Dietary High Sodium Fluoride Impairs Digestion and Absorption Ability, Mucosal Immunity, and Alters Cecum Microbial Community of Laying Hens
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Ethics
2.2. Animals and Sample Collection
2.3. Experimental Parameters Measured
2.4. Real-Time PCR
2.5. DNA Extraction and Quantitative PCR Amplification
2.6. Bioinformatics Analysis
2.7. Statistical Analysis
3. Results
3.1. F Residues in the Duodenum of Laying Hens
3.2. Digestive Enzyme Activities
3.3. MUC2 and sIgA mRNA Expression
3.4. Concentrations of sIgA in Jejunum and Ileum
3.5. Cecal Microbiota
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Schroder, J.; Basta, N.; Payton, M.; Wilson, J.; Carlson, R.; Janz, D.; Lochmiller, R. Ecotoxicological risks associated with land treatment of petrochemical wastes. I. Residual soil contamination and bioaccumulation by cotton rats (Sigmodon hispidus). J. Toxicol. Environ. 2003, 66, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Vithanage, M.; Bhattacharya, P. Fluoride in the environment: Sources, distribution and defluoridation. Environ. Chem. Lett. 2015, 13, 131–147. [Google Scholar] [CrossRef]
- Yan, X.; Feng, C.; Chen, Q.; Li, W.; Wang, H.; Lv, L.; Smith, G.W.; Wang, J. Effects of sodium fluoride treatment in vitro on cell proliferation, apoptosis and caspase-3 and caspase-9 mrna expression by neonatal rat osteoblasts. Arch. Toxicol. 2009, 83, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Huang, H.; Gong, B.; Duan, L.; Sun, L.; He, T.; Cheng, X.; Li, Z.; Cui, L.; Ba, Y. Do Environmental Fluoride Exposure and ESRα Genetic Variation Modulate Methylation Modification on Bone Changes in Chinese Farmers? Chem. Res. Toxicol. 2017, 30, 1302–1308. [Google Scholar] [CrossRef]
- Sharma, D.; Singh, A.; Verma, K.; Paliwal, S.; Sharma, S.; Dwivedi, J. Fluoride: A review of pre-clinical and clinical studies. Environ. Toxicol. Pharmacol. 2017, 56, 297–313. [Google Scholar] [CrossRef]
- Suzuki, M.; Ikeda, A.; Bartlett, J.D. Sirt1 overexpression suppresses fluoride-induced p53 acetylation to alleviate fluoride toxicity in ameloblasts responsible for enamel formation. Arch. Toxicol. 2017, 92, 1283–1293. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, Y.; Wang, J.; Manthari, R.K.; Wang, J. Fluoride induces apoptosis and autophagy through the IL-17 signaling pathway in mice hepatocytes. Arch. Toxicol. 2018, 92, 3277–3289. [Google Scholar] [CrossRef]
- Antonio, L.S.; Jeggle, P.; MacVinish, L.J.; Bartram, J.C.; Miller, H.; Jarvis, G.E.; Levy, F.M.; Santesso, M.R.; Leite, A.L.; Oliveira, R.C.; et al. The effect of fluoride on the structure, function, and proteome of a renal epithelial cell monolayer. Environ. Toxicol. 2017, 32, 1455–1467. [Google Scholar] [CrossRef]
- Deng, H.; Kuang, P.; Cui, H.; Chen, L.; Luo, Q.; Fang, J.; Zuo, Z.; Deng, J.; Wang, X.; Zhao, L. Sodium fluoride (NaF) induces the splenic apoptosis via endoplasmic reticulum (ER) stress pathway in vivo and in vitro. Aging 2016, 8, 3552. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Li, S.; Yu, Y.; Chen, H.; Ommati, M.M.; Manthari, R.K.; Niu, R.; Wang, J. Alterations in epididymal proteomics and antioxidant activity of mice exposed to fluoride. Arch. Toxicol. 2018, 92, 169–180. [Google Scholar] [CrossRef]
