Welfare Benefits of Intradermal Vaccination of Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animal, Housing, and Experimental Procedure
2.3. Behavioural Measures
2.4. Health Measures and Body Weight
2.5. Sampling of Physiological Parameters
2.6. Statistical Analysis
3. Results
3.1. Behavioural Data
3.2. Physiological Data
3.3. Health Data and Body Weight
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Turner, P.V.; Brabb, T.; Pekow, C.; Vasbinder, M.A. Administration of Substances to Laboratory Animals: Routes of Administration and Factors to Consider. J. Am. Assoc. Lab. Anim. Sci. 2011, 50, 600–613. [Google Scholar] [PubMed]
- Leslie, E.; Hernández-Jover, M.; Newman, R.; Holyoake, P. Assessment of acute pain experienced by piglets from ear tagging, ear notching and intraperitoneal injectable transponders. Appl. Anim. Behav. Sci. 2010, 127, 86–95. [Google Scholar] [CrossRef]
- Bangert, C.; Brunner, P.M.; Stingl, G. Immune functions of the skin. Clin. Dermatol. 2011, 29, 360–376. [Google Scholar] [CrossRef]
- Sarno, M.J.; Blase, E.; Galindo, N.; Ramirez, R.; Schirmer, C.L.; Trujillo-Juarez, D.F. Clinical immunogenicity of measles, mumps and rubella vaccine delivered by the Injex jet injector: Comparison with standard syringe injection. Pediatr. Infect. Dis. J. 2000, 19, 839–842. [Google Scholar] [CrossRef] [PubMed]
- Stout, R.R.; Gutierrez, M.J.; Roffman, M.; Marcos, J.; Sanchez, R.; Macias, M.; Quiroz, R.; Taylor, D.; Mckenzie, B.; Restrepo, E.; et al. Subcutaneous injections with a single-use, pre-filled, disposable needle-free injection device or needle and syringe: Comparative evaluation of efficacy and acceptability. Drug Deliv. Tech. 2004, 4, 2–6. [Google Scholar]
- Shimada, S.G.; LaMotte, R.H. Behavioral differentiation between itch and pain in mouse. Pain 2008, 139, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deuis, J.R.; Dvorakova, L.S.; Vetter, I. Methods used to evaluate pain behaviors in rodents. Front. Mol. Neurosci. 2017, 10, 284. [Google Scholar] [CrossRef] [Green Version]
- McGlone, J.J.; Guay, K.; Garcia, A. Comparison of intramuscular or subcutaneous injections vs. castration in pigs–Impacts on behavior and welfare. Animals 2016, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Göller, M.; Knöppel, H.P.; Fiebig, K.; Kemper, N. Intradermal vaccine application: Effects on suckling behaviour. In Proceedings of the 24th International Pig Veterinary Society Congress, Dublin, Ireland, 7–10 June 2016; p. 625. [Google Scholar]
- Scollo, A.; Minervini, S.; Galli, M.C.; Cevidalli, A.; Bortoletto, G.; Romano, G.; Gottardo, F. Evaluation of pain and stress in three-week old piglets in relation to route of vaccine administration. Livest. Sci. 2020, 233, 1–5. [Google Scholar] [CrossRef]
- Temple, D.; Escribano, D.; Jiménez, M.; Mainau, E.; Cerón, J.J.; Manteca, X. Effect of the needle-free “intra dermal application of liquids” vaccination on the welfare of pregnant sows. Porc. Heal. Manag. 2017, 3, 9. [Google Scholar] [CrossRef] [Green Version]
