-Rosset, W. Utilization of the gas test method and horse faeces as a source of inoculum. BSAP Occas. Publ. 1998, 22, 187–189. [Google Scholar] [CrossRef]
- Macheboeuf, D.; Jestin, M. Utilization of the gas test method using horse faeces as a source of inoculums. In Proceedings of the Symposium on In Vitro Techniques for Measuring Nutrient Supply to Ruminants, Penicuik, UK, 8–10 July 1997; p. 36. [Google Scholar]
- Abdouli, H.; Attia, S.B. Evaluation of a two-stage in vitro technique for estimating digestibility of equine feeds using horse faeces as the source of microbial inoculum. Anim. Feed Sci. Technol. 2007, 132, 155–162. [Google Scholar] [CrossRef]
- Lattimer, J.M.; Cooper, S.R.; Freeman, D.W.; Lalman, D.A. Effects of Saccharomyces cerevisiae on in vitro fermentation of a high concentrate or high fiber diet in horses. In Proceedings of the 19th Symposium of the Equine Science Society, Tucson, AZ, USA, 31 May–3 June 2005; pp. 168–173. [Google Scholar]
- Lattimer, J.M.; Cooper, S.R.; Freeman, D.W.; Lalman, D.L. Effect of yeast culture on in vitro fermentation of a high-concentrate or high-fiber diet using equine fecal inoculum in a DaisyII incubator. J. Anim. Sci. 2007, 85, 2484–2491. [Google Scholar] [CrossRef] [Green Version]
- Blažková, K.; Homolka, P.; Maršálek, M. The corn silage digestibility by horses. MendelNet 2009, 9, 171–176. [Google Scholar]
- Towhidi, A.; Zhandi, M. Chemical composition, in vitro digestibility and palatability of nine plant species for dromedary camels in the province of Semnan, Iran. Egypt. J. Biol. 2007, 9, 47–52. [Google Scholar]
- Mohammadabadi, T.; Kakar, A.R. Comparison of in vitro digestibility of diets containing Subabul plant as fodder in dromedary camel and cow. Explor. Anim. Med. Res. 2019, 9, 61–66. [Google Scholar]
- Lifa, M.; Haddi, M.L.; Tagliapietra, F.; Cattani, M.; Guadagnin, M.; Sulas, L.; Muresu, R.; Schiavon, S.; Bailoni, L.; Squartini, A. Chemical and fermentative characteristics of agricultural byproducts and their mixtures with roughages incubated with rumen fluid from slaughtered dromedaries. Turk. J. Vet. Anim. Sci. 2018, 42, 590–599. [Google Scholar] [CrossRef]
- Abad-Guamán, R.; Carabaño, R.; Gómez-Conde, M.S.; García, J. Effect of type of fiber, site of fermentation, and method of analysis on digestibility of soluble and insoluble fiber in rabbits. J. Anim. Sci. 2015, 93, 2860–2871. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, W.M.; Ferreira, F.N.A.; Inácio, D.F.D.S.; Mota, K.C.D.N.; Costa Júnior, M.B.D.; Silva Neta, C.S.; Rocha, L.F.D.; Miranda, E.R.D. Effects of dietary inclusion of macaúba seed cake meal on performance, caecotrophy traits and in vitro evaluations for growing rabbits. Arch. Anim. Nutr. 2018, 72, 138–152. [Google Scholar] [CrossRef]
- Ferreira, F.N.A.; Ferreira, W.M.; Inácio, D.F.D.S.; Neta, C.S.S.; Mota, K.C.D.N.; Costa Júnior, M.B.D.; Rocha, L.F.D.; Caicedo, W.O. In vitro digestion and fermentation characteristics of tropical ingredients, co-products and by-products with potential use in diets for rabbits. Anim. Feed Sci. Technol. 2019, 252, 1–10. [Google Scholar] [CrossRef]
- De Blas, J.C.; Rodriguez, C.A.; Bacha, F.; Fernandez, R.; Abad-Guamán, R. Nutritive value of co-products derived from olive cake in rabbit feeding. World Rabbit Sci. 2015, 23, 255–262. [Google Scholar] [CrossRef] [Green Version]
- De Blas, J.C.; Ferrer, P.; Rodríguez, C.A.; Cerisuelo, A.; García-Rebollar, P.; Calvet, S.; Farias, C. Nutritive value of citrus co-products in rabbit feeding. World Rabbit Sci. 2018, 26, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Carabaño, R.; Nicodemus, N.; García, J.; Xiccato, G.; Trocino, A.; Amorós, P.; Maertens, L. In vitro analysis, an accurate tool to estimate dry matter digestibility in rabbits. Intra- and inter-laboratory variability. World Rabbit Sci. 2008, 16, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- Ramos, M.A.; Carabaño, R.; Boisen, S. An in vitro method for estimating digestibility in rabbits. J. Appl. Rabbit Res. 1992, 15, 938–946. [Google Scholar]
