Genetic Signatures of Selection for Cashmere Traits in Chinese Goats
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Biological Sample Collection and Genotyping
2.2. Quality Control
2.3. Population Structure Analysis
2.4. Selection Signals Analysis
2.5. Gene Annotation and Gene Enrichment Analysis
3. Results
3.1. Genetic Variation and Population Genetic Analysis
3.2. Detecting Positive Selection Genes
3.3. Specific Selection Genes in Each Cashmere Breed
3.4. KEGG Pathway Enrichment Analysis of Important Genes in Cashmere Goat
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Liu, Y.; Wang, L.; Li, X.; Han, W.; Yang, K.; Wang, H.; Zhang, Y.; Su, R.; Liu, Z.; Wang, R.; et al. High-throughput sequencing of hair follicle development-related micrornas in cashmere goat at various fetal periods. Saudi J. Biol. Sci. 2017, 25, 1494–1508. [Google Scholar] [CrossRef]
- Dai, B.; Zhang, M.; Yuan, J.L.; Ren, L.Q.; Han, X.Y.; Liu, D. Integrative Analysis of Methylation and Transcriptional Profiles to Reveal the Genetic Stability of Cashmere Traits in the Tβ4 Overexpression of Cashmere Goats. Animals 2019, 9, 1002. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, Y.; Wang, X.; Yan, H.; Zeng, J.; Ma, S.; Niu, Y.; Zhou, G.; Jiang, Y.; Chen, Y. Comparative Transcriptome Analysis of Fetal Skin Reveals Key Genes Related to Hair Follicle Morphogenesis in Cashmere Goats. PLoS ONE 2016, 11, e0151118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Su, R.; Fan, Y.; Qiao, X.; Li, X.; Zhang, L.; Li, C.; Li, J. Transcriptomic analysis reveals critical genes for the hair follicle of Inner Mongolia cashmere goat from catagen to telogen. PLoS ONE 2018, 13, e0204404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, P.; Buxton, A. Luxury Fibres: Rare Materials for Higher Added Value. Special Report—Economist Intelligence Unit (United Kingdom). no. 2633. 1992. Available online: https://agris.fao.org/agris-search/search.do?recordID=GB19940084324 (accessed on 13 April 2020).
- Liu, B.; Gao, F.; Guo, J.; Wu, D.; Hao, B.; Li, Y.; Zhao, C. A Microarray-Based Analysis Reveals that a Short Photoperiod Promotes Hair Growth in the Arbas Cashmere Goat. PLoS ONE 2016, 11, e0147124. [Google Scholar] [CrossRef] [Green Version]
- Di, R.; Vahidi, S.M.F.; Ma, Y.H.; He, X.H.; Zhao, Q.J.; Han, J.L.; Guan, W.J.; Chu, M.X.; Sun, W.; Pu, Y.P. Microsatellite analysis revealed genetic diversity and population structure among Chinese cashmere goats. Anim. Genet. 2010, 42, 428–431. [Google Scholar] [CrossRef]
- Du, L.X. Animal Genetic Resources in China; China Agriculture Press: Beijing, China, 2011. [Google Scholar]
- Wang, L.; Peng, L.Q.; Zhang, W.B.; Zhang, Z.Y.; Yang, W.Y.; Ding, L.; Tang, S.M.; Wu, H.Y. Initation and development of skin follicles in the Inner Mongolia white cashmere goat. Acta Vet. Zootech. Sin. 1996, 27, 524–530. [Google Scholar]
- Horscroft, C.; Ennis, S.; Pengelly, R.J.; Sluckin, T.J.; Collins, A. Sequencing era methods for identifying signatures of selection in the genome. Brief. Bioinform. 2018, 20, 1997–2008. [Google Scholar] [CrossRef]
- Wang, X.; Liu, J.; Zhou, G.; Guo, J.; Yan, H.; Niu, Y.; Li, Y.; Yuan, C.; Geng, R.; Lan, X.; et al. Whole-genome sequencing of eight goat populations for the detection of selection signatures underlying production and adaptive traits. Sci. Rep. 2016, 6, 38932. [Google Scholar] [CrossRef] [Green Version]