- Wang, H.W.; Zhao, W.P.; Tan, P.P.; Liu, J.; Zhao, J.; Zhou, B.H. The MMP-9/TIMP-1 system is involved in fluoride-induced reproductive dysfunctions in female mice. Biol. Trace Elem. Res. 2017, 178, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Luo, Q.; Cui, H.; Peng, X.; Fang, J.; Zuo, Z.; Deng, J.; Liu, J.; Deng, Y. Dietary high fluorine alters intestinal microbiota in broiler chickens. Biol. Trace Elem. Res. 2016, 173, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.W.; Liu, J.; Zhao, W.P.; Zhang, Z.H.; Li, S.Q.; Li, S.H.; Zhu, S.Q.; Zhou, B.H. Effect of Fluoride on Small Intestine Morphology and Serum Cytokine Contents in Rats. Biol. Trace Elem. Res. 2019, 189, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Gharzouli, K. Senator A Fluoride absorption in vitro by the gastrointestinal tract of the rat. Fluoride 1994, 27, 185–188. [Google Scholar]
- Mowat, A.M.; Agace, W.W. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 2014, 14, 667. [Google Scholar] [CrossRef]
- Moran Jr, E.T. Nutrition of the developing embryo and hatchling. Poult. Sci. 2007, 86, 1043–1049. [Google Scholar] [CrossRef]
- Noy, Y.; Geyra, A.; Sklan, D. The effect of early feeding on growth and small intestinal development in the posthatch poult. Poult. Sci. 2001, 80, 912–919. [Google Scholar] [CrossRef]
- Potturi, P.L.; Patterson, J.A.; Applegate, T.J. Effects of delayed placement on intestinal characteristics in turkey poults. Poult. Sci. 2005, 84, 816–824. [Google Scholar] [CrossRef]
- Maslowski, K.M.; Mackay, C.R. Diet, gut microbiota and immune responses. Nat. Immunol. 2011, 12, 5–9. [Google Scholar] [CrossRef]
- Kau, A.L.; Ahern, P.P.; Griffin, N.W.; Goodman, A.L.; Gordon, J.I. Human nutrition, the gut microbiome and the immune system. Nature 2011, 474, 327–336. [Google Scholar] [CrossRef] [Green Version]
- Miao, L.; Li, L.; Qi, M.; Zhou, M.; Zhang, N.; Zou, X. Effects of excess dietary fluoride on serum biochemical indices, egg quality, and concentrations of fluoride in soft organs, eggs, and serum of laying hens. Biol. Trace Elem. Res. 2017, 180, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.Y.; Azzam, M.M.M.; Zou, X.T. Effects of dietary threonine supplementation on intestinal barrier function and gut microbiota of laying hens. Poult. Sci. 2017, 96, 3654–3663. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.P.; Li, L.L.; Zhu, M.K.; Dong, X.Y.; Elwan, H.A.M.; Zou, X.T. Excess dietary fluoride affects laying performance, egg quality, tissue retention, serum biochemical indices, and reproductive hormones of laying hens. Poult. Sci. 2019, 98, 6873–6879. [Google Scholar] [CrossRef]
- Youle, R.J.; Van Der Bliek, A.M. Mitochondrial fission, fusion, and stress. Science 2012, 337, 1062–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petit, P.X.; Lecoeur, H.; Zorn, E.; Dauguet, C.; Mignotte, B.; Gougeon, M.L. Alterations in mitochondrial structure and function are early events of dexamethasone–induced thymocyte apoptosis. J. Cell Biol. 1995, 130, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Tu, W.; Zhang, Q.; Liu, Y.; Han, L.; Wang, Q.; Chen, P.P.; Zhang, S.; Wang, A.G.; Zhou, X. Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells. Toxicol. Appl. Pharmacol. 2018, 347, 60–69. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Niu, Q.; Chen, J.; Xia, T.; Zhou, G.; Li, P.; Dong, L.; Xu, C.; Tian, Z.; Luo, C.; et al. Roles of mitochondrial fission inhibition in developmental fluoride neurotoxicity: Mechanisms of action in vitro and associations with cognition in rats and children. Arch. Toxicol. 2019, 93, 709–726. [Google Scholar] [CrossRef] [PubMed]
