Does Functionality Condition the Population Structure and Genetic Diversity of Endangered Dog Breeds under Island Territorial Isolation?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Records and Software
2.2. Genealogical Information Analysis
2.3. Analysis of Breeding Policies
2.4. Genetic Diversity
2.4.1. Identity by Descent (IBD) Genealogical Estimators
2.4.2. Founder Analysis
2.4.3. Owner and Breeder Pack Relationships
2.5. Functionality Impact on Demographic and Diversity Parameters
2.6. Publication Ethics Statement
3. Results
3.1. Genealogical Information Analysis
3.2. Genetic Diversity
3.2.1. Identity by Descent (IBD) Genealogical Estimators
3.2.2. Founder Analysis
3.2.3. Owner and Breeder Pack Relationships
3.3. Functionality Impact on Demographic and Diversity Parameters
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Puigserver i Gil de Sola, G. Los Animales Domésticos de Raza Autóctona de Mallorca; Universitat de les Illes Balears: Palma, Spain, 1998. [Google Scholar]
- Salvador, L. Die Balearen in Wort und Bild; F.A. Brockhaus: Leipzig, Germany, 1869. [Google Scholar]
- Payeras, L.; Falconer, J. Races Autòctones de les Illes Balears; Govern Balear. Agència per al Desenvolupament Rural: Balearic Islands, Spain, 1998. [Google Scholar]
- Anguera, B. Races Autòctones de les Illes Balears; Conselleria d‘Agricultura i Pesca. Govern de les Illes Balears: Palma, Spain, 2006. [Google Scholar]
- De Rosselló, J.M.B. Noticias Histórico-Topográficas de la isla de Mallorca: Estadística General de ella y Períodos Memorables de su Historia; Imprenta Real regentada por Juan Guasp y Pascual: Palma de Mallorca, Spain, 1836. [Google Scholar]
- Mastrangelo, S.; Biscarini, F.; Auzino, B.; Ragatzu, M.; Spaterna, A.; Ciampolini, R. Genome-wide diversity and runs of homozygosity in the “Braque Français, type Pyrénées” dog breed. BMC Res. Notes 2018, 11, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, N.; Liu, H.; Theilen, G.; Sacks, B. The effects of dog breed development on genetic diversity and the relative influences of performance and conformation breeding. J. Anim. Breed. Genet. 2013, 130, 236–248. [Google Scholar] [CrossRef] [PubMed]
- Scott, J.P. The effects of selection and domestication upon the behavior of the dog. J. Natl. Cancer Inst. 1954, 15, 739–758. [Google Scholar]
- Lukanova, N.; Vlaeva, R.; Hristova, D.; Georgieva, S.; Barzev, G. Study on the genetic diversity of trotter horses populations in Bulgaria. Agrar. Nauk. 2015, 7, 159–165. [Google Scholar]
- Sabbagh, M.; Danvy, S.; Ricard, A.; Blouin, C. Tools to Better Manage the Genetic Diversity of Draft Breeds. In Proceedings of the 38ème Journée de la Recherche Équine, Actes de Colloque, Paris, France, 1 March 2012; pp. 169–172. [Google Scholar]
- Appliedbiosystems. User Guide: Canine ISAG STR Parentage Kit (2014); Thermo Fisher Scientific: Waltham, MA, USA, 2017. [Google Scholar]
- Gutiérrez, J.P.; Marmi, J.; Goyache, F.; Jordana, J. Pedigree information reveals moderate to high levels of inbreeding and a weak population structure in the endangered Catalonian donkey breed. J. Anim. Breed. Genet. 2005, 122, 378–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sargolzaei, M.; Iwaisaki, H.; Colleau, J. CFC: A tool for monitoring genetic diversity. In Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, Brazil, 13–18 August 2006; pp. 13–18. [Google Scholar]
- Maignel, L.; Boichard, D.; Verrier, E. Genetic variability of French dairy breeds estimated from pedigree information. Interbull Bull. 1996, 14, 49. [Google Scholar]
- James, J. A note on selection differential and generation length when generations overlap. Anim. Sci. 1977, 24, 109–112. [Google Scholar] [CrossRef]
- Luo, Z. Computing inbreeding coefficients in large populations. Genet. Sel. Evol. 1992, 24, 305. [Google Scholar]