- Boisen, S. A model for feed evaluation based on in vitro digestibility dry matter and protein. In In Vitro Digestion for Pigs and Poultry; Fuller, M.F., Ed.; CAB International: Wallingford, UK, 1991; pp. 135–145. [Google Scholar]
- López, S.; Guevara, H.; Duchi, N.; Moreno, G. Evaluation of two “in vitro” digestibility tests with the “in vivo” test of alfalfa (Medicago sativa) in guinea pig (Cavia porcellus) feeding. Eur. Sci. J. 2018, 14, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.-C.; Croom, J.; Chuang, S.-T.; Chiou, P.W.S.; Yu, B. Development of a dynamic system simulating pig gastric digestion. Asian Aust. J. Anim. Sci. 2008, 21, 1522–1528. [Google Scholar] [CrossRef]
- Boisen, S.; Fernández, J.A. Prediction of the total tract digestibility of energy in feedstuffs and pig diets by in vitro analyses. Anim. Feed Sci. Technol. 1997, 68, 277–286. [Google Scholar] [CrossRef]
- Fushai, F. Fermentability of Dietary Fibre and Metabolic Impacts of Including High Levels of fibrous Feed Ingredients in Maize-Soybean Growing Pig Diets Supplemented with Exogenous Enzymes. Ph.D. Thesis, Tshwane University of Technology, Pretoria, South Africa, 2014. [Google Scholar]
- Torres-Pitarch, A.; McCormack, U.M.; Beattie, V.E.; Magowan, E.; Gardiner, G.E.; Pérez-Vendrell, A.M.; Torrallardonaf, D.; O’Dohertye, J.V.; Lawlor, P.G. Effect of phytase, carbohydrase, and protease addition to a wheat distillers dried grains with solubles and rapeseed based diet on in vitro ileal digestibility, growth, and bone mineral density of grower-finisher pigs. Livest. Sci. 2018, 216, 94–99. [Google Scholar] [CrossRef]
- Pahm, S.F.C. In Vivo and In Vitro Disappearance of Energy and Nutrients in Novel Carbohydrates and Cereal Grains by Pigs. Ph.D. Thesis, University of Illinois, Urbana-Champaign, IL, USA, 2011. [Google Scholar]
- Huang, G.; Sauer, W.C.; He, J.; Hwangbo, J.; Wang, X. The nutritive value of hulled and hulless barley for growing pigs. 1. Determination of energy and protein digestibility with in vivo and in vitro methods. J. Anim. Feed Sci. 2003, 12, 759–769. [Google Scholar] [CrossRef]
- Youssef, I.M.; Kamphues, J. Fermentation of lignocellulose ingredients in vivo and in vitro via using fecal and caecal inoculums of monogastric animals (swine/turkeys). Beni Suef Univ. J. Basic Appl. Sci. 2018, 7, 407–413. [Google Scholar] [CrossRef]
- Hervera, M.; Baucells, M.D.; Blanch, F.; Castrillo, C. Prediction of digestible energy content of extruded dog food by in vitro analyses. J. Anim. Physiol. Anim. Nutr. 2007, 91, 205–209. [Google Scholar] [CrossRef] [Green Version]
- Biagi, G.; Cipollini, I.; Grandi, M.; Pinna, C.; Vecchiato, C.G.; Zaghini, G. A new in vitro method to evaluate digestibility of commercial diets for dogs. Ital. J. Anim. Sci. 2016, 15, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Hervera, M.; Baucells, M.D.; González, G.; Pérez, E.; Castrillo, C. Prediction of digestible protein content of dry extruded dog foods: Comparison of methods. J. Anim. Physiol. Anim. Nutr. 2009, 93, 366–372. [Google Scholar] [CrossRef] [PubMed]
Inoculum | Species | Sample Type | Notes | Ref. |
---|---|---|---|---|
RF | Dairy cattle | 10 feeds | Variability of the dry matter digestibility for different donor cow diets as sources of inoculum | [22] |
RF | Dairy cattle | By-products | ADII vs. gas production, RF from slaughtered or cannulated cows | [41] |