- Eckersall, P.D. Acute phase proteins as markers of infection and inflammation:Monitoring animal health, animal welfare and food safety. Ir. Vet. J. 2000, 53, 307–311. [Google Scholar]
- Heegaard, P.M.H.; Stockmarr, A.; Piñeiro, M.; Carpintero, R.; Lampreave, F.; Campbell, F.M.; Eckersall, P.D.; Toussaint, M.J.M.; Gruys, E.; Sorensen, N.S. Optimal combinations of acute phase proteins for detecting infectious disease in pigs. Vet. Res. 2011, 42, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escribano, D.; Soler, L.; Gutiérrez, A.M.; Martinez-Subiela, S.; Cerón, J.J. Measurement of chromogranin A in porcine saliva: Validation of a time-resolved immunofluorometric assay and evaluation of its application as a marker of acute stress. Animal 2012, 7, 640–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Escribano, D.; Gutiérrez, A.M.; Tecles, F.; Cerón, J.J. Changes in saliva biomarkers of stress and immunity in domestic pigs exposed to a psychosocial stressor. Res. Vet. Sci. 2015, 102, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, M.; Tecles, F.; Gutiérrez, A.M.; Otal, J.; Martínez-Subiela, S.; Cerón, J.J. Validation of an automated method for salivary alpha-amylase measurements in pigs (Sus scrofa domesticus) and its application as a stress biomarker. J. Vet. Diagn. Investig. 2011, 23, 282–287. [Google Scholar] [CrossRef] [Green Version]
- Contreras-Aguilar, M.D.; Escribano, D.; Martínez-Subiela, S.; Martínez-Miró, S.; Cerón, J.J.; Tecles, F. Changes in alpha-amylase activity, concentration and isoforms in pigs after an experimental acute stress model: An exploratory study. BMC Vet. Res. 2018, 14, 256. [Google Scholar] [CrossRef]
- Chase, C.C.L.; Scanlon, D.; Garcia, R.; Milward, F.; Nation, T. Needle-free injection technology in swine: Progress toward vaccine efficacy and pork quality. J. Swine Health Prod. 2008, 16, 254–261. [Google Scholar]
- Hoff, S.J.; Sundberg, P. Breakage and deformation characteristics of hypodermic devices under static and dynamic loading. Am. J. Vet. Res. 1999, 60, 292–298. [Google Scholar]
- Stier, R.F. The dirty dozen: Ways to reduce the 12 biggest foreign materials problems. Food Saf. 2003, 9, 44–50. [Google Scholar]
- Houser, T.A.; Sebranek, J.G.; Thacker, B.J.; Baas, T.J.; Nilubol, D.; Thacker, E.L.; Kruse, F. Effectiveness of transdermal, needle-free injections for reducing pork carcass defects. Meat Sci. 2004, 68, 329–332. [Google Scholar] [CrossRef] [Green Version]
- Meisinger, D.J. National Pork Quality Benchmarking Study. In Proceedings of the 56th American Meat Science Association Reciprocal Meat Conference, Columbia, MO, USA, 15–18 June 2003; pp. 71–72. [Google Scholar]
- Daniels, C.S. Survey of Injection Methodologies and Carcass Defects in Pork Production. Report from the National Pork Board. 2009. Available online: https://www.pork.org/research/survey-of-injection-methodologies-and-carcass-defects-in-pork-production (accessed on 7 October 2020).
