Changes in Aggressive Behavior, Cortisol and Brain Monoamines during the Formation of Social Hierarchy in Black Rockfish (Sebastes schlegelii)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fish Materials
2.2. Experimental Design
2.3. Behavioral Observations
2.4. Tissue Sampling and Physiological Analysis
2.5. Data Statistics
3. Results
3.1. Growth Performance, Aggression, and Cortisol Levels
3.2. Brain Monoaminergic Activity
3.3. Correlations between Monoamine/Metabolite Ratios and Cortisol or Aggressive Acts
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Overli, O.; Korzan, W.J.; Hoglund, E.; Winberg, S.; Bollig, H.; Watt, M.; Forster, G.L.; Barton, B.A.; Øverli, E.; Renner, K.J.; et al. Stress coping style predicts aggression and social dominance in rainbow trout. Horm. Behav. 2004, 45, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Kroczek, L.; Pfaller, M.; Lange, B.; Müller, M.; Mühlberger, A. Interpersonal distance during real- time social interaction: Insights from subjective experience, behavior, and physiology. Front. Psychiatry 2020, 11, 561. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, E.; Flügge, G. Social stress in tree shrews: Effects on physiology, brain function, and behavior of subordinate individuals. Pharmacol. Biochem. Behav. 2002, 73, 247–258. [Google Scholar] [CrossRef]
- Loveland, J.L.; Uy, N.; Maruska, K.P.; Carpenter, R.E.; Fernald, R.D. Social status differences regulate the serotonergic system of a cichlid fish, Astatotilapia burtoni. J. Exp. Biol. 2014, 217, 2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostyniuk, D.J.; Culbert, B.M.; Mennigen, J.A.; Gilmour, K.M. Social status affects lipid metabolism in rainbow trout. Oncorhynchus Mykiss. Am. J. Physiol. Reg. Integr. 2018, 315, R241–R255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louvet, E.; Cambon, L.; Milhabet, I.; Rohmer, O. The relationship between social status and the components of agency. J. Soc. Psychol. 2019, 159, 30–45. [Google Scholar] [CrossRef]
- Øverli, Ø.; Winberg, S.; Damsård, B.; Jobling, M. Food intake and spontaneous swimming activity in Arctic char (Salvelinus alpinus): Role of brain serotonergic activity and social interactions. Can. J. Zool. 1998, 76, 1366–1370. [Google Scholar] [CrossRef]
- Kramer, M.; Hiemke, C.; Fuchs, E. Chronic psychosocial stress and antidepressant treatment in tree shrews: Time-dependent behavioral and endocrine effects. Neurosci. Biobehav. Rev. 1999, 23, 937–947. [Google Scholar] [CrossRef]
- Höglund, E.; Kolm, N.; Winberg, S. Stress-induced changes in brain serotonergic activity, plasma cortisol and aggressive behavior in Arctic charr (Salvelinus alpinus) is counteracted by l-DOPA. Physiol. Behav. 2001, 74, 381–389. [Google Scholar] [CrossRef]
- Shively, C.A.; Laber-Laird, K.; Anton, R.F. Behavior and physiology of social stress and depression in female cynomolgus monkeys. Biol. Psychiat. 1997, 41, 871–882. [Google Scholar] [CrossRef]
- Deemyad, T.; Metzen, M.G.; Pan, Y.; Chacron, M.J. Serotonin selectively enhances perception and sensory neural responses to stimuli generated by same-sex conspecifics. Proc. Natl. Acad. Sci. USA 2013, 110, 19609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dahlbom, S.J.; Backström, T.; Lundstedtenkel, K.; Winberg, S. Aggression and monoamines: Effects of sex and social rank in zebrafish (Danio rerio). Behav. Brain Res. 2012, 228, 333–338. [Google Scholar] [CrossRef] [PubMed]