- Gutiérrez, J.P.; Goyache, F. A note on ENDOG: A computer program for analysing pedigree information. J. Anim. Breed. Genet. 2005, 122, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Leroy, G.; Mary-Huard, T.; Verrier, E.; Danvy, S.; Charvolin, E.; Danchin-Burge, C. Methods to estimate effective population size using pedigree data: Examples in dog, sheep, cattle and horse. Genet. Sel. Evol. 2013, 45, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez, J.P.; Cervantes, I.; Goyache, F. Improving the estimation of realized effective population sizes in farm animals. J. Anim. Breed. Genet. 2009, 126, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Navas, F.; Jordana, J.; León, J.; Barba, C.; Delgado, J. A model to infer the demographic structure evolution of endangered donkey populations. Animal 2017, 11, 2129–2138. [Google Scholar] [CrossRef] [PubMed]
- Cervantes, I.; Goyache, F.; Molina, A.; Valera, M.; Gutierrez, J.P. Estimation of effective population size from the rate of coancestry in pedigreed populations. J. Anim. Breed. Genet. Z. Tierz. Zucht. 2011, 128, 56–63. [Google Scholar] [CrossRef] [PubMed]
- Solomon, E.; Martin, C.; Martin, D.W.; Berg, L.R. Biology, 10th ed.; Brooks Cole: Boston, MA, USA, 2015. [Google Scholar]
- Wright, S. Evolution and the Genetics of Populations. Theory of Gene Frequencies; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Oliveira, R.R.; Brasil, L.H.A.; Delgado, J.V.; Peguezuelos, J.; León, J.M.; Guedes, D.G.P.; Arandas, J.K.G.; Ribeiro, M.N. Genetic diversity and population structure of the Spanish Murciano–Granadina goat breed according to pedigree data. Small Ruminant Res. 2016, 144, 170–175. [Google Scholar] [CrossRef]
- Lacy, R.C. Analysis of founder representation in pedigrees: Founder equivalents and founder genome equivalents. Zoo Biol. 1989, 8, 111–123. [Google Scholar] [CrossRef]
- Boichard, D.; Maignel, L.; Verrier, E. The value of using probabilities of gene origin to measure genetic variability in a population. Genet. Sel. Evol. 1997, 29, 5. [Google Scholar] [CrossRef]
- Santana, M.L.; Bignardi, A.B. Status of the genetic diversity and population structure of the Pêga donkey. Trop. Anim. Health Prod. 2015, 47, 1573–1580. [Google Scholar] [CrossRef]
- Caballero, A.; Toro, M.A. Interrelations between effective population size and other pedigree tools for the management of conserved populations. Genet. Res. 2000, 75, 331–343. [Google Scholar] [CrossRef]
- Colleau, J.J.; Sargolzaei, M. A proximal decomposition of inbreeding, coancestry and contributions. Genet. Res. 2008, 90, 191–198. [Google Scholar] [CrossRef]
- Cervantes, I.; Goyache, F.; Molina, A.; Valera, M.; Gutiérrez, J.P. Application of individual increase in inbreeding to estimate realized effective sizes from real pedigrees. J. Anim. Breed. Genet. 2008, 125, 301–310. [Google Scholar] [CrossRef] [Green Version]
- Lacy, R.C. Clarification of genetic terms and their use in the management of captive populations. Zoo Biol. 1995, 14, 565–577. [Google Scholar] [CrossRef]
- Nei, M. Molecular Evolutionary Genetics; Columbia University Press: New York, NY, USA, 1987. [Google Scholar]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef] [PubMed]
- IBM Corption. IBM SPSS Statistics for Windows, 25.0 ed; IBM Corp: Armonk, NY, USA, 2017. [Google Scholar]
- Gibbons, J.D.; Chakraborti, S. Comparisons of the Mann-whitney, student’s t, and alternate t tests for means of normal distributions. J. Exp. Educ. 1991, 59, 258–267. [Google Scholar] [CrossRef]
- Leroy, G.; Rognon, X.; Varlet, A.; Joffrin, C.; Verrier, E. Genetic variability in French dog breeds assessed by pedigree data. J. Anim. Breed. Genet. 2006, 123, 1–9. [Google Scholar] [CrossRef]