- Ferreira, L.C.L.; Cooke, R.F.; Marques, R.S.; Fernandes, H.J.; Fernandes, C.E.; Stelato, R.; Franco, G.L.; Lemos, R.A.A. Effects of vaccination against foot-and-mouth disease virus on reproductive performance of Bos indicus beef cows. J. Anim. Sci. 2016, 94, 401–405. [Google Scholar] [CrossRef] [PubMed]
- Ko, E.Y.; Cho, J.; Cho, J.H.; Jo, K.; Lee, S.H.; Chung, Y.I.; Jung, S. Reduction in lesion incidence in pork carcass using transdermal needle-free injection of foot-and-mouth disease vaccine. Korean J. Food Sci. Anim. Resour. 2018, 38, 1155–1159. [Google Scholar] [CrossRef] [PubMed]
- Welfare Quality®. Welfare Quality® Assessment Protocols for Pigs (Sows and Piglets, Growing and Finishing Pigs); Welfare Quality® Consortium: Lelystad, The Netherlands, 2009. [Google Scholar]
- Guy, J.H.; Burns, S.E.; Barker, J.M.; Edwards, S.A. Reducing post-mixing aggression and skin lesions in weaned pigs by application of a synthetic maternal pheromone. Anim. Welf. 2009, 18, 249–255. [Google Scholar]
- Kjelgaard-Hansen, M.; Martínez-Subiela, S.; Petersen, H.H.; Jensen, A.L.; Cerón, J.J. Evaluation and comparison of two immunoturbidimetric assays for the heterologous determination of porcine serum C-reactive protein. Vet. J. 2007, 173, 571–577. [Google Scholar] [CrossRef]
- Tecles, F.; Fuentes, P.; Martínez-Subiela, S.; Parra, M.D.; Muñoz, A.; Cerón, J.J. Analytical validation of commercially available methods for acute phase proteins quantification in pigs. Res. Vet. Sci. 2007, 83, 133–139. [Google Scholar] [CrossRef]
- Opriessnig, T.; Karuppannan, A.K.; Castro, A.M.M.G.; Xiao, C.T. Porcine circoviruses: Current status, knowledge gaps and challenges. Virus Res. 2020, 286. [Google Scholar] [CrossRef]
- Afghah, Z.; Webb, B.; Meng, X.J.; Ramamoorthy, S. Ten years of PCV2 vaccines and vaccination: Is eradication a possibility? Vet. Microbiol. 2017, 206, 21–28. [Google Scholar] [CrossRef]
- Temple, D.; Manteca, X.; Mateu, E.; Díaz, I.; Matín, G.; Menjón, R.; Marcos, M.; Jiménez, M. Comparative study to determine PCV vaccination immune response following different administration routes (IMvs ID). In Proceedings of the 9th European Symposium of Porcine Health Management, Prague, Czech Republic, 3–5 May 2017; p. 347. [Google Scholar]
- Temple, D.; Llonch, P.; Mainau, E.; Manteca, X. On farm and post-mortem Health assessment. In Advances in Pig Welfare; Spinka, M., Ed.; Woodhead Publishing: Duxford, UK, 2018; pp. 357–379. [Google Scholar]
- Marx, G.; Horn, T.; Thielebein, J.; Knubel, B.; von Borell, E. Analysis of pain-related vocalisation in young pigs. J. Sound Vib. 2003, 266, 687–698. [Google Scholar] [CrossRef]
- Murata, H.; Shimada, N.; Yoshioka, M. Current research on acute phase proteins in veterinary diagnosis: An overview. Vet. J. 2004, 168, 28–40. [Google Scholar] [CrossRef]
- Destexhe, E.; Prinsen, M.K.; van Schöll, I.; Kuper, C.F.; Garçon, N.; Veenstra, S.; Segal, L. Evaluation of C-reactive protein as an inflammatory biomarker in rabbits for vaccine nonclinical safety studies. J Pharmacol. Toxicol. Methods 2013, 68, 367–373. [Google Scholar] [CrossRef]
