Anthelmintic Activity of Wormwood (Artemisia absinthium L.) and Mallow (Malva sylvestris L.) against Haemonchus contortus in Sheep
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Ethics Statement
2.2. Analysis of Bioactive Compounds
2.3. In Vitro Test
2.4. Experiment In Vivo
2.5. Blood Sera Analysis
2.6. Statistical Analysis
3. Results
3.1. Bioactive Compounds
3.2. In Vitro Test (EHT)
3.3. Parasitological Status
3.4. Inflammatory Response
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lamb, J.; Elliott, T.; Chambers, M.; Chick, B. Broad spectrum anthelmintic resistance of Haemonchus contortus in Northern NSW of Australia. Vet. Parasitol. 2017, 24, 48–51. [Google Scholar] [CrossRef]
- Tariq, K.A.; Chishti, M.Z.; Ahmad, F.; Shawl, A.S. Anthelmintic activity of extracts of Artemisia absinthium against ovine nematodes. Vet. Parasitol. 2009, 160, 83–88. [Google Scholar] [CrossRef]
- Akkari, H.; Rtibi, K.; B’chir, F.; Rekik, M.; Darghouth, M.A.; Gharbi, M. In vitro evidence that the pastoral Artemisia campestris species exerts an anthelmintic effect on Haemonchus contortus from sheep. Vet. Res. Commun. 2014, 38, 249–255. [Google Scholar] [CrossRef]
- Kordali, S.; Kotan, R.; Mavi, A.; Cakir, A.; Ala, A.; Yildirim, A. Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, Artemisia santonicum and Artemisia spicigera essential oils. J. Agric. Food Chem. 2005, 53, 9452–9458. [Google Scholar]
- Kharoubi, O.; Slimani, M.; Krouf, D.; Seddik, L.; Aoues, A. Role of wormwood (Artemisia absinthium) extract on oxidative stress in ameliorating lead induced haematotoxicity. Afr. J. Tradit. Complement. Altern. Med. 2008, 5, 263–270. [Google Scholar] [CrossRef]
- Msaada, K.; Salem, N.; Bachrouch, O.; Bousselmi, S.; Tammar, S.; Alfaify, A.; Al Sane, K.; Ammar, W.B.; Azeiz, S.; Brahim, A.H.; et al. Chemical Composition and Antioxidant and Antimicrobial Activities of Wormwood (Artemisia absinthium L.) Essential Oils and Phenolics. J. Chem. 2015, 804658. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Németh Zámboriné, É. Sources of variability of wormwood (Artemisia absinthium L.) essential oil. J. Appl. Res. Med. Aromat. Plants 2016, 3, 143–150. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, C.H.; Ko, Y.D. Influence of dietary addition of dried wormwood (Artemisia sp.) on the performance and carcass characteristics of Hanwoo steers and the nutrient digestibility of sheep. Asian–Aust. J. Anim. Sci. 2002, 15, 390–395. [Google Scholar] [CrossRef]
- Kim, Y.M.; Kim, J.H.; Kim, S.C.; Ha, H.M.; Ko, Y.D.; Kim, C.H. Influence of dietary addition of dried wormwood (Artemisia sp.) on the performance, carcass characteristics and fatty acid composition of muscle tissues of Hanwoo heifers. Asian–Aust. J. Anim. Sci. 2002, 15, 549–554. [Google Scholar] [CrossRef]
- Ko, Y.D.; Kim, J.H.; Adesogan, A.T.; Ha, H.M.; Kim, S.C. The effect of replacing rice straw with dry wormwood (Artemisia sp.) on intake, digestibility, nitrogen balance and ruminal fermentation characteristics in sheep. Anim. Feed Sci. Technol. 2006, 125, 99–110. [Google Scholar] [CrossRef]