- Poletto, R.; Cheng, H.-W.; Meisel, R.L.; Richert, B.T.; Marchant-Forde, J.N. Gene expression of serotonin and dopamine receptors and monoamine oxidase-A in the brain of dominant and subordinate pubertal domestic pigs (Sus scrofa) fed a β-adrenoreceptor agonist. Brain Res. 2011, 1381, 11–20. [Google Scholar] [CrossRef]
- Winberg, S.; Lepage, O. Elevation of brain 5-HT activity, POMC expression, and plasma cortisol in socially subordinate rainbow trout. Am. J. Physiol. Reg. Integr. 1998, 274, R645–R654. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, X.; Zhang, H.; Zhang, Y.; Lu, D.; Lin, H. Molecular identification of an androgen receptor and its changes in mRNA levels during 17α-methyltestosterone-induced sex reversal in the orange-spotted grouper Epinephelus coioides. Comp. Biochem. Phys. B 2012, 163, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Matter, J.M.; Ronan, P.J.; Summers, C.H. Central monoamines in free-ranging lizards: Differences associated with social roles and territoriality. Brain Behav. Evol. 1998, 51, 23–32. [Google Scholar] [CrossRef]
- Larson, E.T.; Summers, C.H. Serotonin reverses dominant social status. Behav. Brain Res. 2001, 121, 95–102. [Google Scholar] [CrossRef]
- Summers, C.H.; Winberg, S. Interactions between the neural regulation of stress and aggression. J. Exp. Biol. 2006, 209, 4581. [Google Scholar] [CrossRef] [Green Version]
- DiBattista, J.D.; Anisman, H.; Whitehead, M.; Gilmour, K.M. The effects of cortisol administration on social status and brain monoaminergic activity in rainbow trout, Oncorhynchus mykiss. J. Exp. Biol. 2005, 208, 2707. [Google Scholar] [CrossRef] [Green Version]
- Sloman, K.A.; Armstrong, J.D. Physiological effects of dominance hierarchies: Laboratory artefacts or natural phenomena? J. Fish Biol. 2002, 61, 1–23. [Google Scholar] [CrossRef]
- Merali, Z.; Mcintosh, J.; Kent, P.; Michaud, D.; Anisman, H. Aversive and appetitive events evoke the release of corticotropin-releasing hormone and bombesin-like peptides at the central nucleus of the amygdala. J. Neurol. 1998, 18, 14–16. [Google Scholar] [CrossRef]
- Mommsen, T.P.; Vijayan, M.M.; Moon, T.W. Cortisol in teleost Dynamics, mechanisms of action, and metabolic regulation. Rev. Fish Biol. Fisher. 1999, 9, 211–268. [Google Scholar] [CrossRef]
- O’Connor, C.M.; Rodela, T.M.; Mileva, V.R.; Balshine, S.; Gilmour, K.M. Corticosteroid receptor gene expression is related to sex and social behaviour in a social fish. Comp. Biochem. Phys. A 2013, 164, 438–446. [Google Scholar] [CrossRef]
- Gregory, T.R.; Wood, C.M. The effects of chronic plasma cortisol elevation on the feeding behaviour, growth, competitive ability, and swimming performance of juvenile rainbow trout. Physiol. Biochem. Zool. 1999, 72, 286–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pottinger, T.G.; Carrick, T.R. Stress responsiveness affects dominant–subordinate relationships in rainbow trout. Horm. Behav. 2001, 40, 419–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aidos, M.L.; Cafiso, A.; Serra, V.; Vasconi, M.; Daniela, B.; Bazzocchi, C.; Radaelli, G.; Di Giancamillo, A. How different stocking densities affect growth and stress status of acipenser baerii early stage larvae. Animals 2020, 10, 1289. [Google Scholar] [CrossRef]
- Sloman, K.A.; Metcalfe, N.B.; Taylor, A.C.; Gilmour, K.M. Plasma cortisol concentrations before and after social stress in rainbow trout and brown trout. Physiol. Biochem. Zool 2001, 74, 383–389. [Google Scholar] [CrossRef]