- Guan, D.; Luo, N.; Tan, X.; Zhao, Z.; Huang, Y.; Na, R.; Zhang, J.; Zhao, Y.-J. Scanning of selection signature provides a glimpse into important economic traits in goats (Capra hircus). Sci. Rep. 2016, 6, 36372. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Su, R.; Wan, W.; Zhang, W.; Jiang, H.; Qiao, X.; Fan, Y.; Zhang, Y.; Wang, R.; Liu, Z.; et al. Identification of selection signals by large-scale whole-genome resequencing of cashmere goats. Sci. Rep. 2017, 7, 15142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, M.; Zhang, J.-Y.; Chu, M.X.; Piao, J.; Piao, J.-A.; Zhao, F.-Q. Cashmere growth control in Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 and decorin genes. Asian Austral. J. Anim. Sci. 2018, 31, 650–657. [Google Scholar] [CrossRef]
- Yuan, Z.; Liu, E.; Liu, Z.; Kijas, J.W.; Zhu, C.; Hu, S.; Ma, X.; Zhang, L.; Du, L.; Wang, H.; et al. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep. Anim. Genet. 2016, 48, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Wei, J.; Zhang, Q.; Chen, L.; Wang, J.; Liu, J.; Ding, X. A Genome Scan for Selection Signatures in Pigs. PLoS ONE 2015, 10, e0116850. [Google Scholar] [CrossRef] [Green Version]
- Bai, W. Molecular Characterization of Male and Female Origin and Genetic Differentiation in Chinese Cashmere Goat Breeds. Ph.D. Thesis, Jilin University, Changchun, China, 2009. [Google Scholar]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chan, B.K.C. Data Analysis Using R Programming. Adv. Exp. Med. Biol. 2018, 1082. [Google Scholar] [CrossRef]
- Subramanian, S.; Ramasamy, U.; Chen, D. VCF2PopTree: A client-side software to construct population phylogeny from genome-wide SNPs. PeerJ 2019, 7, e8213. [Google Scholar] [CrossRef] [Green Version]
- Letunic, I.; Bork, P. Interactive Tree of Life (iTOL) v4: Recent updates and new developments. Nucleic Acids Res. 2019, 47, W256–W259. [Google Scholar] [CrossRef] [Green Version]
- Alexander, D.H.; Novembre, J.; Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 2009, 19, 1655–1664. [Google Scholar] [CrossRef] [Green Version]
- Divisi, D.; Di Leonardo, G.; Zaccagna, G.; Crisci, R. Basic statistics with Microsoft Excel: A review. J. Thorac. Dis. 2017, 9, 1734–1740. [Google Scholar] [CrossRef] [Green Version]
- Sabeti, P.C.; Schaffner, S.F.; Fry, B.; Lohmueller, J.; Varilly, P.; Shamovsky, O.; Palma, A.; Mikkelsen, T.S.; Altshuler, D.; Lander, E.S. Positive Natural Selection in the Human Lineage. Science N. Y. 2006, 312, 1614–1620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pickrell, J.K.; Coop, G.; Novembre, J.; Kudaravalli, S.; Li, J.Z.; Absher, D.; Srinivasan, B.S.; Barsh, G.S.; Myers, R.M.; Feldman, M.W.; et al. Signals of recent positive selection in a worldwide sample of human populations. Genome Res. 2009, 19, 826–837. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akey, J.M.; Zhang, G.; Zhang, K.; Jin, L.; Shriver, M.D. Interrogating a High-Density SNP Map for Signatures of Natural Selection. Genome Res. 2002, 12, 1805–1814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, M.; Lu, J.; Fei, X.; Lu, Z.; Quan, K.; Liu, Y.; Chu, M.; Di, R.; Wei, C.; Wang, H. Selection Signatures Analysis Reveals Genes Associated with High-Altitude Adaptation in Tibetan Goats from Nagqu, Tibet. Animals 2020, 10, 1599. [Google Scholar] [CrossRef]
- Wei, C.; Wang, H.; Liu, G.; Zhao, F.; Kijas, J.W.; Ma, Y.; Lu, J.; Zhang, L.; Cao, J.; Wu, M.; et al. Genome-wide analysis reveals adaptation to high altitudes in Tibetan sheep. Sci. Rep. 2016, 6, 26770. [Google Scholar] [CrossRef]