- Cutillo, F.; D’Abrosca, B.; Dellagreca, M.; Fiorentino, A.; Zarrelli, A. Terpenoids and phenol derivatives from Malva silvestris. Phytochemistry 2006, 67, 481–485. [Google Scholar] [CrossRef] [PubMed]
- Gasparetto, J.C.; Martins, C.A.; Hayashi, S.S.; Otuky, M.F.; Pontarolo, R. Ethnobotanical and scientific aspects of Malva sylvestris L.: A millennial herbal medicine. J. Pharm. Pharmacol. 2012, 64, 172–189. [Google Scholar] [CrossRef] [PubMed]
- Zohra, S.F.; Meriem, B.; Samira, S. Some Extracts of Mallow Plant and its Role in Health. APCBEE Procedia 2013, 5, 546–550. [Google Scholar] [CrossRef] [Green Version]
- Prudente, A.S.; Loddi, A.M.; Duarte, M.R.; Santos, A.R.; Pochapski, M.T.; Pizzolatti, M.G.; Hayashi, S.S.; Campos, F.R.; Pontarolo, R.; Santos, F.A.; et al. Pre-clinical anti-inflammatory aspects of a cuisine and medicinal millennial herb: Malva sylvestris L. Food Chem. Toxicol. 2013, 58, 324–331. [Google Scholar] [CrossRef]
- Váradyová, Z.; Pisarčíková, J.; Babják, M.; Hodges, A.; Mravčáková, D.; Kišidayová, S.; Königová, A.; Vadlejch, J.; Várady, M. Ovicidal and larvicidal activity of extracts from medicinal-plants against Haemonchus contortus. Exp. Parasitol. 2018, 195, 71–77. [Google Scholar] [CrossRef]
- Váradyová, Z.; Mravčáková, D.; Babják, M.; Bryszak, M.; Grešáková, Ľ.; Čobanová, K.; Kišidayová, S.; Plachá, I.; Königová, A.; Cieslak, A.; et al. Effects of herbal nutraceuticals and/or zinc against Haemonchus contortus in lambs experimentally infected. BMC Vet. Res. 2018, 14, 78. [Google Scholar] [CrossRef]
- Mravčáková, D.; Váradyová, Z.; Kopčáková, A.; Čobanová, K.; Grešáková, Ľ.; Kišidayová, S.; Babják, M.; Urda Dolinská, M.; Dvorožňáková, E.; Königová, A.; et al. Natural chemotherapeutic alternatives for controlling of haemonchosis in sheep. BMC Vet. Res. 2019, 15, 302. [Google Scholar] [CrossRef]
- Váradyová, Z.; Kišidayová, S.; Čobanová, K.; Grešáková, Ľ.; Babják, M.; Königová, A.; Urda Dolinská, M.; Várady, M. The impact of a mixture of medicinal herbs on ruminal fermentation, parasitological status and hematological parameters of the lambs experimentally infected with Haemonchus contortus. Small Rumin. Res. 2017, 151, 124–132. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Matkowski, A.; Ślusarczyk, S.; Magné, C.; Poleze, T.; Pereira, C.; Custódio, L. Sea knotgrass (Polygonum maritimum L.) as a potential source of innovative industrial products for skincare applications. Ind. Crop. Prod. 2019, 128, 391–398. [Google Scholar] [CrossRef]
- Rodrigues, M.J.; Monteiro, I.; Placines, C.; Castañeda-Loaiza, V.; Ślusarczyk, S.; Matkowski, A.; Pereira, C.; Pousão-Ferreira, P.; Custódio, L. The irrigation salinity and harvesting affect the growth, chemical profile and biological activities of Polygonum maritimum L. Ind. Crop. Prod. 2019, 139, 111510. [Google Scholar] [CrossRef]
- Yadav, R.N.S.; Agarwala, M. Phytochemical analysis of some medicinal plants. J. Phytol. 2011, 3, 10–14. [Google Scholar]
