Metagenomic Insights into Effects of Thiamine Supplementation on Carbohydrate-Active Enzymes’ Profile in Dairy Cows Fed High-Concentrate Diets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Preparation
2.2. Experimental Design and Dietary Treatments
2.3. Rumen Fluid Sampling and Parameter Measurement
2.4. Metagenomic Sequencing Analysis
2.5. Statistical Analysis
3. Results
3.1. Animal Performance and Rumen Fermentation Parameters
3.2. Sequencing Quality
3.3. Effects of Thiamine Supplementation on CAZymes
3.4. Effects of Thiamine Supplementation on Fiber-Degrading Enzymes and Starch-Degrading Enzymes
3.5. Relationships between CAZymes and Animal Performance
4. Discussion
4.1. Effects of Thiamine Supplementation on Fiber-Degrading Enzymes
4.2. Effects of Thiamine Supplementation on Starch-Degrading Enzymes
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gozho, G.N.; Mutsvangwa, T. Influence of carbohydrate source on ruminal fermentation characteristics, performance, and microbial protein synthesis in dairy cows. J. Dairy Sci. 2008, 91, 2726–2735. [Google Scholar] [CrossRef]
- Rafael, A.N.; Donald, C.B. Carbohydrate and lipid metabolism in farm animals. J. Nutr. 2007, 137, 702–705. [Google Scholar] [CrossRef]
- Hall, M.B.; Mertens, D.R. A 100-Year Review: Carbohydrates-Characterization, digestion, and utilization. J. Dairy Sci. 2017, 100, 10078–10093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hobson, P.N.; Stewart, C.S. The Rumen Microbial Ecosystem, 2nd ed.; Blackie Academic & Professional: London, UK, 1997; pp. 39–66. [Google Scholar] [CrossRef]
- Klevenhusen, F.; Petri, R.M.; Kleefisch, M.T.; Khiaosa-Ard, R.; Metzler-Zebeli, B.U.; Zebeli, Q. Changes in fibre-adherent and fluid-associated microbial communities and fermentation profiles in the rumen of cattle fed diets differing in hay quality and concentrate amount. FEMS Microbiol. Ecol. 2017, 93. [Google Scholar] [CrossRef] [PubMed]
- Gijzen, H.J.; Zwart, K.B.; Teunissen, M.J.; Vogels, G.D. Anaerobic digestion of cellulose fraction of domestic refuse by means of rumen microorganisms. Biotechnol. Bioeng. 2010, 32, 749–755. [Google Scholar] [CrossRef] [PubMed]
- Eastridge, M.L.; Lefeld, A.H.; Eilenfeld, A.M.; Gott, P.N.; Bowen, W.S.; Firkins, J.L. Corn grain and liquid feed as nonfiber carbohydrate sources in diets for lactating dairy cows. J. Dairy Sci. 2011, 94, 3045–3053. [Google Scholar] [CrossRef]
- Lemosquet, S.; Raggio, G.; Lobley, G.E.; Rulquin, H.; Guinard-Flament, J.; Lapierre, H. Whole-body glucose metabolism and mammary energetic nutrient metabolism in lactating dairy cows receiving digestive infusions of casein and propionic acid. J. Dairy Sci. 2009, 92, 6068–6082. [Google Scholar] [CrossRef]
- McCann, J.C.; Luan, S.; Cardoso, F.C.; Derakhshani, H.; Khafipour, E.; Loor, J.J. Induction of Subacute Ruminal Acidosis Affects the Ruminal Microbiome and Epithelium. Front. Microbiol. 2016, 7, 701. [Google Scholar] [CrossRef] [Green Version]
- Plaizier, J.C.; Krause, D.O.; Gozho, G.N.; McBride, B.W. Subacute ruminal acidosis in dairy cows: The physiological causes, incidence and consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef]
- Wang, D.S.; Zhang, R.Y.; Zhu, W.Y.; Mao, S.Y. Effects of subacute ruminal acidosis challenges on fermentation and biogenic amines in the rumen of dairy cows. Livest. Sci. 2013, 155, 262–272. [Google Scholar] [CrossRef]
