Partially Defatted Tenebrio molitor Larva Meal in Diets for Grow-Out Rainbow Trout, Oncorhynchus mykiss (Walbaum): Effects on Growth Performance, Diet Digestibility and Metabolic Responses
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Diets
2.2. Chemical Analyses of Feed
2.3. Growth Trial
2.3.1. Fish and Rearing Conditions
2.3.2. Growth Performance
(individual initial body weight, g)
initial number of fish)/2)/days
2.3.3. Condition Factor and Somatic Indexes
2.4. Digestibility Trial
2.5. Hepatic Enzyme Activities
2.6. Statistical Analyses
3. Results
3.1. Diets
3.2. Growth Trial
3.2.1. Growth Performance
3.2.2. Condition Factor and Somatic Indexes
3.3. Digestibility Trial
3.4. Hepatic Enzyme Activities
4. Discussion
4.1. Growth Performance
4.2. Digestibility Trial
4.3. Hepatic Enzyme Activity
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World Fisheries and Aquaculture; FAO: Rome, Italy, 2018; ISBN 9789251305621. [Google Scholar]
- Olsen, R.L.; Hasan, M.R. A limited supply of fishmeal: Impact on future increases in global aquaculture production. Trends Food Sci. Technol. 2012, 27, 120–128. [Google Scholar] [CrossRef]
- Boyd, C.E. Overview of aquaculture feeds: Global impacts of ingredient use. In Feed and Feeding Practices in Aquaculture; Davis, D.A., Ed.; Elsevier—Woodhead Publishing: Amsterdam, The Netherlands, 2015; pp. 3–25. ISBN 0081005075. [Google Scholar] [CrossRef]
- Pauly, D.; Zeller, D. Catch reconstructions reveal that global marine fisheries catches are higher than reported and declining. Nat. Commun. 2016, 7, 10244. [Google Scholar] [CrossRef] [PubMed]
- Oliva-Teles, A.; Enes, P.; Peres, H. Replacing fishmeal and fish oil in industrial aquafeeds for carnivorous fish. In Feed and Feeding Practices in Aquaculture; Elsevier: Amsterdam, The Netherlands, 2015; pp. 203–233. [Google Scholar] [CrossRef]
- Hardy, R.W. Utilization of plant proteins in fish diets: Effects of global demand and supplies of fishmeal. Aquac. Res. 2010, 41, 770–776. [Google Scholar] [CrossRef]
- Gasco, L.; Biasato, I.; Dabbou, S.; Schiavone, A.; Gai, F. Animals Fed Insect-Based Diets: State-of-the-Art on Digestibility, Performance and Product Quality. Animals 2019, 9, 170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Huis, A.; Oonincx, D.G.A.B. The environmental sustainability of insects as food and feed. A review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef] [Green Version]
- Sogari, G.; Amato, M.; Biasato, I.; Chiesa, S.; Gasco, L. The Potential Role of Insects as Feed: A Multi-Perspective Review. Animals 2019, 9, 119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappellozza, S.; Leonardi, M.G.; Savoldelli, S.; Carminati, D.; Rizzolo, A.; Cortellino, G.; Terova, G.; Moretto, E.; Badaile, A.; Concheri, G.; et al. A First Attempt to Produce Proteins from Insects by Means of a Circular Economy. Animals 2019, 9, 278. [Google Scholar] [CrossRef] [Green Version]
- Borrello, M.; Caracciolo, F.; Lombardi, A.; Pascucci, S.; Cembalo, L. Consumers’ perspective on circular economy strategy for reducing food waste. Sustain. 2017, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- Tan, S.W.; Lai, K.S.; Loh, J.Y. Effects of Food Wastes on Yellow Mealworm Tenebrio molitor Larval Nutritional Profiles and Growth Performances. Examines Mar. Biol. Oceanogr. 2018, 2. [Google Scholar] [CrossRef]