- Jaradat, N.; Hussen, F.; Al Ali, A. Preliminary Phytochemical Screening, Quantitative Estimation of Total Flavonoids, Total Phenols and Antioxidant Activity of Ephedra alata Decne. J. Mater. Environ. Sci. 2015, 6, 1771–1778. [Google Scholar]
- Coles, G.C.; Bauer, C.; Borgsteede, F.H.M.; Geerts, S.; Klei, T.R.; Taylor, M.A.; Waller, P.J. World Association for the Advancement of Veterinary Parasitology (W.A.A.V.P) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Vet. Parasitol. 1992, 44, 35–44. [Google Scholar] [CrossRef]
- Babják, M.; Königová, A.; Urda Dolinská, M.; Vadlejch, J.; Várady, M. Anthelmintic resistance in goat herds—In vivo versus in vitro detection methods. Vet. Parasitol. 2018, 139, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.; Itagaki, S.; Kurokawa, T.; Ogura, J.; Kobayashi, M.; Hirano, T.; Sugawara, M.; Iseki, K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 2011, 403, 136–138. [Google Scholar] [CrossRef] [PubMed]
- Tajik, N.; Tajik, M.; Mack, I.; Enck, P. The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. Eur. J. Nutr. 2017, 56, 2215–2244. [Google Scholar] [CrossRef] [PubMed]
- Castañeda-Ramírez, G.S.; Torres-Acosta, J.F.J.; Sandoval-Castro, C.A.; Borges-Argáez, R.; Cáceres-Farfán, M.; Mancilla-Montelongo, G.; Mathieu, C. Bio-guided fractionation to identify Senegalia gaumeri leaf extract compounds with anthelmintic activity against Haemonchus contortus eggs and larvae. Vet. Parasitol. 2019, 270, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 162750. [Google Scholar] [CrossRef] [Green Version]
- Kozan, E.; Anul, S.A.; Tatli, I.I. In vitro anthelmintic effect of Vicia pannonica var. purpurascens on trichostrongylosis in sheep. Exp. Parasitol. 2013, 134, 299–303. [Google Scholar] [CrossRef]
- Ferreira, L.E.; Castro, P.M.; Chagas, A.C.; França, S.C.; Beleboni, R.O. In vitro anthelmintic activity of aqueous leaf extract of Annona muricata L. (Annonaceae) against Haemonchus contortus from sheep. Exp. Parasitol. 2013, 134, 327–332. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, Z.; Lateef, M.; Ashraf, M.; Jabbar, A. Anthelmintic activity of Artemisia brevifolia in sheep. J. Ethnopharmacol. 2004, 93, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Irum, S.; Ahmed, H.; Mirza, B.; Donskow-Łysoniewska, K.; Muhammad, A.; Qayyum, M.; Simsek, S. In vitro and in vivo anthelmintic activity of extracts from Artemisia parviflora and A. sieversiana. Helminthologia 2017, 54, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Borgsteede, H.M.; Couwenberg, T. Changes in LC50 in an in vitro egg development assay during the patent period of Haemonchus contortus in sheep. Res. Vet. Sci. 1987, 42, 413–414. [Google Scholar] [CrossRef]
- Akkari, H.; B’chir, F.; Hajaji, S.; Rekik, M.; Sebai, E.; Hamza, H.; Darghouth, M.A.; Gharbi, M. Potential anthelmintic effect of Capparis spinose (Capparidaceae) as related to its polyphenolic content and antioxidant activity. Vet. Med. Czech. 2016, 61, 308–316. [Google Scholar] [CrossRef] [Green Version]