- Pan, X.; Xue, F.; Nan, X.; Tang, Z.; Wang, K.; Beckers, Y.; Jiang, L.; Xiong, B. Illumina sequencing approach to characterize thiamine metabolism related cacteria and the impacts of thiamine supplementation on ruminal microbiota in dairy cows fed high-grain diets. Front. Microbiol. 2017, 8, 1818. [Google Scholar] [CrossRef] [PubMed]
- Xue, F.; Pan, X.; Jiang, L.; Guo, Y.; Xiong, B. GC-MS analysis of the ruminal metabolome response to thiamine supplementation during high grain feeding in dairy cows. Metabolomics 2018, 14, 67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brent, B.E.; Bartley, E.E. Thiamin and niacin in the rumen. J. Anim. Sci. 1984, 59, 813–822. [Google Scholar] [CrossRef] [PubMed]
- Comtet-Marre, S.; Parisot, N.; Lepercq, P.; Chaucheyras-Durand, F.; Mosoni, P.; Peyretaillade, E.; Bayat, A.R.; Shingfield, K.J.; Peyret, P.; Forano, E. Metatranscriptomics Reveals the Active Bacterial and Eukaryotic Fibrolytic Communities in the Rumen of Dairy Cow Fed a Mixed Diet. Front. Microbiol. 2017, 8, 67. [Google Scholar] [CrossRef] [Green Version]
- Cantarel, B.L.; Coutinho, P.M.; Rancurel, C.; Bernard, T.; Lombard, V.; Henrissat, B. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics. Nucleic Acids Res. 2009, 37 (Suppl. 1), D233–D238. [Google Scholar] [CrossRef]
- Terrapon, N.; Lombard, V.; Drula, E.; Coutinho, P.M.; Henrissat, B. The CAZy Database/the Carbohydrate-Active Enzyme (CAZy) Database: Principles and Usage Guidelines. In A Practical Guide to Using Glycomics Databases; Aoki-Kinoshita, K., Ed.; Springer: Tokyo, Japan, 2017. [Google Scholar] [CrossRef]
- Nan, Q.; Fengling, Y.; Ang, L.; Edi, P.; Yanfei, C.; Li, S.; Jing, G.; Emmanuelle, L.C.; Jian, Y.; Lingjiao, W. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014, 513, 59–64. [Google Scholar] [CrossRef]
- Pitta, D.W.; Kumar, S.; Vecchiarelli, B.; Shirley, D.J.; Bittinger, K.; Baker, L.D.; Ferguson, J.D.; Thomsen, N. Temporal dynamics in the ruminal microbiome of dairy cows during the transition period. J. Anim. Sci. 2014, 92, 4014–4022. [Google Scholar] [CrossRef]
- Xue, F.; Nan, X.; Sun, F.; Pan, X.; Guo, Y.; Jiang, L.; Xiong, B. Metagenome sequencing to analyze the impacts of thiamine supplementation on ruminal fungi in dairy cows fed high-concentrate diets. AMB Express 2018, 8, 159. [Google Scholar] [CrossRef]
- Wang, H.R.; Pan, X.H.; Wang, C.; Wang, M.Z.; Yu, L.H. Effects of different dietary concentrate to forage ratio and thiamine supplementation on the rumen fermentation and ruminal bacterial community in dairy cows. Anim. Prod. Sci. 2015, 55, 189–193. [Google Scholar] [CrossRef] [Green Version]
- Pan, X.H.; Yang, L.; Xue, F.G.; Xin, H.R.; Jiang, L.S.; Xiong, B.H.; Beckers, Y. Relationship between thiamine and subacute ruminal acidosis induced by a high-grain diet in dairy cows. J. Dairy Sci. 2016, 99, 8790–8801. [Google Scholar] [CrossRef] [Green Version]
- Aronesty, E. Comparison of sequencing utility programs. Open Bioinform. J. 2013, 7, 1–8. [Google Scholar] [CrossRef]
