The Effect of Beef Production System on the Health, Performance, Carcass Characteristics, and Meat Quality of Holstein Bulls
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design and Animal Management
2.2. Management during Grower Period
2.3. Management during Finishing Period
2.4. Live Weight and Health
2.5. Feed Intake and Composition
2.6. Carcass Characteristics
2.7. Instrumental Meat Quality
2.8. Statistical Analysis
3. Results
3.1. Grower Period
3.2. Finishing Period
3.3. Overall DMI and Performance
3.4. Carcass Characteristics
3.5. Health
4. Discussion
4.1. Grower Period
4.2. Finishing Period
4.3. Carcass Characteristics and Meat Quality
4.4. Health
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kirkland, R.M.; Patterson, D.C.; Keady, T.W.J.; Moss, B.W.; Steen, R.W.J. Beef production potential of Norwegian Red and Holstein-Friesian bulls slaughtered at two ages. Animal 2007, 1, 1506–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keane, M.G.; Neilan, R.; Moloney, A.P.; Allen, P. Comparison of High Genetic Merit, Standard Genetic Merit, Friesian and Charolaisx Friesian Male Cattle for Beef Production; Grange Research Centre: Dunsany, Ireland, 2001. [Google Scholar]
- Eblex. Balancing the Market; Securing the Future for English Beef Supply. Available online: http://beefandlamb.ahdb.org.uk/wp/wp-content/uploads/2013/05/p_cp_eblex_balancing_the_market_final_220512.pdf (accessed on 1 October 2017).
- Steen, R.W.J. The effect of plane of nutrition and slaughter weight on growth and food efficiency in bulls, steers and heifers of 3 breed crosses. Livest. Prod. Sci. 1995, 42, 1–11. [Google Scholar] [CrossRef]
- Kirkland, R.M.; Keady, T.W.J.; Patterson, D.C.; Kilpatrick, D.J.; Steen, R.W.J. The effect of slaughter weight and sexual status on performance characteristics of male Holstein-Friesian cattle offered a cereal-based diet. Anim. Sci. 2006, 82, 397–404. [Google Scholar] [CrossRef]
- DEFRA. Monthly UK Statistics on Cattle, Sheep and Pig Slaughter and Meat Production—Dataset; Department for Environment Food Rural Affairs: London, UK, 2018. [Google Scholar]
- Allen, D.; Kilkenny, B. Beef Production from Dairy-Bred Calves, 2nd ed.; Granada: London, UK, 1984. [Google Scholar]
- Finneran, E.; Crosson, P.; O’Kiely, P.; Shalloo, L.; Forristal, D.; Wallace, M. Simulation modeling of the cost of producing and utilising feeds for ruminants on Irish farms. J. Farm Manag. 2010, 14, 95–116. [Google Scholar]
- Ashfield, A.; Wallace, M.; Prendiville, R.; Crosson, P. Bioeconomic modelling of male Holstein-Friesian dairy calf-to-beef production systems on Irish farms. Irish J. Agric. Food Res. 2014, 53, 133–147. [Google Scholar]
- Steen, R.W.J. A comparison of pasture grazing and storage feeding, and the effects of sward surface height and concentrate supplementation from 5 to 10 months of age on the lifetime performance and carcass composition of bulls. Anim. Prod. 1994, 58, 209–219. [Google Scholar] [CrossRef]