- Valkonen, E.; Venäläinen, E.; Rossow, L.; Valaja, J. Effects of dietary energy content on the performance of laying hens in furnished and conventional cages. Poult. Sci. 2008, 87, 844–852. [Google Scholar] [CrossRef]
- Nochi, T.; Kiyono, H. Innate immunity in themucosal immune system. Curr. Pharm. Des. 2006, 12, 4203–4213. [Google Scholar] [CrossRef]
- Kim, Y.S.; Ho, S.B. Intestinal goblet cells and mucins in health and disease: Recent insights and progress. Curr. Gastroenterol. Rep. 2010, 12, 319–330. [Google Scholar] [CrossRef] [Green Version]
- McGuckin, M.A.; Lindén, S.K.; Sutton, P.; Florin, T.H. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 2011, 9, 265. [Google Scholar] [CrossRef] [PubMed]
- Andrianifahanana, M.; Moniaux, N.; Batra, S.K. Regulation of mucin expression: Mechanistic aspects and implications for cancer and inflammatory diseases. Biochim. Biophys. Acta-Rev. Cancer 2006, 1765, 189–222. [Google Scholar] [CrossRef] [PubMed]
- Heazlewood, C.K.; Cook, M.C.; Eri, R.; Price, G.R.; Tauro, S.B.; Taupin, D.; Thornton, D.J.; Png, C.W.; Crockford, T.L.; Cornall, R.J.; et al. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLos Med. 2008, 5, e54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lillehoj, H.S.; Trout, J.M. Avian gut-associated lymphoid tissues and intestinal immune responses to Eimeria parasites. Clin. Microbiol. Rev. 1996, 9, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Hosono, A.; Ozawa, A.; Kato, R.; OHNISHI, Y.; Nakanishi, Y.; Kimura, T.; Nakamura, R. Dietary fructooligosaccharides induce immunoregulation of intestinal IgA secretion by murine Peyer’s patch cells. Biosci. Biotechnol. Biochem. 2003, 67, 758–764. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macpherson, A.J.; Hunziker, L.; McCoy, K.; Lamarre, A. IgA responses in the intestinal mucosa against pathogenic and non-pathogenic microorganisms. Microbes Infect. 2001, 3, 1021–1035. [Google Scholar] [CrossRef]
- Sánchez de, M.F.; Romero-Calvo, I.; Mascaraque, C.; Martínez-Augustin, O. Intestinal inflammation and mucosal barrier function. Inflamm. Bowel Dis. 2014, 20, 2394–2404. [Google Scholar]
- Yan, W.; Sun, C.; Yuan, J.; Yang, N. Gut metagenomic analysis reveals prominent roles of Lactobacillus and cecal microbiota in chicken feed efficiency. Sci Rep. 2017, 7, 45308. [Google Scholar] [CrossRef]
- Million, M.; Angelakis, E.; Paul, M.; Armougom, F.; Leibovici, L.; Raoult, D. Comparative meta-analysis of the effect of Lactobacillus species on weight gain in humans and animals. Microb. Pathog. 2012, 53, 100–108. [Google Scholar] [CrossRef]
- Lowy, F.D. Staphylococcus aureus infections. N. Engl. J. Med. 1998, 339, 520–532. [Google Scholar] [CrossRef]