- Hernández-Caravaca, I.; Figueras Gourgues, S.; Rodríguez, V.; Díaz Estrada, E.; Cerón, J.J. Escribano, D. Serum acute phase response induced by different vaccination protocols against circovirus type 2 and Mycoplasma hyopneumoniae in piglets. Res. Vet. Sci. 2017, 114, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Stadler, J.; Naderer, L.; Beffort, L.; Ritzmann, M.; Emrich, D.; Hermanns, W. Safety and immune responses after intradermal application of Porcilis PRRS in either the neck or the perianal region. PLoS ONE 2018, 13, e0203560. [Google Scholar] [CrossRef] [PubMed]
Behavioural Category | Definition |
---|---|
Active behaviour | |
Negative social behaviour | Aggressive behaviour, including biting or any social behaviour with a response from the disturbed animal (from the Welfare Quality WQ protocol for growing pigs [26]) |
Positive social behaviour | Sniffing, nosing, licking and moving gently away from the animal without an aggressive or flight reaction from this individual (from the WQ protocol for growing pigs [26]) |
Drinking | Mouth on water trough (from Mc Guy et al. [27]) |
Eating | Mouth on feeder (from Mc Guy et al. [27]) |
Exploring pen features | Sniffing, nosing, licking or chewing all features of the pen (from the WQ protocol for growing pigs [26]) |
Exploring enrichment material (organic rope) | Sniffing, nosing, licking or chewing an organic rope (from the WQ protocol for growing pigs [26]) |
Other active behaviours | All other active behaviours (air sniffing, gazing, walking, etc.) |
Sleeping | Sleeping (lying down with the eyes shut) |
Posture | Definition |
Standing | Bodyweight supported by all four legs |
Sitting | Bodyweight supported by hindquarters and front legs |
Lying ventrally | Bodyweight supported by belly and sternum in contact with the floor |
Lying laterally | Bodyweight supported by side with the shoulder in contact with the floor |
Variable | CONTROL | IDAL | IM |
---|---|---|---|
% of pigs with high pitch vocalization | 7% b | 7% b | 32% a |
% of pigs with retreat attempts | 3% b | 7% b | 39% a |
Social Behaviour and General Activity (% of Events) | CONTROL | IDAL | IM |
---|---|---|---|
Social negative | |||
Before (Day − 1, baseline) | 11.4 ± 12.45 | 9.5 ± 3.29 | 10.1 ± 4.25 |
After (Day + 1) | 8.1 ± 3.18 a | 8.0 ± 3.22 a | 3.4 ± 3.48 b |
Social positive | |||
Before (Day − 1, baseline) | 12.1 ± 2.44 | 14.3 ± 6.50 | 12.6 ± 2.81 |
After (Day + 1) | 12.8 ± 3.46 | 14.7 ± 5.89 | 11.0 ± 8.12 |
Drinking | |||
Before (Day − 1, baseline) | 2.5 ± 1.51 | 3.9 ± 2.70 | 2.8 ± 2.50 |
After (Day + 1) | 2.5 ± 2.19 | 2.8 ± 3.31 | 3.5 ± 3.10 |
Eating | |||
Before (Day − 1, baseline) | 20.3 ± 4.79 | 23.2 ± 8.31 | 22.6 ± 6.76 |
After (Day + 1) | 26.6 ± 6.08 | 26.0 ± 7.20 | 28.2 ± 11.27 |
Exploration pen | |||
Before (Day − 1) | 20.9 ± 6.31 | 17.6 ± 6.58 | 19.4 ± 4.84 |
After (Day + 1) | 19.9 ± 5.8 | 18.3 ± 4.92 | 14.65 ± 11.32 |
Exploration rope | |||
Before (Day − 1, baseline) | 5.6 ± 4.07 | 5.8 ± 6.27 | 3.8 ± 2.21 |
After (Day + 1) | 5.7 ± 4.07 a | 4.8 ± 3.16 ab | 2.2 ± 2.77 b |