- Li, R.; Zhu, H.J.; Qian, W.; Fang, X.; Shi, Z.; Li, Y.; Li, S.; Shan, G.; Kristiansen, K.; Li, S. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 2010, 20, 265–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bao, Z.; Okubo, T.; Kubota, K.; Kasahara, Y.; Tsurumaru, H.; Anda, M.; Ikeda, S.; Minamisawa, K. Metaproteomic identification of diazotrophic methanotrophs and their localization in root tissues of field-grown rice plants. Appl. Environ. Microbiol. 2014, 80, 5043–5052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huson, D.H.; Beier, S.; Flade, I.; Gorska, A.; El-Hadidi, M.; Mitra, S.; Ruscheweyh, H.J.; Tappu, R. MEGAN Community edition—Interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput. Biol. 2016, 12, e1004957. [Google Scholar] [CrossRef] [Green Version]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef] [Green Version]
- Allen, M.S.; Mertens, D.R. Evaluating constraints on fiber digestion by rumen microbes. J. Nutr. 1988, 118, 261–270. [Google Scholar] [CrossRef]
- Schwarz, W.H. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 2001, 56, 634–649. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Nguyen TT, M.; Reid, I.D.; Yanke, J.L.; Wang, P.; Abbott, D.W.; Tsang, A.; McAllister, T. Application of transcriptomics to compare the carbohydrate active enzymes that are expressed by diverse genera of anaerobic fungi to degrade plant cell wall carbohydrates. Front. Microbiol. 2018, 9, 1581. [Google Scholar] [CrossRef] [Green Version]
- Haitjema, C.H.; Gilmore, S.P.; Henske, J.K.; Solomon, K.V.; De, G.R.; Kuo, A.; Mondo, S.J.; Salamov, A.A.; Labutti, K.; Zhao, Z. A parts list for fungal cellulosomes revealed by comparative genomics. Nat. Microbiol. 2017, 2, 17087. [Google Scholar] [CrossRef] [Green Version]
- Youssef, N.H.; Couger, M.B.; Struchtemeyer, C.G.; Liggenstoffer, A.S.; Prade, R.A.; Najar, F.Z.; Atiyeh, H.K.; Wilkins, M.R.; Elshahed, M.S. The genome of the anaerobic fungus Orpinomyces sp. strain C1A reveals the unique evolutionary history of a remarkable plant biomass degrader. Appl. Environ. Microbiol. 2013, 79, 4620–4634. [Google Scholar] [CrossRef] [Green Version]
- Leschine, S.B. Cellulose degradation in anaerobic environments. Annu. Rev. Microbiol. 1995, 49, 399–426. [Google Scholar] [CrossRef] [PubMed]
- Puniya, A.K.; Singh, R.; Kamra, D.N. Rumen Microbiology: From Evolution to Revolution; Springer: New Delhi, India, 2015. [Google Scholar] [CrossRef]
- Pan, X.; Nan, X.; Yang, L.; Jiang, L.; Xiong, B. Thiamine status, metabolism and application in dairy cows: A review. Br. J. Nutr. 2018, 120, 491–499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, J.; Phillips, C.M.; Anderson, C.T.; Beeson, W.T.; Marletta, M.A.; Glass, N.L. Expression and characterization of the Neurospora crassa endoglucanase GH5-1. Protein Expr. Purif. 2011, 75, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Hirvonen, M.; Papageorgiou, A.C. Crystal structure of a family 45 endoglucanase from melanocarpus albomyces: Mechanistic implications based on the free and cellobiose-bound forms. J. Mol. Biol. 2003, 329, 403–410. [Google Scholar] [CrossRef]
- Beaugrand, J.; Chambat, G.; Wong, V.W.; Goubet, F.; Rémond, C.; Paës, G.; Benamrouche, S.; Debeire, P.; O’Donohue, M.; Chabbert, B. Impact and efficiency of GH10 and GH11 thermostable endoxylanases on wheat bran and alkali-extractable arabinoxylans. Carbohydr. Res. 2004, 339, 2529–2540. [Google Scholar] [CrossRef]
- Vihinen, M.; Mantsala, P. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. Biol. 1989, 24, 329–418. [Google Scholar] [CrossRef]
- She, P.X. Regulation of Carbohydrate Metabolism by Exogenous Glucagon in Lactating Cows. Ph.D. Thesis, Iowa State University, Ames, IA, USA, 1997. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.919.7704&rep=rep1&type=pdf. (accessed on 1 January 2020).