- Spiegler, V.; Liebau, E.; Hensel, A. Medicinal plant extracts and plant-derived polyphenols with anthelmintic activity against intestinal nematodes. Nat. Prod. Rep. 2017, 34, 627–643. [Google Scholar] [CrossRef] [PubMed]
- Brusotti, G.; Cesari, I.; Dentamaro, A.; Caccialanza, G.; Massolini, G. Isolation and characterization of bioactive compounds from plant resources: The role of analysis in the ethnopharmacological approach. J. Pharm. Biomed. Anal. 2014, 87, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Klongsiriwet, C.; Quijada, J.; Williams, A.R.; Mueller-Harvey, I.; Williamson, E.M.; Hoste, H. Synergistic inhibition of Haemonchus contortus exsheathment by flavonoid monomers and condensed tannins. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Xutian, S.; Zhang, J.; Louise, W. New exploration and understanding of traditional Chinese medicine. Am. J. Chinese Med. 2009, 37, 411–426. [Google Scholar]
- Long, F.; Yang, H.; Xu, Y.; Hao, H.; Li, P. A strategy for the identification of combinatorial bioactive compounds contributing to the holistic effect of herbal medicines. Sci. Rep. 2015, 5, 12361. [Google Scholar] [CrossRef] [Green Version]
- Váradyová, Z.; Mravčáková, D.; Holodová, M.; Grešáková, Ľ.; Pisarčíková, J.; Barszcz, M.; Taciak, M.; Tuśnio, A.; Kišidayová, S.; Čobanová, K. Modulation of ruminal and intestinal fermentation by medicinal plants and zinc from different sources. J. Anim. Physiol. Anim. Nutr. (Berl) 2018, 102, 1131–1145. [Google Scholar]
- Gaillard, B.D.; Richards, G.N. Presence of soluble lignin-carbohydrate complexes in the bovine rumen. Carbohydr. Res. 1975, 42, 135–145. [Google Scholar] [CrossRef]
- Pisulewski, P.M.; Okorie, A.U.; Buttery, P.J.; Haresign, W.; Lewis, D. Ammonia concentration and protein synthesis in the rumen. J. Sci. Food Agric. 1981, 32, 759–766. [Google Scholar] [CrossRef] [PubMed]
- Tufarelli, V.; Casalino, E.; D’Alessandro, A.G.; Laudadio, V. Dietary phenolic compounds: Biochemistry, metabolism and significance in animal and human health. Curr. Drug Metab. 2017, 18, 905–913. [Google Scholar] [CrossRef] [PubMed]
- Mavrot, F.; Hertzberg, H.; Torgerson, P. Effect of gastro-intestinal nematode infection on sheep performance: A systematic review and meta-analysis. Parasit. Vectors 2015, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- Castagna, F.; Palma, E.; Cringoli, G.; Bosco, A.; Nistico, N.; Caligiuri, G.; Britti, D.; Musella, V. Use of complementary natural feed for gastrointestinal nematodes control in sheep: Effectiveness and benefits for animals. Animals 2019, 9, 1037. [Google Scholar] [CrossRef] [Green Version]
Plant Species | Tannins | Flavonoids | Glycosides | Saponins | Alkaloids | Terpenoids |
---|---|---|---|---|---|---|
A. absinthium | + | - | - | + | - | + |
M. sylvestris | + | + | + | - | + | + |
No. | RT (min) | λmax (nm) | m/z [M-H]- | MS2 | MS2 Fragments | Formula | Compound | Flavonoids | Phenolic Acids |
---|---|---|---|---|---|---|---|---|---|
Artemisia absinthium | |||||||||