- Cecchi, F.; Bramante, A.; Mazzanti, E.; Ciampolini, R. A colony of dog guides: Analysis of the genetic variability assessed by pedigree data. Ital. J. Anim. Sci. 2009, 8, 48–50. [Google Scholar] [CrossRef]
- Marin, C.; Navas, F.; Castillo, V.; Payeras, L.; Gómez, M.; Delgado Bermejo, J.V. Impact of breeding for coat and spotting patterns on the population structure and genetic diversity of an islander endangered dog breed. Res. Vet. Sci. 2020, 131, 117–130. [Google Scholar] [CrossRef] [PubMed]
- Cecchi, F.; Paci, G.; Spaterna, A.; Ciampolini, R. Genetic Variability in Bracco Italiano Dog Breed Assessed by Pedigree Data. Ital. J. Anim. Sci. 2013, 12, e54. [Google Scholar] [CrossRef] [Green Version]
- Cecchi, F.; Paci, G.; Spaterna, A.; Ragatzu, M.; Ciampolini, R. Demographic approach on the study of genetic parameters in the dog Braque Français type Pyrénées italian population. Ital. J. Anim. Sci. 2016, 15, 30–36. [Google Scholar] [CrossRef]
- Leroy, G.; Verrier, E.; Meriaux, J.-C.; Rognon, X. Genetic diversity of dog breeds: Within-breed diversity comparing genealogical and molecular data. Anim. Genet. 2009, 40, 323–332. [Google Scholar] [CrossRef]
- Svartberg, K. Shyness–boldness predicts performance in working dogs. Appl. Anim. Behav. Sci. 2002, 79, 157–174. [Google Scholar] [CrossRef]
- Scandurra, A.; Alterisio, A.; Di Cosmo, A.; D’Aniello, B. Behavioral and perceptual differences between sexes in dogs: An overview. Animals 2018, 8, 151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kydd, E.; McGreevy, P. Sex differences in the herding styles of working sheepdogs and their handlers. PLoS ONE 2017, 12, e0184072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lupo, K.D. 2. A dog is for hunting. In Ethnozooarchaeology: The Present and Past of Human-Animal Relationships, 1st ed.; Albarella, U., Trentacoste, A., Eds.; Oxbow Books: Oxford, UK, 2011; p. 208. [Google Scholar]
- Serpell, J.A.; Hsu, Y.A. Effects of breed, sex, and neuter status on trainability in dogs. Anthrozoös 2005, 18, 196–207. [Google Scholar] [CrossRef] [Green Version]
- Fernández, J.; Toro, M.; Mäki-Tanila, A. Management of genetic diversity in small farm animal populations. Animal 2011, 5, 1684–1698. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Y. Deviation from Panmixia via Assortative Mating and Divergent Habitat Preferences. Ph.D. Thesis, The University of Texas, Austin, TX, USA, 2014. [Google Scholar]
- Bos, I.; Caligari, P. Assortative mating and disassortative mating. In Selection Methods in Plant Breeding, 2nd ed.; Bos, I., Caligari, P., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 59–67. [Google Scholar]
- Jiang, Y.; Bolnick, D.I.; Kirkpatrick, M. Assortative mating in animals. Am. Nat. 2013, 181, E125–E138. [Google Scholar] [CrossRef] [Green Version]
- Epinat, G.; Lenormand, T. The evolution of assortative mating and selfing with in-and outbreeding depression. Evol. Int. J. Org. Evol. 2009, 63, 2047–2060. [Google Scholar] [CrossRef]
- Robertson, A. The effect of non-random mating within inbred lines on the rate of inbreeding. Genet. Res. 1964, 5, 164–167. [Google Scholar] [CrossRef]
- Calboli, F.C.; Sampson, J.; Fretwell, N.; Balding, D.J. Population structure and inbreeding from pedigree analysis of purebred dogs. Genetics 2008, 179, 593–601. [Google Scholar] [CrossRef] [Green Version]
- Voges, S.; Distl, O. Inbreeding trends and pedigree analysis of Bavarian mountain hounds, Hanoverian hounds and Tyrolean hounds. J. Anim. Breed. Genet. 2009, 126, 357–365. [Google Scholar] [CrossRef]
- Broeckx, B.J. The dog 2.0: Lessons learned from the past. Theriogenology 2020, 150, 20–26. [Google Scholar] [CrossRef] [Green Version]