- Cotta, M.A.; Whitehead, T.R. Regulation and cloning of the gene encoding amylase activity of the ruminal bacterium Streptococcus bovis. Appl. Environ. Microbiol. 1993, 59, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Annous, B.A.; Blaschek, H.P. Regulation and localization of amylolytic enzymes in Clostridium acetobutylicum ATCC 824. Appl. Environ. Microbiol. 1990, 56, 2559–2561. [Google Scholar] [CrossRef] [Green Version]
- Boraston, A.B.; Bolam, D.N.; Gilbert, H.J.; Davies, G.J. Carbohydrate-binding modules: Fine-tuning polysaccharide recognition. Biochem. J. 2004, 382, 769–781. [Google Scholar] [CrossRef]
- Simpson, P.J.; Xie, H.; Bolam, D.N.; Gilbert, H.J.; Williamson, M.P. The structural basis for the ligand specificity of family 2 carbohydrate-binding modules. J. Biol. Chem. 2000, 275, 41137–41142. [Google Scholar] [CrossRef] [Green Version]
- Peng, H.; Zheng, Y.; Chen, M.; Wang, Y.; Xiao, Y.; Gao, Y. A starch-binding domain identified in alpha-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Lett. 2014, 588, 1161–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valk, V.; van Bueren, A.L.; van der Kaaij, R.M.; Dijkhuizen, L. Carbohydrate Binding Module 74 is a novel starch binding domain associated with large and multi-domain α-amylase enzymes. FEBS J. 2016, 283, 2354–2368. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Sleiman, F.T.; Theurer, C.B.; Santos, F.; Simas, J.M.; Francolin, M.; Huber, J.T. Effect of isocaloric infusion of glucose in the rumen or propionate in the duodenum. J. Dairy Sci. 1994, 77, 1556–1562. [Google Scholar] [CrossRef]
- Marounek, M.; Bartos, S. Interactions between rumen amylolytic and lactate-utilizing bacteria in growth on starch. J. Appl. Microbiol. 2010, 63, 233–238. [Google Scholar] [CrossRef]
Items | CON | HC | HCT | SEM | p-Value |
---|---|---|---|---|---|
AAs | 0.04 b | 0.04 b | 0.10 a | 0.006 | <0.001 |
CBMs | 0.34 a | 0.26 b | 0.35 a | 0.029 | 0.002 |
CEs | 1.36 a | 0.97 b | 1.33 a | 0.117 | <0.001 |
GHs | 4.75 a | 3.74 b | 4.79 a | 0.377 | <0.001 |
GTs | 1.74 b | 1.43 c | 2.10 a | 0.102 | <0.001 |
PLs | 0.30 a | 0.24 b | 0.31 a | 0.025 | 0.002 |
Total | 8.53 a | 6.69 b | 8.94 a | 0.640 | <0.001 |
Enzyme | Function | CON | HC | HCT | SEM | P-Value |
---|---|---|---|---|---|---|
CBM3 | cellulose-binding function | 9.13 × 10−3 a | 5.46 × 10−3 b | 5.45 × 10−3 b | 6.00 × 10−4 | 0.001 |
CBM16 | binding to cellulose | 8.49 × 10−5 | 2.91 × 10−5 | 4.47 × 10−5 | 1.00 × 10−5 | 0.228 |
CBM30 | binding to cellulose | 3.43 × 10−3 a | 1.90 × 10−3 b | 2.43 × 10−3 b | 2.30 × 10−4 | 0.008 |
GH10 | cellulase family F. | 9.03 × 10−3 b | 8.30 × 10−3 b | 1.49 × 10−2 a | 1.06 × 10−3 | 0.004 |
GH11 | cellulase family G | 3.16 × 10−2 a | 1.82 × 10−2 b | 2.86 × 10−2 a | 2.02 × 10−3 | 0.002 |
GH26 | cellulase family I. | 1.38 × 10−3 b | 2.38 × 10−3 a,b | 3.07 × 10−3 a | 2.90 × 10−4 | 0.035 |
GH44 | cellulase family J | 1.80 × 10−5 | 5.86 × 10−5 | 2.28 × 10−5 | 1.00 × 10−5 | 0.344 |
GH45 | cellulase family K | 6.21 × 10−4 b | 4.38 × 10−4 b | 2.57 × 10−3 a | 3.00 × 10−4 | <0.001 |
GH48 | cellulase family L | 3.25 × 10−3a | 1.31 × 10−3 b | 2.64 × 10−3 a | 2.70 × 10−4 | <0.001 |
GH5 | cellulase family A | 1.12 × 10−2 b | 1.53 × 10−2 b | 2.44 × 10−2 a | 1.96 × 10−3 | 0.003 |