Active total | |||
Before (Day − 1, baseline) | 59.5 ± 10.72 | 46.3 ± 13.50 | 54.3 ± 12.18 |
After (Day + 1) | 47.6 ± 17.77 ab | 47.8 ± 15.72 a | 34.9 ± 23.35 b |
Resting Pattern (% of Events) | CONTROL | IDAL | IM |
---|---|---|---|
Lying total | |||
Before (Day − 1, baseline) | 55 (26) | 75 (18) | 66 (24) |
After (Day + 1) | 67 (27) | 75 (25) | 84 (24) |
Lying ventrally | |||
Before (Day − 1, baseline) | 49 (15) | 61 (14) | 56 (17) |
After (Day + 1) | 58 (21) | 64 (17) | 66 (27) |
Sitting | |||
Before (Day − 1, baseline) | 2 (2) | 1 (2) | 1 (1) |
After (Day + 1) | 0 (1) | 1 (1) | 0 (1) |
Acute Phase Protein | CONTROL | IDAL | IM | |
---|---|---|---|---|
CRP (µg/mL) | t0 | 12.9 ± 9.12 (70%) | 9.7 ± 12.60 (120%) | 11.1 ± 8.97 (80%) |
t1 (+28 h) | 20.0 ± 15.12 c (75%) | 38.8 ± 33.13 b (87%) | 82.8 ± 29.18 a (35%) | |
Hp (mg/mL) | t0 | 1.8 ± 0.62 (34%) | 1.7 ± 0.72 (43%) | 1.8 ± 0.72 (41%) |
t1 (+28 h) | 1.8 ±0.65 b (35%) | 1.9 ± 0.71 b (37%) | 3.1 ± 0.3 a (9%) |
Salivary Parameter | CONTROL | IDAL | IM | |
---|---|---|---|---|
Alpha-amylase (sAA) (UI/L) | t0 | 793.3 ± 1288.68 (162%) | 656.8 ± 867.34 (132%) | 549.8 ± 714.76 (130%) |
t1 (+25 min) | 462.3 ± 970.36 (210%) | 644.8 ± 1002.40 (156%) | 785.6 ± 1456.4 (185%) | |
Chromogranin-A (CgA) (μg/mL) | t0 | 1.19 ± 0.36 (30%) | 1.26 ± 0.41 (32%) | 1.34 ± 0.30 (22%) |
t1 (+25 min) | 1.35 ± 0.40 (29%) | 1.43 ± 0.32 (22%) | 1.36 ± 0.36 (26%) |
Group | +28 h | +42 h | +7 days | +21 days |
---|---|---|---|---|
CONTROL | 0 | 0 | 0 | 0 |
IDAL | 18% | 16% | 11% | 7% |
IM | 1% | 1% | 1% | 1% |
p-value between IDAL and IM | <0.0001 | 0.0001 | 0.012 | 0.10 |
Group | Day − 1 (Baseline) | +28 h | +42 h | +7 days | +21 days |
---|---|---|---|---|---|
CONTROL | 39.3 ± 0.52 °C | 39.4 ± 0.47 °C | 39.3 ± 0.35 °C | 39.4 ± 0.48 °C | 39.9 ± 0.35 °C |
IDAL | 39.3 ± 0.39 °C | 39.4 ± 0.44 °C | 39.1 ± 0.49 °C | 39.1 ± 0.72 °C | 39.8 ± 0.53 °C |
IM | 39.5 ± 0.53 °C | 39.5 ± 0.41 °C | 39.2 ± 0.44 °C | 39.3 ± 0.59 °C | 39.7 ± 0.32 °C |
Group | BW day 0 (kg) | BW day + 21 (kg) | ADG (kg) |
---|---|---|---|
CONTROL | 10.6 | 20.3 | 0.44 |
IDAL | 9.6 | 18.3 | 0.42 |
IM | 9.2 | 18.4 | 0.44 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Temple, D.; Jiménez, M.; Escribano, D.; Martín-Valls, G.; Díaz, I.; Manteca, X. Welfare Benefits of Intradermal Vaccination of Piglets. Animals 2020, 10, 1898. https://doi.org/10.3390/ani10101898
Temple D, Jiménez M, Escribano D, Martín-Valls G, Díaz I, Manteca X. Welfare Benefits of Intradermal Vaccination of Piglets. Animals. 2020; 10(10):1898. https://doi.org/10.3390/ani10101898
Chicago/Turabian StyleTemple, Déborah, Marta Jiménez, Damián Escribano, Gerard Martín-Valls, Ivan Díaz, and Xavier Manteca. 2020. "Welfare Benefits of Intradermal Vaccination of Piglets" Animals 10, no. 10: 1898. https://doi.org/10.3390/ani10101898
APA StyleTemple, D., Jiménez, M., Escribano, D., Martín-Valls, G., Díaz, I., & Manteca, X. (2020). Welfare Benefits of Intradermal Vaccination of Piglets. Animals, 10(10), 1898. https://doi.org/10.3390/ani10101898