1 | 2.80 | 189.0759 | 127/0759 | 171/145/115 | C8H14O5 | L-(-)Malic acid diethyl ester | 0.22 | ||
2 | 4.10 | 215.325 | 353.0877 | 191/0567 | 179/161/135 | C16H18O9 | Chlorogenic acid | 3.42 | |
3 | 7.80 | 281.1023 | C14H18O6 | ND | 0.01 | ||||
4 | 8.00 | 367.1031 | 191/0546 | 173 | C17H20O9 | 3-O-Feruloylquinic acid | 0.08 | ||
5 | 8.90 | 279.1223 | 234/1009 | 261/217/177/199 | C15H20O5 | Artabsinolide | |||
6 | 9.10 | 325.1283 | 163 | 279/235 | C16H22O7 | ND | 0.03 | ||
7 | 9.20 | 327.1440 | 279 | 235 | C16H24O7 | ND | |||
8 | 10.00 | 289.000 | 263.1282 | 201/1271 | 245/219/149/161/177 | C15H20O4 | Tanacetin | ||
9 | 10.20 | 281.1386 | 219/373 | 263/237/201 | C16H24O7 | Artabsinolide D | |||
10 | 11.00 | 515.1193 | 353/0867 | 191/179/135 | C25H24O12 | 1,5-Dicaffeoylquinic acid | 2.12 | ||
11 | 11.20 | 653.1719 | 345/0595 | 330/302 | C29H34O17 | Spinacetin 3-rutinoside | 0.24 | ||
12 | 11.40 | 477.1032 | 314/0415 | 357 | C22H22O12 | Isorhamnetin 7-glucoside | 0.10 | ||
13 | 11.70 | 515.1192 | 353/0869 | 173/179/191/155 | C25H24O12 | 4,5-Dicaffeoylquinic acid | 0.61 | ||
14 | 14.90 | 507.1502 | 413/1246 | 101/324/259 | C24H28O12 | Hedycoryside B | |||
15 | 15.00 | 511.2698 | 467/2775 | 405 | C30H40O7 | Anabsin | |||
16 | 15.50 | 345.1344 | 301/1433 | 257/213/187 | C19H22O6 | Diosbulbin E | |||
17 | 15.60 | 511.2698 | 245/1175 | 263/201 | C30H40O7 | Anabsin | |||
18 | 16.50 | 329.2323 | 211/1324 | 229/171/183/139 | C18H34O5 | Pinellic acid | |||
Total flavonoids and phenolic acids | 0.35 | 6.48 | |||||||
Malva sylvestris | |||||||||
1 | 1.60 | 250.320 | 517.1195 | 355/0667 | 193 | C21H26O15 | Ferullo-O-Hex-O-Hex | 0.02 | |
2 | 1.80 | 250.301 | 206.0443 | 144/0437 | C10H9NO4 | ND | 0.17 | ||
3 | 7.00 | 523 | 757.1846 | 347/0761 | 329/261/509 | C32H39O21 | Delphinidin 5-glucoside 3-lathyroside | 1.64 | |
4 | 7.90 | 308 | 163.0381 | 119/0502 | C9H8O3 | Coumaric acid | 0.47 | ||
5 | 8.00 | 288 | 465.1046 | 303/0505 | 285/275/177 | C21H22O12 | Xeractinol | 0.17 | |
6 | 8.20 | 520 | 449.1094 | 287/0555 | 259/243 | C21H22O11 | Cyanidin-O-Hex | 0.28 | |
7 | 8.50 | 518 | 593.1645 | 431/0982 | 269/0460 | C27H31O15 | Pelargonidin-O-Hex-O-Hex | 0.14 | |
8 | 8.70 | 283 | 687.1784 | 507/1142 | 345/0629/165 | ND | 0.18 | ||
9 | 9.00 | 283 | 525.1246 | 345/0815 | 165/197/139 | C23H25O14 | ND | 0.07 | |
10 | 9.20 | 287 | 303.0498 | 153/0169 | 125/217 | C15H12O7 | ND | 0.04 | |
11 | 9.50 | 283 | 773.1781 | 507/1124 | 345/165 | C32H38O22 | ND | 0.22 | |
12 | 10.00 | 609.1458 | 301/0330 | C27H31O16 | Quercetin-3-O-rutinoside | 0.40 | |||
13 | 10.20 | 268.343 | 447.0928 | 285/0386 | C21H20O11 | Kaempferol-O-Hex | 0.49 | ||
14 | 10.50 | 346 | 505.0981 | 343/0442 | C23H22O13 | Quercetin 3’-glucoside-7-acetate | 0.03 | ||
15 | 10.90 | 266.343 | 593.1504 | 285/0395 | C27H30O15 | Kaempferol-3-O-rutinoside | 0.82 | ||
16 | 11.10 | 291.346 | 433.1124 | 271/0599 | 151 | C21H22O10 | Naringenin-O-Hex | 0.13 | |
17 | 11.25 | 291 | 287.0550 | 259/0596 | 152/201/243 | C15H12O6 | Tetrahydroxyflavone | 0.30 | |
18 | 11.40 | 268.336 | 431.0978 | 269/0435 | C21H20O10 | Apigenin-O-Hex | 1.56 | ||