- Summers, C.H. Social interaction over time, implications for stress responsiveness. Integr. Comp. Biol. 2002, 42, 591–599. [Google Scholar] [CrossRef] [Green Version]
- Gao, T.; Ding, K.; Song, N.; Zhang, X.; Han, Z. Comparative analysis of multiple paternity in different populations of viviparous black rockfish, Sebastes schlegelii, a fish with long-term female sperm storage. Mar. Biodivers. 2018, 48, 2017–2024. [Google Scholar] [CrossRef]
- Dan, X.; Zhang, X.; Lü, H.; Zhang, Z. Prediction of cannibalism in juvenile black rockfish, Sebastes schlegelii (Hilgendorf, 1880), based on morphometric characteristics and paired trials. Aquac. Res. 2016, 48, 3198–3206. [Google Scholar] [CrossRef]
- Guo, H.; Zhang, X.; Johnsson, J.I. Effects of size distribution on social interactions and growth of juvenile black rockfish (Sebastes schlegelii). Appl. Anim. Behav. Sci. 2017, 194, 135–142. [Google Scholar] [CrossRef]
- Fagen, R. Salmonid jumping and playing: Potential cultural and welfare implications. Animals 2017, 7, 42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degani, G.; Levanon, D. The influence of low density on food adaptation, cannibalism and growth of eels (Anguilla anguilla (L.)). ISR J. Aquacult. Bamid. 1983, 35, 53–60. [Google Scholar]
- Degani, G.; Levanon, D.; Dosoretz, C. Growth of Anguilla anguilla in different densities in outdoor containers with Tilapia aurea. Prog. Fish. Cult. 1985, 47, 114–118. [Google Scholar] [CrossRef]
- Oliveira, R.F.; Silva, J.F.; Simões, J.M. Fighting zebrafish: Characterization of aggressive behavior and winner-loser effects. Zebrafish 2011, 8, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Øverli, Ø.; Harris, C.A.; Winberg, S. Short-term effects of fights for social dominance and the establishment of dominant-subordinate relationships on brain monoamines and cortisol in rainbow trout. Brain Behav. Evol. 1999, 54, 263–275. [Google Scholar] [CrossRef]
- Oliveira, R.F.; Carneiro, L.A.; Canário, A.V.M. Behavioural endocrinology: No hormonal response in tied fights. Nature 2005, 437, 207–208. [Google Scholar] [CrossRef]
- Zhang, Z.; Fu, Y.; Guo, H.; Zhang, X. Effect of environmental enrichment on the stress response of juvenile black rockfish Sebastes schlegelii. Aquaculture 2020. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, X.; Wang, Y.; Zhang, X. Effects of environmental enrichment on growth performance, aggressive behavior and stress-induced changes in cortisol release and neurogenesis of black rockfish Sebastes schlegelii. Aquaculture 2020, 528, 735483. [Google Scholar] [CrossRef]
- Zhang, Z.; Bai, Q.; Xu, X.; Zhang, X. Effects of the dominance hierarchy on social interactions, cortisol level, HPG-axis ctivities and reproductive success in the golden cuttlefish Sepia esculenta. Aquaculture 2020. [Google Scholar] [CrossRef]
- Zhang, Z.; Bai, Q.; Xu, X.; Guo, H.; Zhang, X. Effects of environmental enrichment on the welfare of juvenile black rockfish Sebastes schlegelii: Growth, behavior and physiology. Aquaculture 2020, 528, 735483. [Google Scholar] [CrossRef]
- McCarthy, I.; Carter, C.; Houlihan, D. The effect of feeding hierarchy on individual variability in daily feeding of rainbow trout, Oncorhynchus mykiss (Walbaum). J. Fish Biol. 1992, 41, 257–263. [Google Scholar] [CrossRef]
- Abbott, J.C.; Dill, L.M. Patterns of aggressive attack in juvenile steelhead trout (Salmo gairdneri). Can. J. Fish. Aquat. Sci. 1985, 42, 1702–1706. [Google Scholar] [CrossRef]