- Gasco, L.; Gai, F.; Maricchiolo, G.; Genovese, L.; Ragonese, S.; Bottari, T.; Caruso, G. Fishmeal Alternative Protein Sources for Aquaculture Feeds. In Feeds for the Aquaculture Sector; Springer International Publishing: New York, NY, USA, 2018; pp. 1–28. [Google Scholar] [CrossRef]
- Belforti, M.; Gai, F.; Lussiana, C.; Renna, M.; Malfatto, V.; Rotolo, L.; De Marco, M.; Dabbou, S.; Schiavone, A.; Zoccarato, I.; et al. Tenebrio molitor meal in rainbow trout (Oncorhynchus mykiss) diets: Effects on animal performance, nutrient digestibility and chemical composition of fillets. Ital. J. Anim. Sci. 2015, 14, 670–676. [Google Scholar] [CrossRef] [Green Version]
- Roncarati, A.; Gasco, L.; Parisi, G.; Terova, G. Growth performance of common catfish (Ameiurus melas Raf.) fingerlings fed mealworm (Tenebrio molitor) diet. J. Insects as Food Feed 2015, 1, 233–240. [Google Scholar] [CrossRef]
- Gasco, L.; Henry, M.; Piccolo, G.; Marono, S.; Gai, F.; Renna, M.; Lussiana, C.; Antonopoulou, E.; Mola, P.; Chatzifotis, S. Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Anim. Feed Sci. Technol. 2016, 220, 34–45. [Google Scholar] [CrossRef]
- Sánchez-Muros, M.; de Haro, C.; Sanz, A.; Trenzado, C.E.; Villareces, S.; Barroso, F.G. Nutritional evaluation of Tenebrio molitor meal as fishmeal substitute for tilapia (Oreochromis niloticus) diet. Aquac. Nutr. 2016, 22, 943–955. [Google Scholar] [CrossRef]
- Su, J.; Gong, Y.; Cao, S.; Lu, F.; Han, D.; Liu, H.; Jin, J.; Yang, Y.; Zhu, X.; Xie, S. Effects of dietary Tenebrio molitor meal on the growth performance, immune response and disease resistance of yellow catfish (Pelteobagrus fulvidraco). Fish Shellfish Immunol. 2017, 69, 59–66. [Google Scholar] [CrossRef] [PubMed]
- Iaconisi, V.; Marono, S.; Parisi, G.; Gasco, L.; Genovese, L.; Maricchiolo, G.; Bovera, F.; Piccolo, G. Dietary inclusion of Tenebrio molitor larvae meal: Effects on growth performance and final quality treats of blackspot sea bream (Pagellus bogaraveo). Aquaculture 2017, 476, 49–58. [Google Scholar] [CrossRef]
- Piccolo, G.; Iaconisi, V.; Marono, S.; Gasco, L.; Loponte, R.; Nizza, S.; Bovera, F.; Parisi, G. Effect of Tenebrio molitor larvae meal on growth performance, in vivo nutrients digestibility, somatic and marketable indexes of gilthead sea bream (Sparus aurata). Anim. Feed Sci. Technol. 2017, 226, 12–20. [Google Scholar] [CrossRef]
- Henry, M.A.; Gasco, L.; Chatzifotis, S.; Piccolo, G. Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev. Comp. Immunol. 2018, 81, 204–209. [Google Scholar] [CrossRef]
- Henry, M.; Gasco, L.; Piccolo, G.; Fountoulaki, E. Review on the use of insects in the diet of farmed fish: Past and future. Anim. Feed Sci. Technol. 2015, 203, 1–22. [Google Scholar] [CrossRef]
- Rema, P.; Saravanan, S.; Armenjon, B.; Motte, C.; Dias, J. Graded Incorporation of Defatted Yellow Mealworm (Tenebrio molitor) in Rainbow Trout (Oncorhynchus mykiss) Diet Improves Growth Performance and Nutrient Retention. Animals 2019, 9, 187. [Google Scholar] [CrossRef] [Green Version]