- Marin, C.; Navas González, F.; Castillo, V.; Payeras, L.; Gómez, M.; Delgado Bermejo, J.V. Organization and Policies of Connection between Coats and Their Particularities in the Ca Mè Dog Breed. In Proceedings of the XX Simpósio Iberoamericano sobre Conservação e Uso de Recursos Zoogenéticos Locais, Corumbá, Brazil, 11–14 November 2019. [Google Scholar]
- Marin, C.; Navas González, F.; Castillo, V.; Payeras, L.; Gómez, M.; Delgado Bermejo, J.V. Structural Analysis of the Subpopulations of the Ca Mè Dog Breed. In Proceedings of the XX Simpósio Iberoamericano sobre Conservação e Uso de Recursos Zoogenéticos Locais, Corumbá, Brazil, 11–14 November 2019. [Google Scholar]
Population Set | Ca de Bestiar | Ca de Rater | |||
---|---|---|---|---|---|
Parameter | Historical | Current | Historical | Current | |
Population size | 385 | 307 | 1810 | 1468 | |
Maximum number of traced generations, n | 7 | 7 | 8 | 8 | |
Pedigree completeness level at 1st generation, (known parents) | 48.96 | 50.33 | 77.71 | 84.88 | |
Pedigree completeness level at 2nd generation, (known grandparents) | 23.05 | 25.98 | 41.56 | 50.80 | |
Pedigree completeness level at 3rd generation, (known great-grandparents) | 10.13 | 12.22 | 17.54 | 17.54 | |
Pedigree completeness level at 4th generation, (known great-great-grandparents) | 4.09 | 5.13 | 7.45 | 8.86 | |
Pedigree completeness level at 5th generation, (known great-great-great-grandparents) | 1.43 | 1.79 | 2.46 | 2.87 | |
Number of maximum generations (mean ± SD) | 1.72 ± 2.22 | 1.96 ± 2.22 | 2.35 ± 2.09 | 2.77 ± 2.09 | |
Number of complete generations (mean ± SD) | 1.04 ± 0.62 | 0.57 ± 0.62 | 1.04 ± 0.79 | 1.18 ± 0.79 | |
Number of equivalent generations (mean ± SD) | 0.89 ± 0.99 | 0.97 ± 0.99 | 1.50 ± 1.09 | 1.74 ± 1.09 | |
Male % | 49.61 | 50.16 | 46.91 | 48.23 | |
Mean number of puppies per male, n | 1.00 | 0.81 | 1.66 | 1.13 | |
Maximum number of puppies per male, n | 18 | 18 | 117 | 72 | |
Average age of male in reproduction, years | 14.78 | 14.09 | 14.30 | 13.61 | |
Female % | 50.39 | 49.84 | 53.09 | 51.77 | |
Mean number of puppies per female, n | 0.96 | 0.67 | 1.45 | 1.00 | |
Maximum number of puppies per female, n | 16 | 16 | 39 | 33 | |
Average age of female in reproduction, years | 13.16 | 12.32 | 14,91 | 14.07 | |
Female/male ratio | 1.02/1 | 0.99/1 | 1.13/1 | 1.05/1 | |
Progeny from male selected for breeding, % | 39.13 | 21.54 | 14.86 | 15.29 | |
Progeny from female selected for breeding, % | 44.00 | 40.54 | 17.74 | 18.22 |
Population Set | Ca de Bestiar | Ca de Rater | |||
---|---|---|---|---|---|
Parameter | Historical (n = 385) | Current (n = 307) | Historical (n = 1810) | Current (n = 1468) | |
Inbreeding (F, %) | 0.27 | 0.34 | 1.15 | 1.41 | |
Average individual increase in inbreeding (ΔF, %) | 0.13 | 0.16 | 0.92 | 1.13 | |
Maximum coefficient of inbreeding (%) | 13.38 | 13.38 | 26.41 | 26.41 | |
Inbred animals (%) | 4.68 | 5.86 | 13.98 | 17.17 | |
Highly inbred animals (%) | 1.30 | 1.63 | 3.70 | 4.77 | |
Average coancestry (C, %) | 0.86 | 0.86 | 1.24 | 1.41 | |
Average relatedness (ΔR, %) | 1.73 | 1.73 | 2.49 | 2.83 | |
Nonrandom mating rate (α) | −0.01 | −0.01 | 0.00 | 0.00 | |
Genetic conservation index (GCI) | 2.00 | 2.10 | 2.98 | 3.32 |
Reference | Ca de Bestiar (Both Parents Known) (n = 180) | Ca de Rater (Both Parents Known) (n = 1367) | |
---|---|---|---|
Parameter | |||
Historical population | 385 | 1810 | |
Current population | 307 | 1468 | |
Base population (one or more unknown parents) | 205 | 443 | |
Actual base population (one unknown parent = half-founder) | 196.50 | 403.50 | |
Number of founders, n | 53 | 146 | |
Number of ancestors, n | 61 | 148 | |
Effective number of non-founders (Nef) | 171.99 | 102.51 | |
Number of founder equivalents (fe) | 87.32 | 66.08 | |
Effective number of ancestors (fa) | 26 | 36 | |
Founder genome equivalents (fg) | 57.92 | 40.18 | |
fa/fe ratio | 0.30 | 0.55 | |
fg/fe ratio | 0.66 | 0.61 | |
