Grazing Seasons and Stocking Rates Affects the Relationship between Herbage Traits of Alpine Meadow and Grazing Behaviors of Tibetan Sheep in the Qinghai–Tibetan Plateau
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area Description
2.2. Design of the Grazing Experiment
2.3. Sward Measurement
2.4. Fecal Sample Collection
2.5. Observation of Animal Grazing Behavior
2.6. Calculation Formula
2.7. Statistical Analysis
3. Results
3.1. Plant Community Characteristics and Chemical Composition of Forage
3.2. The Digestive and Metabolic Indicators of Tibetan Sheep under Different Stocking Rates and Grazing Seasons
3.3. Diurnal Dynamics of Feeding Behavior
3.4. Grazing Behavior of Tibetan Sheep under Different Stocking Rates and Grazing Seasons
3.5. Relationship Between Ambient Temperature, Relative Humidity, and Intake Behavior
3.6. Structural Equation Model
3.7. Equations for Predicting Grazing Behavior
4. Discussion
4.1. Effects of the Grazing Season and Stocking Rate on Plant Community Characteristics and the Chemical Composition of Forage
4.2. Effects of Grazing Season and Stocking Rate on Digestive and Metabolic Activities
4.3. Diurnal Grazing Behavior of Tibetan Sheep
4.4. Effects of Stocking Rates on Grazing Behavior
4.5. Effects of Grazing Season on Grazing Behavior
4.6. Effects of Grazing Season and Stocking Rate on DMI
4.7. Prediction of Grazing Behavior Parameters
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fonseca, L.; Mezzalira, J.C.; Bremm, C.; Filho, R.S.A.; Gonda, H.L.; Carvalho, P.C.F. Management targets for maximising the short–term herbage intake rate of cattle grazing in Sorghum bicolor. Livest. Sci. 2012, 145, 205–211. [Google Scholar] [CrossRef] [Green Version]
- Lkhagva, A.; Boldgiv, B.; Goulden, C.E.; Yadamsuren, O.; Lauenroth, W.K. Effects of grazing on plant community structure and aboveground net primary production of semiarid boreal steppe of northern Mongolia. Grassl. Sci. 2013, 59, 135–145. [Google Scholar] [CrossRef]
- Mario, C.H.; Nicole, W.M.; Johannes, I. Behavioral patterns of (co–)grazing cattle and sheep on swards differing in plant diversity. Appl. Anim. Behav. Sci. 2017, 191, 17–23. [Google Scholar]
- Sharpe, P.; Kenny, L.B. Grazing Behavior, Feed Intake, and Feed Choices. In Horse Pasture Management; Sharpe, P., Ed.; University of Guelph: Guelph, ON, Canada, 2019; Volume 8, pp. 121–139. [Google Scholar]
- Friday, O.Z.; Joseph, O.A.; Peter, I.R.; Muhammed, U.K.; Ndazo, S.M.; Folashade, O.; Mohammed, J.I.; Daniel, O.A. Daily rhythmicity of behavioral responses in donkeys of different age groups during the cold–dry (harmattan) and hot–dry season in a tropical savannah. J. Vet. Behav. 2018, 28, 46–53. [Google Scholar]
- Carlos, A.S.C.; Juan, T.G.; Juan Felipe, J.T.A.; Pedro, G.G.P. Feeding behavior of sheep and goats in a deciduous tropical forest during the dry season:The same menu consumed differently. Small Ruminant Res. 2015, 133, 128–134. [Google Scholar]
- Enri, S.R.; Gorlier, A.; Nota, G.; Pittarello, M.; Lombardi, G.; Lonat, M. Distance from Night Penning Areas as an Effective Proxy to Estimate Site Use Intensity by Grazing Sheep in the Alps. Agronomy 2019, 9, 333. [Google Scholar] [CrossRef] [Green Version]
- Venter, Z.S.; Hawkins, H.J.; Cramer, M.D. Cattle don’t care: Animal behaviour is similar regardless of grazing management in grasslands. Agr. Ecosyst. Environ. 2019, 272, 175–187. [Google Scholar] [CrossRef]
- Hirata, M.; Kunieda, E.; Tobisa, M. Short–term ingestive behaviour of cattle grazing tropical stoloniferous grasses with contrasting growth forms. J. Agr. Sci 2010, 148, 615–624. [Google Scholar] [CrossRef]