- Scheet, P.; Stephens, M. A Fast and Flexible Statistical Model for Large-Scale Population Genotype Data: Applications to Inferring Missing Genotypes and Haplotypic Phase. Am. J. Hum. Genet. 2006, 78, 629–644. [Google Scholar] [CrossRef] [Green Version]
- Sabeti, P.C.; Varilly, P.; Fry, B.; Lohmueller, J.; Hostetter, E.; Cotsapas, C.; Xie, X.; Byrne, E.H.; McCarroll, S.A.; Gaudet, R.; et al. Genome-wide detection and characterization of positive selection in human populations. Nat. Cell Biol. 2007, 449, 913–918. [Google Scholar] [CrossRef]
- Huang, D.W.; Sherman, B.T.; Lempicki, R.A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 2009, 4, 44–57. [Google Scholar] [CrossRef]
- Li, C.; Yin, J.; Zhang, Y. Comparative Study on Skin and Hair Follicles Cycling between Inner Mongolia and Liaoning Cashmere Goats. Acta Vet. Zootech. Sin. 2005, 36, 674–679. [Google Scholar]
- Wei, C.; Lu, J.; Xu, L.; Liu, G.; Wang, Z.; Zhao, F.; Zhang, L.; Han, X.; Du, L.; Liu, C. Genetic Structure of Chinese Indigenous Goats and the Special Geographical Structure in the Southwest China as a Geographic Barrier Driving the Fragmentation of a Large Population. PLoS ONE 2014, 9, e94435. [Google Scholar] [CrossRef]
- Bruno, W.J.; Socci, N.D.; Halpern, A.L. Weighted Neighbor Joining: A Likelihood-Based Approach to Distance-Based Phylogeny Reconstruction. Mol. Biol. Evol. 2000, 17, 189–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheruiyot, E.K.; Bett, R.C.; Amimo, J.O.; Zhang, Y.; Mrode, R.; Mujibi, F.D.N. Signatures of Selection in Admixed Dairy Cattle in Tanzania. Front. Genet. 2018, 9, 607. [Google Scholar] [CrossRef] [Green Version]
- Diao, S.-Q.; Huang, S.; Chen, Z.; Teng, J.; Ma, Y.; Yuan, X.; Chen, Z.-M.; Zhang, H.; Li, J.-Q.; Zhang, Z. Genome-Wide Signatures of Selection Detection in Three South China Indigenous Pigs. Genes 2019, 10, 346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manzari, Z.; Mehrabani-Yeganeh, H.; Nejati-Javaremi, A.; Moradi, M.H.; Gholizadeh, M. Detecting selection signatures in three Iranian sheep breeds. Anim. Genet. 2019, 50, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Ablondi, M.; Viklund, Å.; Lindgren, G.; Eriksson, S.; Mikko, S. Signatures of selection in the genome of Swedish warmblood horses selected for sport performance. BMC Genom. 2019, 20, 717. [Google Scholar] [CrossRef]
- Kelly, G.M.; Lai, C.-J.; Moon, R.T. Expression of Wnt10a in the Central Nervous System of Developing Zebrafish. Dev. Biol. 1993, 158, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shackleford, G.M. Murine Wnt10a and Wnt10b: Cloning and expression in developing limbs, face and skin of embryos and in adults. Oncogene 1996, 13, 1537–1544. [Google Scholar]
- Kirikoshi, H.; Sekihara, H.; Katoh, M. WNT10A and WNT6, Clustered in Human Chromosome 2q35 Region with Head-to-Tail Manner, Are Strongly Coexpressed in SW480 Cells. Biochem. Biophys. Res. Commun. 2001, 283, 798–805. [Google Scholar] [CrossRef] [PubMed]
- Kimura, R.; Watanabe, C.; Kawaguchi, A.; Kim, Y.-I.; Park, S.-B.; Maki, K.; Ishida, H.; Yamaguchi, T. Common polymorphisms in WNT10A affect tooth morphology as well as hair shape. Hum. Mol. Genet. 2015, 24, 2673–2680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, N.; Dong, Z.; Tai, D.; Liang, H.; Guo, X.; Cang, M.; Dongjun, L. The role of Sox9 in maintaining the characteristics and pluripotency of Arbas Cashmere goat hair follicle stem cells. Cytotechnology 2018, 70, 1155–1165. [Google Scholar] [CrossRef]