Genetic diversity, GD | 0.99 | 0.99 | |
Genetic diversity loss, GDL | 0.01 | 0.01 | |
Genetic diversity in the reference population considered to compute the genetic diversity loss due to the unequal contribution of founders, DG | 0.99 | 0.99 | |
GDL due to bottlenecks and genetic drift since founders (GBDr) | 0.01 | 0.01 | |
GDL due to genetic drift since founders (GDr) | 0 | 0 | |
GDL due to unequal founder contributions | 0.01 | 0.01 | |
Ancestors explaining 25% of the gene pool (n) | 4 | 5 | |
Ancestors explaining 50% of the gene pool (n) | 10 | 13 | |
Ancestors explaining 75% of the gene pool (n) | 21 | 36 | |
Average individual increase in inbreeding (ΔF) | 0 | 0.01 | |
Average relatedness (ΔR) | 0.02 | 0.25 |
Parameter | Ca de Bestiar Historical (n = 385) | Ca de Rater Historical (n = 1810) |
---|---|---|
Effective population size based on the individual inbreeding rate | 384.62 | 54.35 |
Effective population size based on the individual coancestry rate | 28.90 | 20.08 |
Number of equivalent subpopulations | 0.075 | 0.37 |
Parameter | Ca de Bestiar | Ca de Rater | ||||||
---|---|---|---|---|---|---|---|---|
Breeder | Breeder Location | Owner | Owner Location | Breeder | Breeder Location | Owner | Owner Location | |
FIS (inbreeding coefficient relative to the subpopulation) | −0.051 | −0.0323 | −0.390 | −0.084 | −0.082 | −0.041 | −0.118 | −0.023 |
FST (correlation between random gametes drawn from the subpopulation relative to the total population) | 0.0427 | 0.0255 | 0.276 | 0.072 | 0.075 | 0.0383 | 0.105 | 0.021 |
FIT (inbreeding coefficient relative to the total population) | −0.006 | −0.006 | −0.006 | −0.006 | −0.001 | −0.001 | −0.001 | −0.001 |
Mean inbreeding within subpopulations | 0.0027 | 0.0027 | 0.003 | 0.003 | 0.012 | 0.012 | 0.012 | 0.012 |
Mean number of animals per subpopulation | 22.647 | 12.031 | 1.944 | 7.549 | 24.133 | 56.563 | 4.919 | 24.795 |
Total Nei’s genetic distance | 120 | 21 | 19306 | 1225 | 2701 | 465 | 67161 | 2556 |
Average Nei’s genetic distance | 0.042 | 0.025 | 0.274 | 0.072 | 0.074 | 0.038 | 0.103 | 0.021 |
Mean coancestry within subpopulations | 0.051 | 0.034 | 0.283 | 0.080 | 0.086 | 0.050 | 0.116 | 0.034 |
Autocoancestry | 0.501 | 0.501 | 0.501 | 0.501 | 0.506 | 0.506 | 0.506 | 0.506 |
Mean coancestry in the metapopulation | 0.009 | 0.009 | 0.009 | 0.009 | 0.013 | 0.013 | 0.013 | 0.013 |
Subpopulations | 17 | 8 | 198 | 51 | 75 | 32 | 368 | 73 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alanzor Puente, J.M.; Pons Barro, Á.L.; de la Haba Giraldo, M.R.; Delgado Bermejo, J.V.; Navas González, F.J. Does Functionality Condition the Population Structure and Genetic Diversity of Endangered Dog Breeds under Island Territorial Isolation? Animals 2020, 10, 1893. https://doi.org/10.3390/ani10101893
Alanzor Puente JM, Pons Barro ÁL, de la Haba Giraldo MR, Delgado Bermejo JV, Navas González FJ. Does Functionality Condition the Population Structure and Genetic Diversity of Endangered Dog Breeds under Island Territorial Isolation? Animals. 2020; 10(10):1893. https://doi.org/10.3390/ani10101893
Chicago/Turabian StyleAlanzor Puente, José Manuel, Águeda Laura Pons Barro, Manuel Rafael de la Haba Giraldo, Juan Vicente Delgado Bermejo, and Francisco Javier Navas González. 2020. "Does Functionality Condition the Population Structure and Genetic Diversity of Endangered Dog Breeds under Island Territorial Isolation?" Animals 10, no. 10: 1893. https://doi.org/10.3390/ani10101893
APA StyleAlanzor Puente, J. M., Pons Barro, Á. L., de la Haba Giraldo, M. R., Delgado Bermejo, J. V., & Navas González, F. J. (2020). Does Functionality Condition the Population Structure and Genetic Diversity of Endangered Dog Breeds under Island Territorial Isolation? Animals, 10(10), 1893. https://doi.org/10.3390/ani10101893