- Du, W.C.; Yan, T.; Chang, S.H.; Wang, Z.F.; Hou, F.J. Seasonal hogget grazing as a potential alternative grazing system for the Qinghai–Tibetan Plateau: Weight gain and animal behaviour under continuous or rotational grazing at high or low stocking rates. Rangeland J. 2017, 39, 329–339. [Google Scholar] [CrossRef]
- Lin, L.J.; Dickhoefer, U.; Müller, K.; Wurina; Susenbeth, A. Grazing behavior of sheep at different stocking rates in the Inner Mongolian steppe, China. Appl. Anim. Behav. Sci. 2011, 129, 36–42. [Google Scholar] [CrossRef]
- Teixeira, D.L.; Carlos, P.M.F.L.; Hötzel, M.J.; Enríquez-Hidalgo, D. Effects of instantaneous stocking rate, paddock shape and fence with electric shock on dairy cows’ behaviour. Livest. Sci. 2017, 198, 170–173. [Google Scholar] [CrossRef]
- Carvalho, P.C.F. Can grazing behaviour support innovations in grassland management. In Proceedings of the 22nd International Grassland Congress, New South Wales, Australia, September 2013. [Google Scholar]
- Fabian, Y.; Sandau, N.; Bruggisser, O.T.; Kehrli, P.; Aebi, A.; Rohr, R.P.; Bersier, L.F. Diversity protects plant communities against generalist molluscan herbivores. Ecol. Evol. 2012, 2, 2460–2473. [Google Scholar] [PubMed]
- Wrage, N.; Strodthoff, J.; Cuchillo, H.M.; Isselstein, J.; Kayser, M. Phytodiversity of temperate permanent grasslands: Ecosystem services for agriculture and livestock management for diversity conservation. Biodivers. Conserv. 2011, 20, 3317–3339. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.Z.; Hu, Z.Z.; Zhao, J.; Zhang, D.J.; Hou, F.J.; Li, H.L.; Mu, X.D. A grassland classification system and its application in China. Rangeland J. 2008, 30, 199–209. [Google Scholar] [CrossRef]
- Sun, Y.; Angerer, J.P.; Hou, F.J. Effects of grazing systems on herbage mass and liveweight gain of Tibetan sheep in eastern Qinghai–Tibetan Plateau, China. Rangeland J. 2015, 37, 181–190. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Chen, D.D.; Tu, Y.; Zhang, N.F.; Si, B.W.; Deng, K.D.; Diao, Q.Y. Effect of dietary supplementation with resveratrol on nutrient digestibility, methanogenesis and ruminal microbial flora in sheep. J. Anim. Physiol An. N. 2015, 99, 676–683. [Google Scholar] [CrossRef]
- Goering, K.H.; Van Soest, P.J. Forage Fiber Analysis (Apparatus, Reagents, Procedures, and Some Application); Agric. Handbook. No. 379; ARS–USDA: Washington, DC, USA, 1970. [Google Scholar]
- Cunniff, P.A. Official Methods of Analysis of AOAC International. Aoac. Official Method 1995, 6, 382. [Google Scholar]
- Davis, M.P.; Freetly, H.C.; Kuehn, L.A.; Wells, J.E. Influence of dry matter intake, dry matter digestibility, and feeding behavior on body weight gain of beef steers. J. Anim. Sci. 2014, 92, 3018–3025. [Google Scholar] [CrossRef]
- Hou, F.J.; Li, G.; Yang, F.G. Grazing behavior of Gansu wapiti (Cervus elaphus kansuensis) in summer & winter on the alpine grasslands of Qilianshan Mountain. Acta. Ecologica. Sinica. 2003, 23, 1807–1815. [Google Scholar]
- Smit, H.J.; Taweel, H.Z.; Tas, B.M.; Tamminga, S.; Elgersma, A. Comparison of techniques for estimating herbage intake of grazing dairy cows. J. Dairy Sci. 2005, 88, 1827–1836. [Google Scholar] [CrossRef]
- Agricultural and Food Research Council (AFRC). Energy and Protein Requirements of Ruminants; CAB International: Wallingford, UK, 1993. [Google Scholar]