- Bachman, R.A. Foraging behavior of free-ranging wild and hatchery brown trout in a stream. Trans. Am. Fish. Soc. 1984, 113, 1–32. [Google Scholar] [CrossRef]
- Rhodes, J.S.; Quinn, T.P. Factors affecting the outcome of territorial contests between hatchery and naturally reared coho salmon parr in the laboratory. J. Fish Biol. 1998, 53, 1220–1230. [Google Scholar] [CrossRef]
- Cutts, C.J.; Brembs, B.; Metcalfe, N.B.; Taylor, A.C. Prior residence, territory quality and life-history strategies in juvenile Atlantic salmon (Salmo salar L.). J. Fish Biol. 1999, 55, 784–794. [Google Scholar] [CrossRef]
- Sánchez, C.; Hyttel, J. Isolation-induced aggression in mice: Effects of 5-hydroxytryptamine uptake inhibitors and involvement of postsynaptic 5-HT1A receptors. Eur. J. Pharmacol. 1994, 264, 241–247. [Google Scholar] [CrossRef]
- Nelson, R.J.; Chiavegatto, S. Aggression in knockout mice. ILAR J. 2000, 41, 153–162. [Google Scholar] [CrossRef] [Green Version]
- Sapolsky, R.M. The influence of social hierarchy on primate health. Science 2005, 308, 648. [Google Scholar] [CrossRef] [Green Version]
- Freudenberg, F.; Carreño Gutierrez, H.; Post, A.M.; Reif, A.; Norton, W.H.J. Aggression in non-human vertebrates: Genetic mechanisms and molecular pathways. Am. J. Med. Genet. B 2016, 171, 603–640. [Google Scholar] [CrossRef]
- Waters, R.P.; Emerson, A.J.; Watt, M.J.; Forster, G.L.; Swallow, J.G.; Summers, C.H. Stress induces rapid changes in central catecholaminergic activity in Anolis carolinensis: Restraint and forced physical activity. Brain Res. Bull. 2005, 67, 210–218. [Google Scholar] [CrossRef] [PubMed]
- Winberg, S.; Nilsson, G.E. Roles of brain monoamine neurotransmitters in agonistic behaviour and stress reactions, with particular reference to fish. Comp. Biochem. Physiol. 1993, 106, 597–614. [Google Scholar] [CrossRef]
Aggressive Interactions | Fish | Standard Length (cm) | Body Mass (g) | Aggression (acts/20 min) | Cortisol (ng/mg) |
---|---|---|---|---|---|
Short-term contest | Dom | 4.57 ± 0.12 b | 2.83 ± 0.21 b | 39.6 ± 2.16 a | 0.24 ± 0.012 b |
Sub | 4.63 ± 0.14 b | 2.81 ± 0.22 b | 40.3 ± 4.33 a | 0.92 ± 0.023 a | |
Long-term contest | Dom | 6.33 ± 0.15 a | 6.73 ± 0.35 a | 42.0 ± 3.63 a | 0.23 ± 0.009 b |
Sub | 6.22 ± 0.28 a | 6.37 ± 0.31 a | 28.6 ± 2.81 b | 0.23 ± 0.016 b | |
p value | < 0.001 | < 0.001 | < 0.05 | < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, X.; Zhang, Z.; Guo, H.; Qin, J.; Zhang, X. Changes in Aggressive Behavior, Cortisol and Brain Monoamines during the Formation of Social Hierarchy in Black Rockfish (Sebastes schlegelii). Animals 2020, 10, 2357. https://doi.org/10.3390/ani10122357
Xu X, Zhang Z, Guo H, Qin J, Zhang X. Changes in Aggressive Behavior, Cortisol and Brain Monoamines during the Formation of Social Hierarchy in Black Rockfish (Sebastes schlegelii). Animals. 2020; 10(12):2357. https://doi.org/10.3390/ani10122357
Chicago/Turabian StyleXu, Xiuwen, Zonghang Zhang, Haoyu Guo, Jianguang Qin, and Xiumei Zhang. 2020. "Changes in Aggressive Behavior, Cortisol and Brain Monoamines during the Formation of Social Hierarchy in Black Rockfish (Sebastes schlegelii)" Animals 10, no. 12: 2357. https://doi.org/10.3390/ani10122357
APA StyleXu, X., Zhang, Z., Guo, H., Qin, J., & Zhang, X. (2020). Changes in Aggressive Behavior, Cortisol and Brain Monoamines during the Formation of Social Hierarchy in Black Rockfish (Sebastes schlegelii). Animals, 10(12), 2357. https://doi.org/10.3390/ani10122357