- Rishikaysh, P.; Dev, K.; Diaz, D.; Qureshi, W.M.S.; Filip, S.; Mokry, J. Signaling Involved in Hair Follicle Morphogenesis and Development. Int. J. Mol. Sci. 2014, 15, 1647–1670. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, L.; Li, Z.; Chen, D.; Han, W.; Wu, Z.; Shang, F.; Hai, E.; Wei, Y.; Su, R.; et al. Transcriptome profiling reveals transcriptional and alternative splicing regulation in the early embryonic development of hair follicles in the cashmere goat. Sci. Rep. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Sulayman, A.; Tian, K.; Huang, X.; Tian, Y.; Xu, X.; Fu, X.; Zhao, B.; Wu, W.; Wang, D.; Yasin, A.; et al. Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. Sci. Rep. 2019, 9, 8501. [Google Scholar] [CrossRef] [Green Version]
- Andl, T.; Reddy, S.T.; Gaddapara, T.; Millar, S.E. WNT Signals Are Required for the Initiation of Hair Follicle Development. Dev. Cell 2002, 2, 643–653. [Google Scholar] [CrossRef]
- Reale, S.; Yahyaoui, M.H.; Folch, J.M.; Sànchez, A.; Pilla, F.; Angiolillo, A. Genetic polymorphism of the K-casein (CSN3) gene in goats reared in Southern Italy. Ital. J. Anim. Sci. 2005, 4, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Shin, H.Y.; Hennighausen, L.; Yoo, K.H. STAT5-Driven Enhancers Tightly Control Temporal Expression of Mammary-Specific Genes. J. Mammary Gland. Biol. Neoplasia 2018, 24, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Legrand, J.M.D.; Roy, E.; Ellis, J.J.; François, M.; Brooks, A.J.; Khosrotehrani, K. STAT5 Activation in the Dermal Papilla is Important for Hair Follicle Growth Phase Induction. J. Investig. Dermatol. 2016, 136, 1781–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazari-Ghadikolaei, A.; Mehrabani-Yeganeh, H.; Miarei-Aashtiani, S.R.; Staiger, E.A.; Rashidi, A.; Huson, H.J. Genome-Wide Association Studies Identify Candidate Genes for Coat Color and Mohair Traits in the Iranian Markhoz Goat. Front. Genet. 2018, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Williams, A.R.; Palmer, D.G. Interactions between gastrointestinal nematode parasites and diarrhoea in sheep: Pathogenesis and control. Vet. J. 2012, 192, 279–285. [Google Scholar] [CrossRef]
- Bretzlaff, K. Special Problems of Hair Goats. Vet. Clin. N. Am. Food Anim. Pract. 1990, 6, 721–735. [Google Scholar] [CrossRef]
- Li, G.F.; Zhao, Z.Z.; Li, D.Q.; Guo, H.Y. The observation of derma structure and control of wool growth. Grass Feed. Livest. 2002, 4, 56–59. [Google Scholar]
- Jin, H.G.; Zhang, B.H. Study on skin hair follicle structure and seed selection method of Inner Mongolia white cashmere goat. J. Beijing Agric. Univ. 1995, 21, 94–98. [Google Scholar]
- Rogers, G.; Winter, B.; McLaughlan, C.; Powell, B.; Nesci, T. Peptidylarginine Deiminase of the Hair Follicle: Characterization, Localization, and Function in Keratinizing Tissues. J. Investig. Dermatol. 1997, 108, 700–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leishman, E.; Howard, J.M.; Garcia, G.E.; Miao, Q.; Ku, A.T.; Dekker, J.D.; Tucker, H.; Nguyen, H. Foxp1 maintains hair follicle stem cell quiescence through regulation of Fgf18. Development 2013, 140, 3809–3818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Yang, Y.; Ou, J.; Zhu, L.; Zhao, W.; Cui, J. LRRC14 attenuates Toll-like receptor-mediated NF-κB signaling through disruption of IKK complex. Exp. Cell Res. 2016, 347, 65–73. [Google Scholar] [CrossRef]