- Collins, M.D.; Hutson, R.A.; Falsen, E.; Inganäs, E.; Bisgaard, M. Streptococcus gallinaceus sp. nov., from chickens. Int. J. Syst. Evol. Microbiol. 2002, 52, 1161–1164. [Google Scholar] [PubMed] [Green Version]
- Feng, Y.Z.; ElMasry, G.; Sun, D.W.; Scannell, A.G.; Walsh, D.; Morcy, N. Near-infrared hyperspectral imaging and partial least squares regression for rapid and reagentless determination of Enterobacteriaceae on chicken fillets. Food Chem. 2013, 138, 1829–1836. [Google Scholar] [CrossRef]
- Athman, R.; Fernandez, M.I.; Gounon, P.; Sansonetti, P.; Louvard, D.; Philpott, D.; Robine, S. Shigella flexneri infection is dependent on villin in the mouse intestine and in primary cultures of intestinal epithelial cells. Cell Microbiol. 2005, 7, 1109–1116. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Yang, X.; Chen, L.; Chang, H.T.; Liu, H.Y.; Zhao, J.; Wang, X.W.; Wang, C.Q. Pathogenicity of Shigella in chickens. PLoS ONE 2014, 9, e100264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oakley, B.B.; Lillehoj, H.S.; Kogut, M.H.; Kim, W.K.; Maurer, J.J.; Pedroso, A.; Lee, M.D.; Collett, S.R.; Johnson, T.J.; Cox, N.A. The chicken gastrointestinal microbiome. FEMS Microbiol. Lett. 2014, 360, 100–112. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Composition, % | Nutrient 2 | Composition, % |
---|---|---|---|
Corn | 65.00 | Metabolizable energy, Mcal/kg | 2.65 |
Soybean meal (44.20% crude protein) | 20.50 | Crude protein, % | 15.64 |
Fish meal | 2.50 | Calcium, % | 3.51 |
Limestone | 7 | Total phosphorus, % | 0.65 |
Available phosphorus, % Available phosphoru | 0.46 | ||
Premix 1 | 5.00 | Lysine, % | 0.82 |
Methionine, % | 0.36 | ||
Tryptophan, % | 0.17 | ||
Total | 100.00 | (Methionine + cysteine), % | 0.65 |
Gene Symbol | Gene Name | Primer Sequence (5′-3′) | Accession No. |
---|---|---|---|
18s rRNA1 | 18s rRNA | F: ATTCCGATAACGAACGAGACT R: GGACATCTAAGGGCATCACA | AF173612.1 |
MUC2 | Mucin 2 | F: CAGCACCAACTTCTCAGTTCC R: TCTGCAGCCACACATTCTTT | NM_001318434 |
sIgA | Secretory immunoglobulin A | F: ACCACGGCTCTGACTGTACC R: CGATGGTCTCCTTCACATCA | S40610 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Miao, L.; Zhu, M.; Li, H.; Xu, Q.; Dong, X.; Zou, X. Dietary High Sodium Fluoride Impairs Digestion and Absorption Ability, Mucosal Immunity, and Alters Cecum Microbial Community of Laying Hens. Animals 2020, 10, 179. https://doi.org/10.3390/ani10020179
Miao L, Zhu M, Li H, Xu Q, Dong X, Zou X. Dietary High Sodium Fluoride Impairs Digestion and Absorption Ability, Mucosal Immunity, and Alters Cecum Microbial Community of Laying Hens. Animals. 2020; 10(2):179. https://doi.org/10.3390/ani10020179
Chicago/Turabian StyleMiao, Liping, Mingkun Zhu, Huaiyu Li, Qianqian Xu, Xinyang Dong, and Xiaoting Zou. 2020. "Dietary High Sodium Fluoride Impairs Digestion and Absorption Ability, Mucosal Immunity, and Alters Cecum Microbial Community of Laying Hens" Animals 10, no. 2: 179. https://doi.org/10.3390/ani10020179
APA StyleMiao, L., Zhu, M., Li, H., Xu, Q., Dong, X., & Zou, X. (2020). Dietary High Sodium Fluoride Impairs Digestion and Absorption Ability, Mucosal Immunity, and Alters Cecum Microbial Community of Laying Hens. Animals, 10(2), 179. https://doi.org/10.3390/ani10020179