RF | Steers and Dairy cattle | Grains, total mixed ration, silages | Effect of the RF on the apparent and true dry matter digestibility DMD | [46] |
RF | Sheep and Goats | Leaves, flowers and fruits of 5 browse plant species | Comparison of the true DMD and gas production kinetics with RF from animals fed the same diet | [47] |
FF | Yaks | Forage produced at high altitude | Faeces vs. RF for a comparative digestibility trial | [57] |
FF | Sheep and Camels | Fodder species from an arid environment | RF from sheep, and faeces from camels: comparative digestibility trial | [58] |
FF-RF | Cattle | Feeds with different neutral detergent fibre (NDF) contents | NDF digestibility and undigested NDF measured with RF and 2 FF from cows fed different diets | [60] |
FF-RF | Steers | 35-day regrowth alfalfa hay | Comparative evaluation of the true dry matter digestibility; steers fed alfalfa or digit grass | [61] |
FF | Horses | 4 dietary treatments (hays or hay + oat) | Comparative evaluation of in vivo vs. in vitro DM and NDF digestibility | [64] |
FF | Donkeys | 7 common feeds for donkeys | Evaluation of the apparent and true DMD and neutral detergent fibre digestibility (NDFD) at 4 incubation times (30, 48, 60, and 72 h) | [65] |
Sample Size (g) | Bag Type | Sample Type | Notes | Ref. |
---|---|---|---|---|
0.25 | F57 | Forages and plant parts | Particle breakdown: 0.5, 1.0, and 1.5 mm | [23] |
0.25 | F57 and F58 | Temperate and tropical grasses and legumes | uNDF after 240; effect of Na2SO3 | [28] |
0.25 | Polyethylene polyester polymer bags | Low- and high-quality forages and grains | Different time delays and storage time between the collection of RF and the analysis | [30] |
0.25 | F57 and dacron bags (pore size: 0.30 and 0.50 μm) | Dried samples + 5 g glass balls | DMD of feed samples with alternatives to F57 and weighted to ensure submersion in the media | [79] |
0.25 | Dacron bags (pore size: 0.50 μm) | 5 feeds + garlic or garlic oil vs. Monensin | Sheep RF, the effect of inclusion on organic matter digestibility (OMD) | [80] |
0.30 | F57 | Triticale | Short and long (240 h) incubation times | [78] |
0.50 | 5 × 3 cm pore size 0.45 μm | Pastures, forages and by-products | Comparison of in situ DM and NDF degradation kinetics | [33] |
0.50 | F0285 (pore size 0.25 μm) | Corn silage | Comparison of in vitro and in situ estimates of indigestible NDF at 2 fermentation end points (120 and 288 h) | [34] |
0.25 0.50 | F57 | Triticale | Comparison of NDFD with 2 sample sizes | [76] |
0.25 0.50 | F57 | 7 feeds | Correlation with a conventional batch culture | [77] |
Buffer Solution References | ADII References | Animal Species |
---|---|---|
[82] | [24] | Ruminants |
[61] | Ruminants | |
[64] | Horses | |
[65] | Donkeys | |
[83] | [72] | Ruminants |
[84] | [85] | Ruminants |
[86] | [25] | Ruminants |
Parameters | Notes | Ref. |
---|---|---|
DMD and NDFD by means of the two-stage rumen fluid–pepsin technique (TT), the ADII incubator and in situ; 0.25 and 0.50 sample size; 1 and 2 mm grinding size | The digestibility values estimated means of the by ADII incubator and in situ techniques were correlated (R2 = 0.58–0.88) with values estimated by means of conventional in vitro and in vivo techniques. In most cases, the ADII incubator and in situ techniques overestimated DMD and NDFD | [87] |
In vitro DMD vs. Minson and McLeod technique [83] | Good reproducibility between and within the jars in the ADII incubator | [72] |
In situ (2 different filter bags) and TDMD (traditional bottles or the ADII incubator) | The ADII incubator underestimated the TDMD values but there was direct proportionality between the in situ and in vitro DMD values | [88] |
NDFD of 18 hays | The variability was similar to that of some chemical analysis and lower than the in situ measurements | [89] |