- Murphy, V.S.; Lowe, D.E.; Lively, F.O.; Gordon, A.W. The impact of floor type on lameness and hoof health of dairy origin bulls. Animal 2018, 12, 2382–2390. [Google Scholar] [CrossRef]
- Bryson, D.G. Calf Pneumonia. Vet. Clin. N. Am. Food Anim. Prac. 1985, 1, 237–257. [Google Scholar] [CrossRef]
- Park, R.S.; Agnew, R.E.; Gordon, F.J.; Steen, R.W.J. The use of near infrared reflectance spectroscopy (NIRS) on undried samples of grass silage to predict chemical composition and digestibility parameters. Anim. Feed Sci. Technol. 1998, 72, 155–167. [Google Scholar] [CrossRef]
- Morrison, S.J.; McBride, J.; Gordon, A.W.; Wylie, A.R.G.; Yan, T. Methane Emissions from Grazing Holstein-Friesian Heifers at Different Ages Estimated Using the Sulfur Hexafluoride Tracer Technique. Engineering 2017, 3, 753–759. [Google Scholar] [CrossRef]
- Rutherford, N.H.; Lively, F.O.; Arnott, G. Evaluation of rumen temperature as a novel indicator of meat quality: Rumen temperature, and haematological indicators of stress during the pre-slaughter period as predictors of instrumental meat quality in bulls. Meat Sci. 2019, 158, 107913. [Google Scholar] [CrossRef] [PubMed]
- Murphy, V.S.; Lowe, D.E.; Lively, F.O.; Gordon, A.W. The effect of floor type on the performance, cleanliness, carcass characteristics and meat quality of dairy origin bulls. Animal 2017, 12, 1102–1110. [Google Scholar] [CrossRef] [PubMed]
- (MLA), M.A.L.A. The Effect of Marbling on Beef Eating Quality. Available online: https://www.mla.com.au/globalassets/mla-corporate/marketing-beef-and-lamb/documents/meat-standards-australia/msa07-beef-tt_the-effect-of-marbling-on-beef-eating-quality-lr.pdf (accessed on 1 September 2020).
- Barton, R.A.; Pleasants, A.B. Fat colour and meat colour in different breeds of steers in five consecutive years raised on pasture and slaughtered at 30 months of age. Proc. N. Z. Soc. Anim. Prod. 1993, 53, 389–391. [Google Scholar]
- Cottle, D.J. The trials and tribulations of estimating the pasture intake of grazing animals. Anim. Prod. Sci. 2013, 53, 1209–1220. [Google Scholar] [CrossRef]
- French, P.; O’Riordan, E.G.; Moloney, A.P.; O’Kiely, P.; Caffrey, P.J. Effects of concentrate level and grazing system on the performance of beef cattle grazing autumn herbage. Irish J. Agric. Food Res. 2001, 40, 33–44. [Google Scholar]
- Cummins, B.; O’Kiely, P.; Keane, M.G.; Kenny, D.A. Feed intake pattern, behaviour, rumen characteristics and blood metabolites of finishing beef steers offered total mixed rations constituted at feeding or ensiling. Irish J. Agric. Food Res. 2009, 48, 57–73. [Google Scholar]
- Steen, R.W.J.; Kilpatrick, D.J.; Porter, M.G. Effects of the proportions of high or medium digestibility grass silage and concentrates in the diet of beef cattle on live weight gain, carcass composition and fatty acid composition of muscle. Grass Forage Sci. 2002, 57, 279–291. [Google Scholar] [CrossRef]
- Allen, M.S. Physical Constraints on Voluntary Intake of Forages by Ruminants. J. Anim. Sci. 1996, 74, 3063–3075. [Google Scholar] [CrossRef] [Green Version]