- Yang, C.T.; Gao, P.; Hou, F.J.; Yan, T.; Chang, S.H.; Chen, X.J.; Wang, Z.F. Relationship between chemical composition of native forage and nutrient digestibility by Tibetan sheep on the Qinghai–Tibetan Plateau. J. Anim. Sci. 2018, 96, 1140–1149. [Google Scholar] [CrossRef] [PubMed]
- Koong, L.J.; Ferrell, C.L.; Nienaber, J.A. Assessment of interrelationships among levels of intake and production, organ size and fasting heat production in growing animals. J. Nutr. 1985, 115, 1383–1390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degen, A.A.; Young, B.A. Effect of air temperature and energy intake on body mass, body composition and energy requirements in sheep. J. Agric. Sci. 2002, 138, 221–226. [Google Scholar] [CrossRef]
- Chen, X.J.; Hou, F.J.; Matthew, C.; He, X.Z. Stocking rate effects on metabolizable energy intake and grazing behaviour of Tan sheep in steppe grassland on the Loess Plateau of Northwest China. J. Agr. Sci. 2010, 148, 709–721. [Google Scholar] [CrossRef]
- Grace, J.B. Structural Equation Modeling and Natural Systems; Cambridge University Press: University of Cambridge, Cambridge, UK, 2006. [Google Scholar]
- Aharoni, Y.; Brosh, A.; Orlov, A.; Shargal, E.; Gutman, M. Measurements of energy balance of grazing beef cows on Mediterranean pasture, the effects of stocking rate and season: 1. Digesta kinetics, faecal output and digestible dry matter intake. Livest. Prod. Sci. 2004, 90, 89–100. [Google Scholar] [CrossRef]
- Bear, D.A.; Russell, J.R.; Tufekcioglu, M.; Isenhart, T.M.; Morrical, D.G.; Kovar, J.L. Stocking rate and riparian vegetation effects on physical characteristics of riparian zones of Midwestern Pastures. Rangeland Ecol. Manag. 2012, 65, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Miao, F.H.; Guo, Z.G.; Xue, R.; Wang, X.Z.; Shen, Y.Y. Effects of Grazing and Precipitation on Herbage Biomass, Herbage Nutritive Value, and Yak Performance in an Alpine Meadow on the Qinghai–Tibetan Plateau. PloS ONE 2015, 10, e0127275. [Google Scholar] [CrossRef]
- Judy, J.V.; Jenkins, K.H.; Klopfenstein, T.J.; Stalker, L.A.; Volesky, J.D. Effects of stocking rate on forage nutrient composition of Nebraska Sandhills upland range when grazed in early summer1. J. Anim Sci. 2015, 93, 4343–4349. [Google Scholar] [CrossRef]
- Liu, D.M.; Fu, D.B.; Qu, M.R.; Zhu, Y.K.; Li, F.Q.; Deng, X.T. Energy metabolism and requirement of 12 to 13–month–old Xiangzhong black cattle. Chinese J. Ani. Nutri. 2013, 25, 3013–3019. [Google Scholar]
- Jung, H.G.; Sahlu, T. Influence of grazing pressure on forage quality and intake by sheep grazing smooth bromegrass. J. Anim. Sci. 1889, 67, 2089. [Google Scholar] [CrossRef] [Green Version]
- Edouard, N.; Duncan, P.; Dumont, B.; Baumont, R.; Fleurance, G. Foraging in a heterogeneous environment–An experimental study of the trade–off between intake rate and diet quality. Appl. Anim. Behav. Sci. 2010, 126, 27–36. [Google Scholar] [CrossRef]
- Villalba, J.J.; Provenza, F.D.; Manteca, X. Links between ruminants´ food preference and their welfare. Animal 2010, 4, 1240–1247. [Google Scholar] [CrossRef] [PubMed]
- Roche, J.R.; Sheahan, A.J.; Chagas, L.M.; Boston, R.C. Short communication: change in plasma ghrelin in dairy cows following an intravenous glucose challenge. J. Dairy Sci. 2008, 91, 1005–1010. [Google Scholar] [CrossRef] [PubMed]
- Gregorini, P.; Soder, K.J.; Kensinger, R.S. Effects of rumen fill on short–term ingestive behavior and circulating concentrations of ghrelin, insulin, and glucose of dairy cows foraging vegetative micro–swards. J. Dairy Sci. 2009, 92, 2095–2105. [Google Scholar] [CrossRef] [PubMed]