NDFD of 162 hays | Similar average values | [91] |
NDFD and the associated calculated net energy lactation (NEl) of 10 fibrous feeds; 5 laboratories | Improved NDFD precision and improved accuracy and reproducibility of the calculated NEl for an extended fermentation time (48 h) | [92] |
Validation of a modified TT by achieved by testing the repeatability and reproducibility of the new TT as well as the correlation with a previous version of the method | Good repeatability and reproducibility achieved when using the new version of the TT with the ADII incubator; the same accuracy was achieved as that of the conventional method | [93] |
Methods | Results (Referred to ADII Technique) | Ref. |
---|---|---|
TT | True DMD: no differences | [97] |
VS | True DMD considering 3 incubation times: the ADII technique was less efficient but there were no significant differences | [98] |
GVS | NDFD at different times: ADII always lower than GVS; better results with F57 washed in acetone | [99] |
GVS | NDFD: very few differences | [100] |
TT, VS | Apparent and true DMD: significant differences | [102,103] |
TSP | Intestinal digestibility of crude protein (R510 filter bags, up to 5 g sample): results closely results | [85] |
TT | Validation of a modified TT with the ADII technique | [93] |
TT | Similar digestion values; the source of inoculum may affect DMD | [22] |
TT | Apparent and true DMD, apparent and true OMD, NDFD. The TT gives more precise results but requires more labour | [23] |
TT | Good agreement, but the ADII technique gave higher values for some feeds | [73] |
TT, gas production, in vivo | The results of 3 in vitro techniques (ADII, TT and gas production) were highly correlated with in vivo; ADII technique is faster and more accurate | [105] |
Minson and McLeod [83] | Higher digestibility values were obtained with ADII | [72] |
In situ | NDFD was closely correlated | [92] |
In situ | NDFD was 25–30% higher than in situ; a medium degree of correlation and low accuracy were achieved | [91] |
In situ | Incubation at different times. The digestible NDF values were closely correlated at 48 h incubation, but the ADII values of the NDFD were higher than the in situ values. | [89] |
Different in situ and in vitro techniques | Lower reproducibility coefficients for ADII than the other techniques; direct proportionality was observed between the in situ and in vitro DMD for different techniques | [88] |
Batch culture, gas production | The ADII dry matter digestibility values were higher than the gas production and batch culture values for longer incubation times than 12 h | [25] |
In vivo, in situ, TT | The ADII technique accurately predicted the in vivo DMD but overestimated in situ DMD; ADII less accurately correlated with the TT | [87] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tassone, S.; Fortina, R.; Peiretti, P.G. In Vitro Techniques Using the DaisyII Incubator for the Assessment of Digestibility: A Review. Animals 2020, 10, 775. https://doi.org/10.3390/ani10050775
Tassone S, Fortina R, Peiretti PG. In Vitro Techniques Using the DaisyII Incubator for the Assessment of Digestibility: A Review. Animals. 2020; 10(5):775. https://doi.org/10.3390/ani10050775
Chicago/Turabian StyleTassone, Sonia, Riccardo Fortina, and Pier Giorgio Peiretti. 2020. "In Vitro Techniques Using the DaisyII Incubator for the Assessment of Digestibility: A Review" Animals 10, no. 5: 775. https://doi.org/10.3390/ani10050775
APA StyleTassone, S., Fortina, R., & Peiretti, P. G. (2020). In Vitro Techniques Using the DaisyII Incubator for the Assessment of Digestibility: A Review. Animals, 10(5), 775. https://doi.org/10.3390/ani10050775