- Keane, M.G.; Fallon, R.J. Effects of feeding level and duration on finishing performance and slaughter traits of Holstein-Friesian young bulls. Irish J. Agric. Food Res. 2001, 40, 145–160. [Google Scholar]
- Keane, M.G.; Allen, P. A comparison of Friesian-Holstein, Piemontese×Friesian-Holstein and Romagnola×Friesian-Holstein steers for beef production and carcass traits. Livest. Prod. Sci. 2002, 78, 143–158. [Google Scholar] [CrossRef]
- Murphy, B.; Crosson, P.; Kelly, A.K.; Prendiville, R. An economic and greenhouse gas emissions evaluation of pasture-based dairy calf-to-beef production systems. Agric. Syst. 2017, 154, 124–132. [Google Scholar] [CrossRef]
- Therkildsen, M.; Vestergaard, M.; Jensen, L.R.; Andersen, H.R.; Sejrsen, K. Effect of feeding level, grazing and finishing on growth and carcass quality of young Friesian bulls. Acta Agric. Scand. Sect. A-Anim. Sci. 1998, 48, 193–201. [Google Scholar] [CrossRef]
- Moloney, A.P.; Fallon, R.J.; Mooney, M.T.; Troy, D.J. The quality of meat and fatness of bulls offered ad libitum concentrates, indoors or at pasture. Livest. Prod. Sci. 2004, 87, 271–276. [Google Scholar] [CrossRef]
- McNamee, A.; Keane, M.G.; Kenny, D.A.; Moloney, A.P.; Buckley, F.; O’ Riordan, E.G. Beef production from Holstein–Friesian, Norwegian Red×Holstein–Friesian and Jersey×Holstein–Friesian male cattle reared as bulls or steers. Livest. Sci. 2015, 173, 95–105. [Google Scholar] [CrossRef]
- Murphy, B.; Kelly, A.; Prendiville, R. Alternative finishing strategies for Holstein-Friesian bulls slaughtered at 15 months of age. Agric. Food Sci. 2018, 27, 28–37. [Google Scholar] [CrossRef]
- Manni, K.; Rinne, M.; Joki-Tokola, E.; Huuskonen, A. Effects of different restricted feeding strategies on performance of growing and finishing dairy bulls offered grass silage and barley based diets. Agric. Food Sci. 2017, 26, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Brody, S. Bioenergetics and Growth; Rheinhold: New York, NY, USA, 1945. [Google Scholar]
- McDonald, P.; Edwards, R.A.; Greenhalgh, J.F.D. Animal Nutrition, 4th ed.; Longman Publishing Group: New York, NY, USA, 1988. [Google Scholar]
- Cameroni, F.D.; Hornick, J.L.; Cabaraux, J.F.; Istasse, L.; Dufrasne, I. Less intensified grazing management with growing fattening bulls. Anim. Res. 2006, 55, 105–120. [Google Scholar] [CrossRef]
- Keogh, K.; Waters, S.M.; Kelly, A.K.; Kenny, D.A. Feed restriction and subsequent realimentation in Holstein Friesian bulls: I. Effect on animal performance; muscle, fat, and linear body measurements; and slaughter characteristics. J. Anim. Sci. 2015, 93, 3578–3589. [Google Scholar] [CrossRef] [PubMed]
- Hornick, J.L.; Van Eenaeme, C.; Gerard, O.; Dufrasne, I.; Istasse, L. Mechanisms of reduced and compensatory growth. Domest. Anim. Endocrinol. 2000, 19, 121–132. [Google Scholar] [CrossRef]
- Caplis, J.; Keane, M.G.; Moloney, A.P.; O’Mara, F.P. Effects of supplementary concentrate level with grass silage, and separate or total mixed ration feeding, on performance and carcass traits of finishing steers. Irish J. Agric. Food Res. 2005, 44, 27–43. [Google Scholar]