19 | 15.00 | 285.340 | 271.0595 | 151/0012 | 177/119 | C15H12O5 | Naringenin | 0.01 | |
20 | 15.40 | 327.2169 | C18H32O5 | (E)-10-(8-Hydroxyoctanoyloxy)-enoic acid | |||||
21 | 15.70 | 215.334 | 269.0443 | 151/0016 | 225 | C15H10O5 | Trihydroxyflavone | 0.02 | |
Total flavonoids and phenolic acids | 6.50 | 0.66 | |||||||
Mix of A. absinthium and M. sylvestris | |||||||||
1 | 4.00 | 215.325 | 353.0883 | 191/0561 | 173/179 | C16H18O9 | 4-O-Caffeoylquinic acid | 0.61 | |
2 | 4.10 | 215.325 | 353.0883 | 191/0561 | 179/173 | C16H18O9 | 3-O-Caffeoylquinic acid | 0.74 | |
3 | 5.90 | 215.287 | 355.1035 | 193/0498 | 149/134 | C16H20O9 | 1-O-2’-Hydroxy-4’- methoxycinnamoyl -b-D-glucose | 0.38 | |
4 | 6.10 | 215.302 | 355.1038 | 149/0598 | 193/134 | C16H20O9 | 1-O-Feruloylglucose | 0.70 | |
5 | 7.90 | 161.0225 | 133/0282 | C9H6O3 | Umbeliferone | 0.40 | |||
6 | 8.00 | 323.0760 | 161/0221 | C15H16O8 | Mahaleboside | 0.02 | |||
7 | 8.10 | 225.287 | 465.1033 | 303/177 | 285/0399 | C21H22O12 | Xeractinol | 0.04 | |
8 | 8.30 | 520.000 | 449.1094 | 287/0555 | 259/243 | C21H22O11 | Cyanidin-O-Hex | 0.03 | |
9 | 8.50 | 367.1025 | 173/0433 | 193/155/134 | C17H20O9 | Feruloylquinic acid | 0.25 | ||
10 | 9.00 | 233.294.318 | 355.1034 | 193/0507 | 149/134 | C16H20O9 | Methyl-4-O-beta-D- glucopyranosylcaffeate | 2.23 | |
11 | 9.80 | 255.354 | 463.0882 | 301/0337 | 343 | C21H20O12 | Quercetin O-Hex | 0.44 | |
12 | 9.90 | 252.351 | 609.1472 | 301/0331 | 285/0415 | C27H30O16 | Isoquercitrin O-Dhex | 0.42 | |
13 | 10.30 | 257,4 | 447.0920 | 285/0386 | C21H20O11 | Kaempferol-O-Hex | 1.40 | ||
14 | 10.70 | 217.291.325 | 515.1189 | 353/0877 | 179/191 | C25H24O12 | 3,5-Dicaffeoylquinic acid | 0.80 | |
15 | 10.80 | 187.0958 | 125/0968 | 169 | C9H16O4 | ND | |||
16 | 10.90 | 221.329 | 593.1520 | 285/0397 | C27H30O15 | Kaempferol-3-O-rutinoside | 0.37 | ||
17 | 11.10 | 217.291.325 | 515.1197 | 353/0869 | 191/179 | C25H24O12 | 1,5-Dicaffeoylquinic acid | 1.64 | |
18 | 11.15 | 291.346 | 433.1124 | 271/0599 | 151 | C21H22O10 | Naringenin-O-Hex | 0.19 | |
19 | 11.40 | 266.3 | 431.0976 | 269/0434 | C21H20O10 | Apigenin O-Hex | 0.56 | ||
20 | 11.50 | 268.343 | 447.0928 | 285/0386 | C21H20O11 | Luteolin O-Hex | 0.70 | ||
21 | 11.60 | 266.3 | 431.0976 | 269/0434 | C21H20O10 | Apigenin O-Hex | 0.73 | ||
22 | 11.70 | 215.290.325 | 515.119 | 353/0868 | 173/179/191 | C25H24O12 | 4,5-Dicaffeoylquinic acid | 0.68 | |
23 | 12.40 | 325.0 | 517.1342 | 355/1022 | 353/193/149/161 | C25H26O12 | 3-caffeoyl-4-dihydrocaffeoyl quinic acid | 0.35 | |
24 | 12.90 | 268.320 | 639.3176 | 519/2604 | 476/373/145 | C37H44N4O6 | Tris-trans-p-coumaroylspermine | 0.50 | |
25 | 13.10 | 218.268.339 | 473.1083 | 269/0426 | 413 | C23H22O11 | Apigenin -O-(Hex-Ac) | 0.12 | |
26 | 13.70 | 325.0 | 517.1330 | 323/0759 | 353/193/149/161 | C25H26O12 | 4-caffeoyl-3-dihydrocaffeoyl quinic acid | 0.07 | |
27 | 14.20 | 218.268.339 | 473.1083 | 269/0426 | 413 | C23H22O11 | Apigenin -O-(Hex-Ac) | 0.22 | |