- De, K.; Kumar, D.; Saxena, V.K.; Thirumurugan, P.; Naqvi, S.M.K. Effect of high ambient temperature on behavior of sheep under semi–arid tropical environment. Int. J. Biometeoro. 2017, 61, 1269–1277. [Google Scholar] [CrossRef] [PubMed]
- Prescott, M.L.; Havstad, K.M.; Olson-Rutz, K.M.; Ayers, E.L.; Petersen, M.K. Grazing behavior of free–ranging beef cows to initial and prolonged exposure to fluctuating thermal environments. Appl. Anim. Behav. Sci. 1994, 39, 103–113. [Google Scholar] [CrossRef]
- Wang, R.Z. Responses of Leymus chinensis (Poaceae) to long–term grazing disturbance in the Songnen grasslands of north–eastern China. Grass Forage Sci. 2004, 59, 191–195. [Google Scholar] [CrossRef]
- Forbes, T.D.A. Researching the plant–animal interface: the investigation of ingestive behavior in grazing animals. J. Anim. Sci. 1988, 66, 2369–2379. [Google Scholar] [CrossRef] [Green Version]
- Animut, G.; Goetsch, A.L.; Aiken, G.E.; Puchala, R.; Detweiler, G.; Krehbie, C.R.; Merkel, R.C.; Sahlu, T.; Dawson, L.J.; Johnson, Z.B.; et al. Grazing behavior and energy expenditure by sheep and goats co–grazing grass/forb pastures at three stocking rates. Small Ruminant Res. 2005, 59, 191–201. [Google Scholar] [CrossRef]
- Augustine, D.J.; Springer, T.L. Competition and facilitation between a native and a domestic herbivore: trade–offs between forage quantity and quality. Ecol. Appl. 2013, 23, 850–863. [Google Scholar] [CrossRef]
- Liu, J.; Feng, C.; Wang, D.; Wang, L.; Wilsey, B.J.; Zhong, Z.W. Impacts of grazing by different large herbivores in grassland depend on plant species diversity. J. Appl. Ecol. 2015, 52, 1053–1062. [Google Scholar] [CrossRef]
- Ferreira, L.M.M.; Hervás, G.; Belenguer, A.; Celaya, R.; Rodrigues, M.A.M.; García, U.; Frutos, P. Comparison of feed intake, digestion and rumen function among domestic ruminant species grazing in upland vegetation communities. J. Anim. Physiol An. N. 2017, 101, 846–856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hai, L.; Ao, T.G.; Wang, C.J.; A, L.M.S.; San, R.G.W. Effects of different grazing intensities on herding behavior of Simmental cattle. Grassland and Prataculture. Grassland and Prataculture 2012, 44–48. Available online: http://xueshu.baidu.com/usercenter/paper/show?paperid=f7f94a98443ece4a1e61c516a5b5edd3&site=xueshu_se&hitarticle=1 (accessed on 10 January 2020).
- Blanchard, P.; Fritz, H. Seasonal variation in rumination parameters of free–ranging impalas Aepyceros melampus. Wildlife Biol. 2008, 14, 372–378. [Google Scholar] [CrossRef] [Green Version]
- Dowler, L.E.; Siciliano, P.D.; Pratt-Phillips, S.E.; Poore, M. Determination of pasture dry matter intake rates in different seasons and their application in grazing management. J. Equine. Vet. Sci. 2012, 32, 85–92. [Google Scholar] [CrossRef]
- Kennedy, E.; O’Donovan, E.; Murphy, J.P.; Delaby, L.; O’Mara, F.P. Effect of spring grazing date and stocking rate on sward characteristics and dairy cow production during midlactation. J. Dairy Sci. 2007, 90, 2035–2046. [Google Scholar] [CrossRef] [PubMed]
- Andueza, D.; Picard, F.; Pradel, P.; Egal, D.; Hassoun, P.; Peccatte, J.R.; Baumont, R. Reproducibility and repeatability of forage in vivo digestibility and voluntary intake of permanent grassland forages in sheep. Livest. Sci. 2011, 140, 42–48. [Google Scholar] [CrossRef]
- Gross, J.E.; Hobbs, N.T.; Wunder, H.B.A. Independent variables for predicting intake rate of Mammalian Herbivores: biomass density, plant density, or bite size. Oikos 1993, 68, 75–81. [Google Scholar] [CrossRef]
Variables | Sward Height | Plant Density | Herbage Mass | ADF | NDF | CP |