- Galyean, M.L.; Rivera, J.D. Nutritionally related disorders affecting feedlot cattle. Can. J. Anim. Sci. 2003, 83, 13–20. [Google Scholar] [CrossRef] [Green Version]
Season | AB | SB |
---|---|---|
Grower | 89 ± 1.0 | 149 ± 10.5 |
Finisher | 191 ± 25.6 | 209 ± 31.7 |
Chemical Composition | Concentrates | Grass | Grass Silage |
---|---|---|---|
DM (g/kg) | 873.6 | 257.8 | 282.5 |
Ash (g/kg DM) | 77.41 | 110.6 | |
Gross energy (MJ/kg DM) | 18.31 | 18.74 | |
Nitrogen (g/kg DM) | 28.84 | 22.66 | |
ADF (g/kg DM) | 134.1 | 333.1 | |
NDF (g/kg DM) | 317.5 | 563.4 | |
CP (%DM) | 15.84 | ||
ADF (%DM) | 32.12 | ||
WSS (%DM) | 12.92 | ||
ME (MJ/kgDM) | 10.74 |
Production System | Autumn Born | SED | Spring Born | SED | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | G2 | GA | HA | G | G2 | GA | HA | AB | SB | ||||
Grower DMI (kg/d) | Forage | 3.49 c | 3.15 c | 2.24 b | 1.58 a | 0.145 | 3.08 c | 2.97 c | 1.53 b | 0.83 a | 0.116 | <0.001 | <0.001 |
Concentrate | - | 1.63 a | 6.33 c | 5.71 b | 0.212 | - | 1.68 a | 5.35 c | 5.05 b | 0.122 | <0.001 | <0.001 | |
Total | 3.49 a | 4.78 b | 8.57 d | 7.29 c | 0.231 | 3.06 a | 4.65 b | 6.84 d | 5.87 c | 0.138 | <0.001 | <0.001 | |
Finishing DMI (kg/d) | Forage | 1.97 b | 1.66 a | 1.75 a | 1.74 a | 0.077 | 1.67 a | 2.25 b | 2.07 b | 2.48 c | 0.091 | <0.001 | <0.001 |
Concentrate | 8.29 a | 8.04 a | 9.51 b | 8.06 a | 0.151 | 6.41 a | 7.28 c | 7.92 d | 6.98 b | 0.152 | <0.001 | <0.001 | |
Total | 10.17 b | 9.58 a | 11.28 c | 9.70 a | 0.167 | 7.85 a | 9.38 b | 10.03 c | 9.35 b | 0.178 | <0.001 | <0.001 | |
Total concentrate DMI (t) | 1.70 a | 1.79 a | 2.35 b | 2.24 b | 0.117 | 1.44 a | 1.84 b | 2.33 c | 2.20 c | 0.067 | <0.001 | <0.001 |
Production System | Autumn Born | SED | Spring Born | SED | p-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G | G2 | GA | HA | G | G2 | GA | HA | AB | SB | ||||
Live weight (kg) | Initial | 209.8 | 210.2 | 213.4 | 212.4 | 8.92 | 119.2 | 120.4 | 118.9 | 119.7 | 6.90 | ns | ns |
Housed | 275.3 a | 299.8 b | 333.8 c | 351.8 d | 5.76 | 217.5 a | 248.5 b | 308.3 c | 318.1 c | 6.90 | <0.001 | <0.001 | |
Slaughter | 580.6 a | 575.0 a | 614.7 b | 599.6 ab | 13.82 | 510.3 a | 548.1 b | 578.8 c | 578.6 c | 13.38 | <0.05 | <0.001 | |
ADG (kg/d) | Grower | 0.72 a | 0.99 b | 1.38 c | 1.58 d | 0.065 | 0.66 a | 0.87 b | 1.27 c | 1.34 c | 0.047 | <0.001 | <0.001 |
Finishing | 1.61 c | 1.48 b | 1.46 b | 1.29 a | 0.060 | 1.38 bc | 1.43 c | 1.28 ab | 1.22 a | 0.051 | <0.001 | <0.001 | |
Overall | 1.32 a | 1.31 a | 1.44 b | 1.39 ab | 0.050 | 1.08 a | 1.20 b | 1.28 c | 1.28 c | 0.037 | <0.05 | <0.001 |
Production System | Autumn Born | SED | Spring Born | SED | p-Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
G | G2 | GA | HA | G | G2 | GA | HA | AB | SB | |||
Age at slaughter (d) | 472.4 | 470.4 | 473.1 | 471.4 | 1.75 | 476.4 | 472.6 | 473.4 | 472.9 | 3.11 | ns | ns |
Hot carcass weight (kg) | 297.2 a | 300.7 a | 322.1 b | 319.6 b | 7.64 | 263.5 a | 287.1 b | 301.5 b | 302.4 b | 7.89 | <0.001 | <0.001 |