- Zheng, Y.Y.; Sheng, S.D.; Hui, T.Y.; Yue, C.; Sun, J.M.; Guo, D.; Guo, S.L.; Li, B.J.; Xue, H.L.; Wang, Z.Y.; et al. An Integrated Analysis of Cashmere Fineness lncRNAs in Cashmere Goats. Genes 2019, 10, 266. [Google Scholar] [CrossRef] [Green Version]
- Bai, W.L.; Yin, R.H.; Yin, R.L.; Wang, J.J.; Jiang, W.Q.; Luo, G.B.; Zhao, Z.H. IGF1mRNA Splicing Variants in Liaoning Cashmere Goat: Identification, Characterization, and Transcriptional Patterns in Skin and Visceral Organs. Anim. Biotechnol. 2013, 24, 81–93. [Google Scholar] [CrossRef]
- Plikus, M.V.; Mayer, J.A.; De La Cruz, D.; Baker, R.E.; Maini, P.K.; Maxson, R.; Chuong, C.-M. Cyclic dermal BMP signalling regulates stem cell activation during hair regeneration. Nat. Cell Biol. 2008, 451, 340–344. [Google Scholar] [CrossRef] [Green Version]
- Plikus, M.V.; Baker, R.E.; Chen, C.-C.; Fare, C.; De La Cruz, D.; Andl, T.; Maini, P.K.; Millar, S.E.; Widelitz, R.; Chuong, C.-M. Self-Organizing and Stochastic Behaviors During the Regeneration of Hair Stem Cells. Science N. Y. 2011, 332, 586–589. [Google Scholar] [CrossRef] [Green Version]
- Castela, M.; Linay, F.; Roy, E.; Moguelet, P.; Xu, J.; Holzenberger, M.; Khosrotehrani, K.; Aractingi, S. Igf1rsignalling acts on the anagen-to-catagen transition in the hair cycle. Exp. Dermatol. 2017, 26, 785–791. [Google Scholar] [CrossRef]
- Chisholm, A.D.; Fantauzzo, K.A.; Kurban, M.; Levy, B.; Christiano, A.M. Trps1 and Its Target Gene Sox9 Regulate Epithelial Proliferation in the Developing Hair Follicle and Are Associated with Hypertrichosis. PLoS Genet. 2012, 8, e1003002. [Google Scholar]
- Lawler, J. Anti-Angiogenic Therapy with Thrombospondins. Tumor Angiogenes 2007, 465–475. [Google Scholar] [CrossRef]
- Ohyama, M. Use of human intra-tissue stem/progenitor cells and induced pluripotent stem cells for hair follicle regeneration. Inflamm. Regen. 2019, 39, 4. [Google Scholar] [CrossRef] [PubMed]
- Suda, T.; Arai, F. Wnt Signaling in the Niche. Cell 2008, 132, 729–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gentile, P.; Garcovich, S. Advances in Regenerative Stem Cell Therapy in Androgenic Alopecia and Hair Loss: Wnt Pathway, Growth-Factor, and Mesenchymal Stem Cell Signaling Impact Analysis on Cell Growth and Hair Follicle Development. Cells 2019, 8, 466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nat. Cell Biol. 2005, 434, 843–850. [Google Scholar] [CrossRef]
- Chen, Y.; Fan, Z.; Wang, X.; Mo, M.; Zeng, S.B.; Xu, R.-H.; Wang, X.; Wu, Y. PI3K/Akt signaling pathway is essential for de novo hair follicle regeneration. Stem Cell Res. Ther. 2020, 11, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ge, W.; Wang, S.-H.; Sun, B.; Zhang, Y.-L.; Shen, W.; Khatib, H.; Wang, X. Melatonin promotes Cashmere goat (Capra hircus) secondary hair follicle growth: A view from integrated analysis of long non-coding and coding RNAs. Cell Cycle 2018, 17, 1255–1267. [Google Scholar] [CrossRef] [Green Version]
- Yang, C.H.; Wu, Z.Y.; Li, Y.; Zhang, W. Effect of melatonin administration to lactating cashmere goats on milk production of dams and on hair follicle development in their offspring. Animal 2019, 14, 1241–1248. [Google Scholar] [CrossRef]
- Wang, L.F.; Yang, G.Q.; Yang, Y.S.; Zhang, S.J.; Wang, Y.L.; De-Xun, L.U. Effects of Photoperiod and Melatonin on Endocrine and Cashmere Growth in Cashmere Goats in Telogen. China Anim. Husb. Vet. Med. 2008, 12, 29–32. [Google Scholar]