- Ido, A.; Hashizume, A.; Ohta, T.; Takahashi, T.; Miura, C.; Miura, T. Replacement of Fish Meal by Defatted Yellow Mealworm (Tenebrio molitor) Larvae in Diet Improves Growth Performance and Disease Resistance in Red Seabream (Pagrus major). Animals 2019, 9, 100. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official methods of analysis of AOAC International, 17th ed.; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- AOAC International. Official methods of analysis of AOAC International, 17th ed.; 2nd revision; AOAC International: Gaithersburg, MD, USA, 2003. [Google Scholar]
- Finke, M.D. Estimate of chitin in raw whole insects. Zoo Biol. 2007, 26, 105–115. [Google Scholar] [CrossRef]
- Renna, M.; Brugiapaglia, A.; Zanardi, E.; Destefanis, G.; Prandini, A.; Moschini, M.; Sigolo, S.; Lussiana, C. Fatty acid profile, meat quality and flavour acceptability of beef from double-muscled Piemontese young bulls fed ground flaxseed. Ital. J. Anim. Sci. 2019, 18, 355–365. [Google Scholar] [CrossRef] [Green Version]
- Ravetto Enri, S.; Renna, M.; Probo, M.; Lussiana, C.; Battaglini, L.M.; Lonati, M.; Lombardi, G. Relationships between botanical and chemical composition of forages: A multivariate approach to grasslands in the Western Italian Alps. J. Sci. Food Agric. 2017, 97, 1252–1259. [Google Scholar] [CrossRef] [PubMed]
- Palmegiano, G.B.; Daprà, F.; Forneris, G.; Gai, F.; Gasco, L.; Guo, K.; Peiretti, P.G.; Sicuro, B.; Zoccarato, I. Rice protein concentrate meal as a potential ingredient in practical diets for rainbow trout (Oncorhynchus mykiss). Aquaculture 2006, 258, 357–367. [Google Scholar] [CrossRef]
- Caimi, C.; Renna, M.; Lussiana, C.; Bonaldo, A.; Gariglio, M.; Meneguz, M.; Dabbou, S.; Schiavone, A.; Gai, F.; Elia, A.C.; et al. First insights on Black Soldier Fly (Hermetia illucens L.) larvae meal dietary administration in Siberian sturgeon (Acipenser baerii Brandt) juveniles. Aquaculture 2020, 515. [Google Scholar] [CrossRef]
- Bernt, E.; Bergmeyer, H.U. Methods of Enzymatic Analysis. Acad. Press. N.Y. USA 1974, 4, 1704–1715. [Google Scholar]
- Bautista, J.; Garrido-Pertierra, A.; Soler, G. Glucose-6-phosphate dehydrogenase from Dicentrarchus labrax liver: Kinetic mechanism and kinetics of NADPH inhibition. Biochim. Biophys. Acta Gen. Subj. 1988, 967, 354–363. [Google Scholar] [CrossRef]
- Ochoa, S. Malic enzyme. Methods Enzymol. 1955, 1, 739–741. [Google Scholar]
- Chang, H.-C.; Seidman, I.; Teebor, G.; Lane, M.D. Liver acetyl CoA carboxylase and fatty acid synthetase: Relative activities in the normal state and in hereditary obesity. Biochem. Biophys. Res. Commun. 1967, 28, 682–686. [Google Scholar] [CrossRef]
- Chakrabarty, K.; Leveille, G.A. Acetyl CoA Carboxylase and Fatty Acid Synthetase Activities in Liver and Adipose Tissue of Meal-fed Rats. Exp. Biol. Med. 1969, 131, 1051–1054. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Dernekbaşı, S. Digestibility and Liver Fatty Acid Composition of Rainbow Trout (Oncorhynchus mykiss) Fed by Graded Levels of Canola Oil. Turkish J. Fish. Aquat. Sci. 2012, 12, 105–113. [Google Scholar] [CrossRef]
- Pearce, J.; Harris, J.E.; Davies, S.J. The effect of vitamin E on the serum complement activity of the rainbow trout, Oncorhynchus mykiss (Walbaum). Aquac. Nutr. 2003, 9, 337–340. [Google Scholar] [CrossRef]