---|---|---|---|---|---|---|
GS | < 0.001 | 0.040 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
SR | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 |
GS×SR | 0.701 | 0.847 | 0.373 | 0.299 | < 0.001 | < 0.001 |
Variables | FDM | CPI | DMD | ME | MEI |
---|---|---|---|---|---|
GS | < 0.001 | < 0.001 | 0.572 | < 0.001 | < 0.001 |
SR | < 0.001 | < 0.001 | 0.091 | < 0.001 | 0.401 |
GS×SR | 0.573 | < 0.001 | 0.679 | 0.044 | 0.096 |
Variables | Diurnal Intake Time | Bite Weight | DMI | Total Number of Steps | Number of Chews per Feed Bolus | Chewing Time per Feed Bolus | Interval between Feed Boluses | Ruminating Rate |
---|---|---|---|---|---|---|---|---|
GS | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | < 0.001 | 0.024 | < 0.001 |
SR | < 0.001 | < 0.001 | < 0.001 | 0.308 | < 0.001 | 0.002 | 0.558 | < 0.001 |
GS×SR | 0.063 | 0.001 | 0.357 | 0.548 | 0.056 | 0.447 | 0.875 | 0.866 |
Item | Equation * | R2 | p-Valve |
---|---|---|---|
DMI (g/day) | = 1621.896(111.672)−3839.527(355.288) ADF + 41.531(5.590)ME | 0.658 | <0.001 |
Intake rate (bite/min) | = −10.668(12.932) − 0.829(0.178)H + 69.264(14.516)NDF + 28.452(44.529)CP | 0.621 | <0.001 |
= −4.704(16.348) + 1271.701(54941)CP + 77.855(16.568)NDF − 58.2811(26.461)ADF − 0.021(0.010)HM | 0.560 | <0.001 | |
= −1.327(15.564) + 260.605(56.022)CP + 87.88(16.246)NDF − 57.451(27.105)ADF | 0.729 | <0.001 | |
= −22.759(14.540) + 346.346(44.451)CP + 70.883(16.716)NDF − 0.021(0.010)HM | 0.528 | <0.001 | |
Bite of ingestion (bite/step) | = 0.070(2.642) + 18.574(2.972)NDF − 0.446(0.055)ME − 0.007(0.003)HM | 0.664 | <0.001 |
= −0.609(2.514) − 0.123(0.057)H − 0.005(0.003)HM + 21.033(6.530)ADF + 11.177(4.022)NDF − 0.443(0.053)ME | 0.712 | <0.001 | |
Walking velocity while intaking (step/min) | = 15.253(1.233) − 36.999(3.922)ADF + 0.289(0.062)ME | 0755 | <0.001 |
= −1.24(0.814) + 0.368(0.060)ME + 71.170(6.648)CP | 0.630 | <0.001 | |
= 3.316(3.485) − 10.850(8.072)ADF + 0357(0.060)ME + 53.447(14.749)CP | 0.640 | <0.001 | |
Bite weight (g/bite) | = 0.027(0.013) − 0.003(0.001)ME + 0.003(0.001)H − 0.074(0.022)NDF | 0.608 | <0.001 |
Total number of steps (step/day) | = 808.550(477.685) − 98.790(22.098)H + 38,550.949(3007.03)CP + 126.855(22.281)ME | 0.847 | <0.001 |
= −843.305(341.890) + 46196.110(2793.460)CP + 118.859(25.081)ME | 0.803 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, X.; Zhang, T.; Peter Angerer, J.; Hou, F. Grazing Seasons and Stocking Rates Affects the Relationship between Herbage Traits of Alpine Meadow and Grazing Behaviors of Tibetan Sheep in the Qinghai–Tibetan Plateau. Animals 2020, 10, 488. https://doi.org/10.3390/ani10030488
Xiao X, Zhang T, Peter Angerer J, Hou F. Grazing Seasons and Stocking Rates Affects the Relationship between Herbage Traits of Alpine Meadow and Grazing Behaviors of Tibetan Sheep in the Qinghai–Tibetan Plateau. Animals. 2020; 10(3):488. https://doi.org/10.3390/ani10030488
Chicago/Turabian StyleXiao, Xiang, Tao Zhang, Jay Peter Angerer, and Fujiang Hou. 2020. "Grazing Seasons and Stocking Rates Affects the Relationship between Herbage Traits of Alpine Meadow and Grazing Behaviors of Tibetan Sheep in the Qinghai–Tibetan Plateau" Animals 10, no. 3: 488. https://doi.org/10.3390/ani10030488
APA StyleXiao, X., Zhang, T., Peter Angerer, J., & Hou, F. (2020). Grazing Seasons and Stocking Rates Affects the Relationship between Herbage Traits of Alpine Meadow and Grazing Behaviors of Tibetan Sheep in the Qinghai–Tibetan Plateau. Animals, 10(3), 488. https://doi.org/10.3390/ani10030488