1. Introduction
2. From Thoracic Radiography to Echocardiography
3. From Computed Tomography and Magnetic Resonance Imaging to Artificial Intelligence and Beyond
Author Contributions
Funding
Conflicts of Interest
References
- Scansen, B.A.; Drees, R. Joint virtual issue on recent advances in veterinary cardiac imaging. J. Vet. Intern. Med. 2020, 34, 546–548. [Google Scholar] [CrossRef] [PubMed]
- Buchanan, J.W. The history of veterinary cardiology. J. Vet. Cardiol. 2013, 15, 65–85. [Google Scholar] [CrossRef] [PubMed]
- Guglielmini, C.; Diana, A. Thoracic radiography in the cat: Identification of cardiomegaly and congestive heart failure. J. Vet. Cardiol. 2015, 17, S87–S101. [Google Scholar] [CrossRef] [PubMed]
- Lamb, C.R.; Boswood, A.; Volkman, A.; Connolly, D.J. Assessment of survey thoracic radiography as a method for diagnosis of congenital cardiac disease in dogs. J. Small Anim. Pract. 2001, 42, 541–545. [Google Scholar] [CrossRef] [PubMed]
- Guglielmini, C.; Diana, A.; Santarelli, G.; Torbidone, A.; Di Tommaso, M.; Baron Toaldo, M.; Cipone, M. Accuracy of the vertebral heart score and sphericity index for detection of pericardial effusion in canine thoracic radiographs. J. Am. Vet. Med. Assoc. 2012, 241, 1048–1055. [Google Scholar] [CrossRef] [PubMed]
- Guglielmini, C.; BaronToaldo, M.; Poser, H.; Menciotti, G.; Cipone, M.; Cordella, A.; Contiero, B.; Diana, A. Diagnostic accuracy of the vertebral heart score and other radiographic indices in the detection of cardiac enlargement in cats with different cardiac disorders. J. Feline Med. Surg. 2014, 16, 812–825. [Google Scholar] [CrossRef] [PubMed]
- Guglielmini, C.; Baron Toaldo, M.; Quinci, M.; Romito, G.; Luciani, A.; Cipone, M.; Drigo, M.; Diana, A. Sensitivity, specificity, and interobserver variability of thoracic radiography in the detection of heart base masses in dogs. J. Am. Vet. Med. Assoc. 2016, 248, 1391–1398. [Google Scholar] [CrossRef] [PubMed]
- Borgarelli, M.; Santilli, R.A.; Chiavegato, D.; D’Agnolo, G.; Zanatta, R.; Mannelli, A.; Tarducci, A. Prognostic indicators for dogs with dilated cardiomyopathy. J. Vet. Intern. Med. 2006, 20, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Borgarelli, M.; Savarino, P.; Crosara, S.; Santilli, R.A.; Chiavegato, D.; Poggi, M.; Bellino, C.; La Rosa, G.; Zanatta, R.; Haggstrom, J.; et al. Survival characteristics and prognostic variables of dogs with mitral regurgitation attributable to myxomatous valve disease. J. Vet. Intern. Med. 2008, 22, 120–128. [Google Scholar] [CrossRef] [PubMed]
- Hezzell, M.J.; Boswood, A.; Moonarmart, W.; Elliott, J. Selected echocardiographic variables change more rapidly in dogs that die from myxomatous mitral valve disease. J. Vet. Cardiol. 2012, 14, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Payne, J.R.; Borgeat, K.; Connolly, D.J.; Boswood, A.; Dennis, S.; Wagner, T.; Menaut, P.; Maerz, I.; Evans, D.; Simons, V.E.; et al. Prognostic indicators in cats with hypertrophic cardiomyopathy. J. Vet. Intern. Med. 2013, 27, 1427–1436. [Google Scholar] [CrossRef] [PubMed]
- Sargent, J.; Muzzi, R.; Mukherjee, R.; Somarathne, S.; Schranz, K.; Stephenson, H.; Connolly, D.; Brodbelt, D.; Luis Fuentes, V. Echocardiographic predictors of survival in dogs with myxomatous mitral valve disease. J. Vet. Cardiol. 2015, 17, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Baron Toaldo, M.; Romito, G.; Guglielmini, C.; Diana, A.; Pelle, N.G.; Contiero, B.; Cipone, M. Prognostic value of echocardiographic indices of left atrial morphology and function in dogs with myxomatous mitral valve disease. J. Vet. Intern. Med. 2018, 32, 914–921. [Google Scholar] [CrossRef] [PubMed]
- Spalla, I.; Payne, J.R.; Borgeat, K.; Luis Fuentes, V.; Connolly, D.J. Prognostic value of mitral annular systolic plane excursion and tricuspid annular plane systolic excursion in cats with hypertrophic cardiomyopathy. J. Vet. Cardiol. 2018, 20, 154–164. [Google Scholar] [CrossRef] [PubMed]
- Chan, I.P.; Weng, M.C.; Hsueh, T.; Lin, Y.C.; Lin, S.L. Prognostic value of right pulmonary artery distensibility in dogs with pulmonary hypertension. J. Vet. Sci. 2019, 20, e34. [Google Scholar] [CrossRef] [PubMed]
- Auriemma, E.; Armienti, F.; Morabito, S.; Specchi, S.; Rondelli, V.; Domenech, O.; Guglielmini, C.; Lacava, G.; Zini, E.; Khouri, T. Electrocardiogram-gated 16-multidetector computed tomographic angiography of the coronary arteries in dogs. Vet. Rec. 2018, 183, 473. [Google Scholar] [CrossRef] [PubMed]
- Marschner, C.B.; Kristensen, A.T.; Rozanski, E.A.; McEvoy, F.J.; Kühnel, L.; Taeymans, O.; de Laforcade, A.; Sato, A.F.; Wiinberg, B. Diagnosis of canine pulmonary thromboembolism by computed tomography and mathematical modelling using haemostatic and inflammatory variables. Vet. J. 2017, 229, 6–12. [Google Scholar] [CrossRef] [PubMed]
- Dennler, M.; Baron Toaldo, M.; Makara, M.; Lautenschläger, I.E.; Ribbers, G.; Wang-Leandro, A.; Waschk, M.; Richter, H.; Glaus, T.M. Recommendations for standardized plane definition in canine cardiac MRI. Vet. Radiol. Ultrasound 2020, 61, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Burti, S.; Longhin Osti, V.; Zotti, A.; Banzato, T. Use of deep learning to detect cardiomegaly on thoracic radiographs in dogs. Vet. J. 2020, 262, 105505. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wang, Z.; Visser, L.C.; Wisner, E.R.; Cheng, H. Pilot study: Application of artificial intelligence for detecting left atrial enlargement on canine thoracic radiographs. Vet. Radiol. Ultrasound 2020, 61, 611–618. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).