- Renna, M.; Schiavone, A.; Gai, F.; Dabbou, S.; Lussiana, C.; Malfatto, V.; Prearo, M.; Capucchio, M.T.; Biasato, I.; Biasibetti, E.; et al. Evaluation of the suitability of a partially defatted black soldier fly (Hermetia illucens L.) larvae meal as ingredient for rainbow trout (Oncorhynchus mykiss Walbaum) diets. J. Anim. Sci. Biotechnol. 2017, 8, 57. [Google Scholar] [CrossRef]
- Kurokawa, T.; Uji, S.; Suzuki, T. Molecular cloning of multiple chitinase genes in Japanese flounder, Paralichthys olivaceus. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2004, 138, 255–264. [Google Scholar] [CrossRef]
- Dabrowski, K.; Guderley, H. Intermediary Metabolism. In Fish Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 309–365. [Google Scholar] [CrossRef]
- Li, P.; Mai, K.; Trushenski, J.; Wu, G. New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids 2009, 37, 43–53. [Google Scholar] [CrossRef]
- Kaushik, S.J.; Seiliez, I. Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs. Aquac. Res. 2010, 41, 322–332. [Google Scholar] [CrossRef]
- Gómez-Requeni, P.; Mingarro, M.; Calduch-Giner, J.A.; Médale, F.; Martin, S.A.M.; Houlihan, D.F.; Kaushik, S.; Pérez-Sánchez, J. Protein growth performance, amino acid utilisation and somatotropic axis responsiveness to fish meal replacement by plant protein sources in gilthead sea bream (Sparus aurata). Aquaculture 2004, 232, 493–510. [Google Scholar] [CrossRef]
- Guerreiro, I.; Castro, C.; Antunes, B.; Coutinho, F.; Rangel, F.; Couto, A.; Serra, C.R.; Peres, H.; Pousão-Ferreira, P.; Matos, E.; et al. Catching black soldier fly for meagre: Growth, whole-body fatty acid profile and metabolic responses. Aquaculture 2020, 516. [Google Scholar] [CrossRef]
- Henderson, R.J.; Sargent, J.R. Lipid biosynthesis in rainbow trout, Salmo Gairdnerii, fed diets of differing lipid content. Comp. Biochem. Physiol. Part C Comp. 1981, 69, 31–37. [Google Scholar] [CrossRef]
- Gélineau, A.; Corraze, G.; Boujard, T.; Larroquet, L.; Kaushik, S. Relation between dietary lipid level and voluntary feed intake, growth, nutrient gain, lipid deposition and hepatic lipogenesis in rainbow trout. Reprod. Nutr. Dev. 2001, 41, 487–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Regost, C.; Arzel, J.; Cardinal, M.; Robin, J.; Laroche, M.; Kaushik, S.J. Dietary lipid level, hepatic lipogenesis and flesh quality in turbot (Psetta maxima). Aquaculture 2001, 193, 291–309. [Google Scholar] [CrossRef] [Green Version]
- Torstensen, B.E.; Froyland, L.; Lie, O. Replacing dietary fish oil with increasing levels of rapeseed oil and olive oil—Effects on Atlantic salmon (Salmo salar L.) tissue and lipoprotein lipid composition and lipogenic enzyme activities. Aquac. Nutr. 2004, 10, 175–192. [Google Scholar] [CrossRef]