Cold carcass weight (kg) | 291.3 a | 294.7 a | 314.5 b | 313.3 b | 7.60 | 258.2 a | 281.4 a | 295.5 b | 296.4 b | 7.73 | <0.001 | <0.001 |
Carcass gain (kg/d) | 0.69 a | 0.69 a | 0.76 b | 0.74 ab | 0.027 | 0.56 a | 0.63 b | 0.67 bc | 0.68 c | 0.212 | <0.05 | <0.001 |
Carcass conformation classification 1 | 4.35 | 4.04 | 4.31 | 4.42 | 0.209 | 3.77 | 3.89 | 4.12 | 4.19 | 0.270 | ns | ns |
Carcass fat classification 2 | 7.74 | 7.52 | 8.09 | 7.24 | 0.429 | 6.44 | 7.00 | 6.86 | 6.77 | 0.378 | ns | ns |
Dressing proportion (g/kg) | 504.0 | 506.9 | 510.3 | 513.8 | 4.22 | 503.1 | 508.5 | 506.3 | 511.9 | 4.96 | ns | ns |
Internal fat (kg) | 19.08 ab | 18.02 a | 22.43 c | 21.11 bc | 1.120 | 16.97 | 17.53 | 18.92 | 18.05 | 1.220 | <0.001 | ns |
Subcutaneous fat depth (mm) | 7.38 | 7.49 | 8.21 | 8.15 | 0.669 | 6.85 | 6.59 | 7.40 | 6.64 | 0.495 | ns | ns |
MSA marbling score | 419.9 | 418.5 | 458.8 | 448.1 | 32.26 | 401.4 | 428.3 | 429.6 | 416.3 | 34.4 | ns | ns |
Carcass fat colour 3 | 2.42 | 2.55 | 2.59 | 2.48 | 0.123 | 2.35 | 2.56 | 2.47 | 2.69 | 0.149 | ns | ns |
Ultimate pH | 5.63 | 5.75 | 5.64 | 5.69 | 0.063 | 5.73 | 5.82 | 5.73 | 5.90 | 0.094 | ns | ns |
Colour-L* | 39.57 | 37.94 | 39.20 | 39.03 | 0.830 | 38.94 | 38.50 | 38.15 | 38.06 | 0.848 | ns | ns |
Colour-a* | 27.26 | 26.12 | 26.97 | 26.18 | 0.575 | 25.99 | 26.05 | 25.89 | 25.12 | 0.677 | ns | ns |
Colour-b* | 10.93 | 10.00 | 10.80 | 10.25 | 0.477 | 9.90 | 9.86 | 9.79 | 9.46 | 0.519 | ns | ns |
Cooking loss D7 (%) | 27.20 | 25.25 | 26.27 | 25.47 | 0.877 | 25.09 | 25.07 | 24.84 | 24.09 | 0.949 | ns | ns |
Cooking loss D14 (%) | 27.58 | 26.31 | 27.50 | 26.39 | 0.665 | 25.97 | 25.60 | 25.81 | 25.01 | 1.149 | ns | ns |
WBSF D7 (kgF) | 4.70 | 4.50 | 4.65 | 4.87 | 0.283 | 4.83 | 4.67 | 4.36 | 4.52 | 0.313 | ns | ns |
WBSF D14 (kgF) | 4.19 | 4.29 | 4.15 | 4.46 | 0.207 | 4.40 | 4.26 | 4.12 | 4.23 | 0.256 | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rutherford, N.H.; Gordon, A.W.; Arnott, G.; Lively, F.O. The Effect of Beef Production System on the Health, Performance, Carcass Characteristics, and Meat Quality of Holstein Bulls. Animals 2020, 10, 1922. https://doi.org/10.3390/ani10101922
Rutherford NH, Gordon AW, Arnott G, Lively FO. The Effect of Beef Production System on the Health, Performance, Carcass Characteristics, and Meat Quality of Holstein Bulls. Animals. 2020; 10(10):1922. https://doi.org/10.3390/ani10101922
Chicago/Turabian StyleRutherford, Naomi H., Alan W. Gordon, Gareth Arnott, and Francis O. Lively. 2020. "The Effect of Beef Production System on the Health, Performance, Carcass Characteristics, and Meat Quality of Holstein Bulls" Animals 10, no. 10: 1922. https://doi.org/10.3390/ani10101922
APA StyleRutherford, N. H., Gordon, A. W., Arnott, G., & Lively, F. O. (2020). The Effect of Beef Production System on the Health, Performance, Carcass Characteristics, and Meat Quality of Holstein Bulls. Animals, 10(10), 1922. https://doi.org/10.3390/ani10101922