28 | 14.40 | 266.336 | 515.1187 | 269/0444 | C25H24O12 | Formononetin 7-O-glucoside-6’’-malonate | 0.22 | ||
29 | 15.00 | 285.340 | 271.0595 | 151/0012 | 177/119 | C15H12O5 | Naringenin | 0.07 | |
30 | 15.40 | 327.2169 | C18H32O5 | (E)-10-(8-Hydroxyoctanoyloxy)dec-2-enoic acid | 0.03 | ||||
31 | 15.70 | 215.334 | 269.0443 | 151/0016 | 225 | C15H10O5 | Trihydroxyflavone | 0.03 | |
32 | 17.10 | 222.309 | 785.3554 | 545/2397 | 665/502/399/145 | C46H50N4O8 | Tetra-trans-p-coumaroylspermine | 0.47 | |
33 | 19.00 | 373.0914 | 358/0681 | 343/329/315 | C19H18O8 | Dihydroxy—tetramethoxyflavone | 0.03 | ||
34 | 20.30 | 267.334 | 559.1069 | 269/0443 | 515/1172 | C26H24O14 | Apigenin 7-(2’’-acyl-6”maloylglycosyl) | 0.13 | 0.65 |
Total flavonoids and phenolic acids | 5.51 | 10.7 |
Item | Day | UNS | ART | MAL | ARTMAL | SD | Significance of Effects | ||
---|---|---|---|---|---|---|---|---|---|
Treatment (T) | Time | T × Time | |||||||
IgG | 15 | 0.627 | 2.15 | 2.31 | 2.23 | 2.54 | NS | NS | NS |
(ng/mL) | 30 | 1.03 | 0.780 | 0.986 | 1.61 | 1.61 | |||
45 | 1.33 | 0.639 | 0.378 | 1.04 | 1.07 | ||||
70 | 1.16 | 0.689 | 3.53 | 1.39 | 1.66 | ||||
IgA | 15 | 0.434 | 1.28 | 0.811 | 0.767 | 0.522 | NS | NS | NS |
(ng/mL) | 30 | 0.825 | 0.666 | 0.519 | 0.589 | 0.245 | |||
45 | 0.529 | 0.438 | 0.787 | 0.485 | 0.233 | ||||
70 | 0.813 | 0.696 | 0.726 | 0.626 | 0.195 | ||||
EPX | 15 | 37.5 | 66.6 | 52.2 | 50.0 | 17.9 | * | * | NS |
(ng/mL) | 30 | 44.0 | 36.9 | 29.4 | 44.8 | 13.9 | |||
45 | 31.4 | 38.6 | 24.1 | 51.4 | 17.5 | ||||
70 | 49.2 | 33.4 | 37.8 | 73.4 | 21.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mravčáková, D.; Komáromyová, M.; Babják, M.; Urda Dolinská, M.; Königová, A.; Petrič, D.; Čobanová, K.; Ślusarczyk, S.; Cieslak, A.; Várady, M.; et al. Anthelmintic Activity of Wormwood (Artemisia absinthium L.) and Mallow (Malva sylvestris L.) against Haemonchus contortus in Sheep. Animals 2020, 10, 219. https://doi.org/10.3390/ani10020219
Mravčáková D, Komáromyová M, Babják M, Urda Dolinská M, Königová A, Petrič D, Čobanová K, Ślusarczyk S, Cieslak A, Várady M, et al. Anthelmintic Activity of Wormwood (Artemisia absinthium L.) and Mallow (Malva sylvestris L.) against Haemonchus contortus in Sheep. Animals. 2020; 10(2):219. https://doi.org/10.3390/ani10020219
Chicago/Turabian StyleMravčáková, Dominika, Michaela Komáromyová, Michal Babják, Michaela Urda Dolinská, Alžbeta Königová, Daniel Petrič, Klaudia Čobanová, Sylwester Ślusarczyk, Adam Cieslak, Marián Várady, and et al. 2020. "Anthelmintic Activity of Wormwood (Artemisia absinthium L.) and Mallow (Malva sylvestris L.) against Haemonchus contortus in Sheep" Animals 10, no. 2: 219. https://doi.org/10.3390/ani10020219
APA StyleMravčáková, D., Komáromyová, M., Babják, M., Urda Dolinská, M., Königová, A., Petrič, D., Čobanová, K., Ślusarczyk, S., Cieslak, A., Várady, M., & Váradyová, Z. (2020). Anthelmintic Activity of Wormwood (Artemisia absinthium L.) and Mallow (Malva sylvestris L.) against Haemonchus contortus in Sheep. Animals, 10(2), 219. https://doi.org/10.3390/ani10020219