- Richard, N.; Kaushik, S.; Larroquet, L.; Panserat, S.; Corraze, G. Replacing dietary fish oil by vegetable oils has little effect on lipogenesis, lipid transport and tissue lipid uptake in rainbow trout (Oncorhynchus mykiss). Br. J. Nutr. 2006, 96, 299–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alvarez, M.J.; Díez, A.; López-Bote, C.; Gallego, M.; Bautista, J.M. Short-term modulation of lipogenesis by macronutrients in rainbow trout (Oncorhynchus mykiss) hepatocytes. Br. J. Nutr. 2000, 84, 619–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menoyo, D.; Izquierdo, M.S.; Robaina, L.; Ginés, R.; Lopez-Bote, C.J.; Bautista, J.M. Adaptation of lipid metabolism, tissue composition and flesh quality in gilthead sea bream (Sparus aurata) to the replacement of dietary fish oil by linseed and soyabean oils. Br. J. Nutr. 2004, 92, 41–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walzem, R.L.; Storebakken, T.; Hung, S.S.O.; Hansen, R.J. Relationship between growth and selected liver enzyme activities of individual rainbow trout. J. Nutr. 1991, 121, 1090–1098. [Google Scholar] [CrossRef] [Green Version]
Ingredient | TM0 | TM25 | TM50 | TM100 |
---|---|---|---|---|
Fishmeal 65 (Peruvian) | 20.00 | 15.00 | 10.00 | 0 |
Tenebrio molitor larva meal | - | 5.00 | 10.00 | 20.00 |
Soy protein concentrate | 18.00 | 18.00 | 18.00 | 18.00 |
Wheat gluten | 7.75 | 7.40 | 7.40 | 7.06 |
Corn gluten | 8.00 | 8.00 | 8.00 | 8.00 |
Soybean meal 48 | 7.00 | 7.00 | 7.00 | 7.00 |
Wheat meal | 14.23 | 14.00 | 14.23 | 13.80 |
Sardine oil | 4.30 | 4.26 | 4.20 | 4.10 |
Soybean oil | 8.60 | 8.52 | 8.40 | 8.20 |
Rapeseed oil | 8.60 | 8.52 | 8.40 | 8.20 |
Soy lecithin | 0.50 | 0.50 | 0.50 | 0.50 |
Vit-Min Premix | 1.00 | 1.00 | 1.00 | 1.00 |
Antioxidant | 0.20 | 0.20 | 0.20 | 0.20 |
Sodium propionate | 0.10 | 0.10 | 0.10 | 0.10 |
Monocalcium phosphate | 0.52 | 0.92 | 0.92 | 1.72 |
L-Arginine | - | - | - | 0.10 |
L-Lysine | - | 0.30 | 0.30 | 0.60 |
L-Tryptophan | 0.05 | 0.08 | 0.10 | 0.12 |
DL-methionine | 0.15 | 0.20 | 0.25 | 0.30 |
Celite® | 1.00 | 1.00 | 1.00 | 1.00 |
Item | TM0 | TM25 | TM50 | TM100 |
---|---|---|---|---|
DM | 93.77 | 93.83 | 94.13 | 94.41 |
CP | 42.08 | 43.07 | 43.38 | 44.25 |
EE | 22.63 | 22.95 | 22.44 | 22.36 |
Ash | 7.57 | 7.09 | 6.49 | 5.60 |
Chitin | - | 0.43 | 0.78 | 1.49 |
NFE 1 | 21.49 | 20.29 | 21.05 | 20.71 |
GE (MJ/kg as fed) | 22.24 | 22.71 | 22.75 | 22.55 |
Item | TM0 | TM25 | TM50 | TM100 |
---|---|---|---|---|
C10:0 | 71.17 | 88.22 | 85.80 | 126.97 |
C14:0 | 303.11 | 296.23 | 299.63 | 309.09 |
C16:0 | 2418.11 | 2479.54 | 2517.68 | 2685.00 |
C16:1 c9 | 288.62 | 287.85 | 282.39 | 262.44 |
C18:0 | 651.44 | 674.13 | 674.11 | 734.35 |
C18:1 c9 | 6307.94 | 6654.64 | 6717.97 | 7095.02 |
C18:1 c11 | 448.42 | 465.82 | 457.72 | 434.23 |
C18:2 n6 | 5650.96 | 6007.19 | 6153.86 | 6517.83 |
C18:3 n3 | 1021.00 | 1058.46 | 1041.25 | 1049.31 |
C20:0 | 94.35 | 87.46 | 81.51 | 86.24 |
C20:1 c11 | 259.29 | 261.22 | 217.80 | 179.48 |
C20:2 n6 | 53.55 | 47.33 | 50.62 | 48.32 |
C20:3 n6 | 79.29 | 72.43 | 75.73 | 70.41 |
C20:5 n3 | 375.85 | 411.60 | 348.32 | 315.80 |
C22:0 | 48.13 | 51.95 | 52.19 | 54.66 |
C22:1 n9 | 95.98 | 84.80 | 56.26 | 12.00 |
C22:6 n3 | 102.36 | 139.92 | 159.95 | 101.11 |
Other FA 1 | 326.12 | 330.95 | 318.66 | 265.68 |
Σ SFA | 3719.26 | 3812.03 | 3844.38 | 4112.18 |
Σ BCFA 2 | 62.23 | 63.04 | 62.74 | 63.55 |
Σ MUFA | 7477.13 | 7831.43 | 7812.49 | 8052.37 |
Σ PUFA | 7420.41 | 7877.44 | 7956.88 | 8204.94 |
Σ PUFA/Σ SFA | 2.00 | 2.07 | 2.07 | 2.00 |
Σ n3 FA | 1579.06 | 1688.61 | 1627.05 | 1525.86 |
Σ n6 FA | 5841.34 | 6188.84 | 6329.83 | 6679.08 |
Σ n3/Σ n6 FA | 0.27 | 0.27 | 0.26 | 0.23 |
TFA | 18,616.80 | 19,520.90 | 19,613.74 | 20,369.49 |