- Duan, C.; Xu, J.; Sun, C.; Jia, Z.; Zhang, W. Effects of melatonin implantation on cashmere yield, fibre characteristics, duration of cashmere growth as well as growth and reproductive performance of Inner Mongolian cashmere goats. J. Anim. Sci. Biotechnol. 2015, 6, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Foldes, A.; Hoskinson, R.; Baker, P.J.; McDonald, B.; Maxwell, C.; Restall, B. Effect of immunization against melatonin on seasonal fleece growth in feral goats. J. Pineal Res. 1992, 13, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, F.E.-Z.A.; Abdel-Maksoud, F.M.; Hassan, A.H.S.; Mokhtar, D.M. Melatonin induces a stimulatory action on the scrotal skin components of Soay ram in the non-breeding season. Sci. Rep. 2020, 10, 1–15. [Google Scholar] [CrossRef] [PubMed]
Breeds | Abbr. | Sample Size | Sex | Breed Characteristics | Location | Cashmere Yield (g) [8] | Fiber Diameter (μm) [8] | Weight (kg) [8] |
---|---|---|---|---|---|---|---|---|
Inner Mongolia Cashmere goats | MGR | 17 | female | multipurpose | Erdos, Inner Mongolia, China | 623 ± 86.32 | 15.2 ± 1.10 | 29.9 ± 3.0 |
Liaoning Cashmere goat | LNR | 20 | female | multipurpose | Wafangdian, Liaoning, China | 641 ± 145 | 15.5 ± 0.77 | 43.2 ± 2.6 |
Huanghuai | HHS | 16 | female | multipurpose | Zhumadian, Henan, China | 0 | - | 37.8 ± 7.4 |
Daiyun goats | DYG | 15 | female | meat | Quanzhou, Fujian, China | 0 | - | 30.5 ± 5.0 |
Chengdu Brown goat | CDM | 16 | female | multipurpose | Chengdu, Sichuan, China | 0 | - | 39.1 ± 6.6 |
Longlin goats | LLG | 15 | female | meat | Longlin, Guangxi Autonomous Region, China | 0 | - | 33.7 ± 5.1 |
Breed | Chromosome | Position (bp) | Fst | XP-EHH | Candidate Gene |
---|---|---|---|---|---|
MGR | 2 | 7,312,610 | 0.345233 | 0.963794 | COL5A2 |
2 | 106,272,304 | 0.377815 | 0.956545 | WNT10A | |
6 | 82,906,006 | 0.393008 | 0.892872 | CSN3 | |
13 | 6,058,455 | 0.364966 | 0.946052 | SPTLC3 | |
14 | 11,106,589 | 0.310467 | 0.868854 | LRRC14 | |
14 | 59,346,613 | 0.427461 | 0.851539 | TRPS1 | |
29 | 39,094,189 | 0.466096 | 0.899931 | WDR74 | |
LNR | 2 | 134,768,458 | 0.451128 | 1.17724 | PADI2 |
2 | 106,213,716 | 0.387751 | 1.11715 | WNT10A | |
6 | 82,906,041 | 0.353381 | 1.07532 | CSN3 | |
21 | 5,892,765 | 0.348628 | 1.2051 | IGF1R | |
22 | 30,284,836 | 0.391823 | 1.11317 | FOXP1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, M.; Lu, J.; Fei, X.; Lu, Z.; Quan, K.; Liu, Y.; Chu, M.; Di, R.; Wang, H.; Wei, C. Genetic Signatures of Selection for Cashmere Traits in Chinese Goats. Animals 2020, 10, 1905. https://doi.org/10.3390/ani10101905
Jin M, Lu J, Fei X, Lu Z, Quan K, Liu Y, Chu M, Di R, Wang H, Wei C. Genetic Signatures of Selection for Cashmere Traits in Chinese Goats. Animals. 2020; 10(10):1905. https://doi.org/10.3390/ani10101905
Chicago/Turabian StyleJin, Meilin, Jian Lu, Xiaojuan Fei, Zengkui Lu, Kai Quan, Yongbin Liu, Mingxing Chu, Ran Di, Huihua Wang, and Caihong Wei. 2020. "Genetic Signatures of Selection for Cashmere Traits in Chinese Goats" Animals 10, no. 10: 1905. https://doi.org/10.3390/ani10101905
APA StyleJin, M., Lu, J., Fei, X., Lu, Z., Quan, K., Liu, Y., Chu, M., Di, R., Wang, H., & Wei, C. (2020). Genetic Signatures of Selection for Cashmere Traits in Chinese Goats. Animals, 10(10), 1905. https://doi.org/10.3390/ani10101905