GH6 | cellulase family B | 1.01 × 10−4 | 2.98 × 10−4 | 1.46 × 10−4 | 5.00 × 10−5 | 0.195 |
GH8 | cellulase family D | 2.04 × 10−4 | 2.06 × 10−4 | 2.35 × 10−4 | 3.00 × 10−5 | 0.917 |
GH9 | cellulase family E. | 1.21 × 10−4 b | 9.70 × 10−4 a | 1.04 × 10−4 b | 1.70 × 10−4 | 0.049 |
GT2 | cellulose synthase | 1.40 × 10−3 a | 1.15 × 10−3 a,b | 8.28 × 10−4 b | 1.00 × 10−4 | 0.044 |
Total | 7.16 × 10−2 b | 5.59 × 10−2 c | 8.54 × 10−2 a | 3.94 × 10−3 | <0.001 |
Enzyme | Functions | CON | HC | HCT | SEM | p-Value |
---|---|---|---|---|---|---|
CBM20 | granular starch-binding | 3.43 × 10−3 a | 1.90 × 10−3 b | 2.43 × 10−3 b | 2.300 × 10−4 | 0.008 |
CBM25 | starch-binding | 9.03 × 10−3 b | 8.30 × 10−3 b | 1.49 × 10−2 a | 1.060 × 10−3 | 0.004 |
CBM26 | starch-binding | 1.38 × 10−3 b | 2.38 × 10−3 a,b | 3.07 × 10−3 a | 2.900 × 10−4 | 0.035 |
CBM34 | granular starch-binding | 1.80 × 10−5 | 5.86 × 10−5 | 2.28 × 10−5 | 1.000 × 10−5 | 0.344 |
GH13 | α-amylase | 3.25 × 10−3 a | 1.31 × 10−3 b | 2.64 × 10−3 a | 2.700 × 10−4 | <0.001 |
GH15 | glucoamylase | 1.12 × 10−2 b | 1.53 × 10−2 b | 2.44 × 10−2 a | 1.960 × 10−3 | 0.003 |
GH31 | α-glucosidase | 3.63 × 10−4 | 4.11 × 10−4 | 1.86 × 10−4 | 5.000 × 10−5 | 0.176 |
GH4 | β-amylase | 2.58 × 10−3 a | 3.33 × 10−4 b | 1.69 × 10−3 a | 3.300× 10−4 | 0.003 |
GH57 | α-amylase and amylopullulanase | 1.01 × 10−4 | 2.98 × 10−4 | 1.46 × 10−4 | 5.000 × 10−5 | 0.195 |
GH63 | α-glucosidase | 5.16 × 10−3 a | 3.13 × 10−3 b | 3.75 × 10−3 b | 3.300 × 10−4 | 0.015 |
GH77 | amylomaltase | 2.04 × 10−4 | 2.06 × 10−4 | 2.35 × 10−4 | 3.000 × 10−5 | 0.917 |
GH97 | glucoamylase | 1.21 × 10−4 b | 9.70 × 10−4 a | 1.04 × 10−4 b | 1.700 × 10−4 | 0.049 |
GH119 | α-amylase | 6.21 × 10−4 b | 4.38 × 10−4 b | 2.57 × 10−3 a | 3.00 × 10−4 | <0.001 |
GT35 | glycogen or starch phosphorylase | 1.40 × 10−3 a | 1.15 × 10−3 a,b | 8.28 × 10−4 b | 1.000 × 10−4 | 0.044 |
GT5 | starch glucosyltransferase | 2.80 × 10−4 | 8.59 × 10−4 | 4.90 × 10−4 | 2.200 × 10−4 | 0.180 |
Total | 2.33 × 10−2 b | 2.29 × 10−2 b | 3.36 × 10−2 a | 2.560 × 10−3 | 0.016 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Xue, F.; Hua, D.; Wang, Y.; Pan, X.; Nan, X.; Sun, F.; Jiang, L.; Xiong, B. Metagenomic Insights into Effects of Thiamine Supplementation on Carbohydrate-Active Enzymes’ Profile in Dairy Cows Fed High-Concentrate Diets. Animals 2020, 10, 304. https://doi.org/10.3390/ani10020304
Zhao Y, Xue F, Hua D, Wang Y, Pan X, Nan X, Sun F, Jiang L, Xiong B. Metagenomic Insights into Effects of Thiamine Supplementation on Carbohydrate-Active Enzymes’ Profile in Dairy Cows Fed High-Concentrate Diets. Animals. 2020; 10(2):304. https://doi.org/10.3390/ani10020304
Chicago/Turabian StyleZhao, Yiguang, Fuguang Xue, Dengke Hua, Yue Wang, Xiaohua Pan, Xuemei Nan, Fuyu Sun, Linshu Jiang, and Benhai Xiong. 2020. "Metagenomic Insights into Effects of Thiamine Supplementation on Carbohydrate-Active Enzymes’ Profile in Dairy Cows Fed High-Concentrate Diets" Animals 10, no. 2: 304. https://doi.org/10.3390/ani10020304
APA StyleZhao, Y., Xue, F., Hua, D., Wang, Y., Pan, X., Nan, X., Sun, F., Jiang, L., & Xiong, B. (2020). Metagenomic Insights into Effects of Thiamine Supplementation on Carbohydrate-Active Enzymes’ Profile in Dairy Cows Fed High-Concentrate Diets. Animals, 10(2), 304. https://doi.org/10.3390/ani10020304