Item | TM0 | TM25 | TM50 | TM100 | SEM | p-Value |
---|---|---|---|---|---|---|
Mortality (%) | 11.11 | 9.52 | 11.11 | 7.94 | 2.332 | 0.965 |
iIBW (g) | 78.24 | 78.19 | 78.34 | 78.25 | 0.259 | 0.224 |
iFBW (g) | 390.48 | 421.90 | 408.81 | 431.69 | 11.822 | 0.699 |
IWG (g) | 312.24 | 343.71 | 330.47 | 353.44 | 11.813 | 0.698 |
SGR (% day−1) | 1.04 | 1.09 | 1.07 | 1.11 | 0.019 | 0.688 |
FCR | 1.07 | 1.09 | 1.11 | 1.02 | 0.022 | 0.594 |
PER | 2.09 | 2.00 | 1.96 | 2.09 | 0.040 | 0.652 |
FI (g DM fish−1 day−1) | 2.69 | 2.44 | 2.84 | 2.97 | 0.096 | 0.242 |
Item | TM0 | TM25 | TM50 | TM100 | SEM | p-Value |
---|---|---|---|---|---|---|
K | 1.17 | 1.21 | 1.17 | 1.24 | 0.013 | 0.153 |
HSI | 0.90 b | 1.08 ab | 0.93 ab | 1.11 a | 0.027 | 0.008 |
VSI | 12.66 | 12.60 | 12.96 | 12.60 | 0.190 | 0.895 |
CF | 3.51 | 3.45 | 3.66 | 3.42 | 0.171 | 0.963 |
Item | TM0 | TM25 | TM50 | TM100 | SEM | p-Value |
---|---|---|---|---|---|---|
ADCDM | 94.69 | 94.43 | 94.32 | 94.16 | 0.197 | 0.108 |
ADCCP | 98.48 a | 98.50 a | 97.98 b | 97.25 c | 0.145 | 0.000 |
ADCEE | 98.84 | 98.45 | 98.36 | 98.33 | 0.182 | 0.212 |
ADCGE | 96.71 | 97.34 | 96.59 | 96.15 | 0.163 | 0.179 |
Item | TM0 | TM25 | TM50 | TM100 | SEM | p-Value |
---|---|---|---|---|---|---|
Amino acid catabolizing enzymes | ||||||
ALAT | 312.7 | 326.3 | 359.0 | 361.4 | 9.374 | 0.173 |
ASAT | 635.0 | 487.0 | 522.4 | 634.3 | 22.655 | 0.069 |
GDH | 38.0 | 33.4 | 36.7 | 37.2 | 1.166 | 0.531 |
Lipogenic enzymes | ||||||
G6PD | 228.7 | 195.8 | 208.5 | 226.7 | 7.702 | 0.392 |
ME | 78.0 | 63.4 | 65.5 | 76.8 | 2.518 | 0.071 |
FAS | 4.5 | 5.3 | 3.8 | 4.5 | 0.231 | 0.169 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chemello, G.; Renna, M.; Caimi, C.; Guerreiro, I.; Oliva-Teles, A.; Enes, P.; Biasato, I.; Schiavone, A.; Gai, F.; Gasco, L. Partially Defatted Tenebrio molitor Larva Meal in Diets for Grow-Out Rainbow Trout, Oncorhynchus mykiss (Walbaum): Effects on Growth Performance, Diet Digestibility and Metabolic Responses. Animals 2020, 10, 229. https://doi.org/10.3390/ani10020229
Chemello G, Renna M, Caimi C, Guerreiro I, Oliva-Teles A, Enes P, Biasato I, Schiavone A, Gai F, Gasco L. Partially Defatted Tenebrio molitor Larva Meal in Diets for Grow-Out Rainbow Trout, Oncorhynchus mykiss (Walbaum): Effects on Growth Performance, Diet Digestibility and Metabolic Responses. Animals. 2020; 10(2):229. https://doi.org/10.3390/ani10020229
Chicago/Turabian StyleChemello, Giulia, Manuela Renna, Christian Caimi, Inês Guerreiro, Aires Oliva-Teles, Paula Enes, Ilaria Biasato, Achille Schiavone, Francesco Gai, and Laura Gasco. 2020. "Partially Defatted Tenebrio molitor Larva Meal in Diets for Grow-Out Rainbow Trout, Oncorhynchus mykiss (Walbaum): Effects on Growth Performance, Diet Digestibility and Metabolic Responses" Animals 10, no. 2: 229. https://doi.org/10.3390/ani10020229
APA StyleChemello, G., Renna, M., Caimi, C., Guerreiro, I., Oliva-Teles, A., Enes, P., Biasato, I., Schiavone, A., Gai, F., & Gasco, L. (2020). Partially Defatted Tenebrio molitor Larva Meal in Diets for Grow-Out Rainbow Trout, Oncorhynchus mykiss (Walbaum): Effects on Growth Performance, Diet Digestibility and Metabolic Responses. Animals, 10(2), 229. https://doi.org/10.3390/ani10020229