Copper Supplementation, A Challenge in Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Copper Metabolism—Very Well Regulated in Most Animal Species
3. Why is Copper Metabolism Different in Ruminants? The Difference Starts in the Rumen
4. Hepatic Copper Accumulation in Ruminants
5. Other Underlying Reasons: Breed Susceptibility
6. Copper Requirements in Cattle and Copper Supplementation
7. What Happens in Practice? Are These Levels of Requirements Respected?
8. How Can It be Established that A Herd is Being Over-Supplemented with Copper?
9. What Is the Limit Between Safe Copper Storage and Hazard Overloading?
10. What Should I Do Once I Know When My Cattle are Accumulating Copper in the Liver?
11. A Brief Note on Other Ruminant Species
12. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Horn, N.; Tümer, Z. Molecular genetics of intracellular copper transport. J. Trace Elem. Exp. Med. 1999, 12, 297–313. [Google Scholar] [CrossRef]
- Mercer, J.F.B. The molecular basis of copper-transport diseases. Trends Mol. Med. 2001, 7, 64–69. [Google Scholar] [CrossRef]
- de Romaña, D.L.; Olivares, M.; Uauy, R.; Araya, M. Risks and benefits of copper in light of new insights of copper homeostasis. J. Trace Elem. Med. Biol. 2011, 25, 3–13. [Google Scholar] [CrossRef]
- EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). Revision of the currently authorised maximum copper content in complete feed. EFSA J. 2016, 14, e04563. [Google Scholar] [CrossRef]
- National Research Council. Mineral Tolerance of Animals: Second Revised Edition; The National Academies Press: Washington, DC, USA, 2005; ISBN 0309096545. [Google Scholar]
- Suttle, N.F. Mineral Nutrition of Livestock, 4th ed.; CABI: Wallingford, UK, 2010; ISBN 9781845934729. [Google Scholar]
- Suttle, N.F. Copper Imbalances in Ruminants and Humans: Unexpected Common Ground. Adv. Nutr. 2012, 3, 666–674. [Google Scholar] [CrossRef] [Green Version]
- Bidewell, C.; Livesey, C. Copper poisoning: An emerging disease in dairy cattle. State Vet. J. 2002, 12, 16–19. [Google Scholar]
- Bidewell, C.A.; Drew, J.R.; Payne, J.H.; Sayers, A.R.; Higgins, R.J.; Livesey, C.T. Case study of copper poisoning in a British dairy herd. Vet. Rec. 2012, 170, 464. [Google Scholar] [CrossRef] [Green Version]
- Suttle, N.F.; Martineau, H.M.; Hunter, A.G.; Thomas, J.R.; MacRae, A.I. Cattle health: Atypical copper poisoning in Jersey dairy herds. Vet. Rec. 2013, 172, 82–83. [Google Scholar] [CrossRef]
- Kendall, N.R.; Holmes-Pavord, H.R.; Bone, P.A.; Ander, E.L.; Young, S.D. Liver copper concentrations in cull cattle in the UK: Are cattle being copper loaded? Vet. Rec. 2015, 177, 493. [Google Scholar] [CrossRef] [Green Version]
- Grace, N.; Knowles, S. Taking action to reduce the risk of copper toxicity in cattle. Vet. Rec. 2015, 177, 490–491. [Google Scholar] [CrossRef]
- Varga, A.; Puschner, B. Retrospective study of cattle poisonings in California: Recognition, diagnosis, and treatment. Vet. Med. Auckl. N.Z. 2012, 3, 111–127. [Google Scholar] [CrossRef] [Green Version]
- Lyman, D.; Clark, L.J.; Campbell, K. Copper Accumulation in Wisconsin Holsteins with Indications of Oxidative Liver Damage. J. Vet. Med. Res. 2015, 2, 1021. [Google Scholar]
- Strickland, J.M.; Herdt, T.H.; Sledge, D.G.; Buchweitz, J.P. Short communication: Survey of hepatic copper concentrations in Midwest dairy cows. J. Dairy Sci. 2019, 102, 4209–4214. [Google Scholar] [CrossRef]
- Counotte, G.; Holzhauer, M.; Carp-van Dijken, S.; Muskens, J.; Van der Merwe, D. Levels of trace elements and potential toxic elements in bovine livers: A trend analysis from 2007 to 2018. PLoS ONE 2019, 14, e0214584. [Google Scholar] [CrossRef] [Green Version]
- Miranda, M.; Cruz, J.M.; López-Alonso, M.; Benedito, J.L. Variations in liver and blood copper concentrations in young beef cattle raised in north-west Spain: Associations with breed, sex, age and season. Anim. Sci. 2006, 82, 253–258. [Google Scholar] [CrossRef]
- García-Vaquero, M.; Miranda, M.; López-Alonso, M.; Castillo, C.; Benedito, J.L. Evaluation of the need of copper supplementation in intensively reared beef cattle. Livest. Sci. 2011, 137, 273–277. [Google Scholar] [CrossRef]
- Miranda, M.; Gutiérrez, B.; Benedito, J.L.; Blanco-Penedo, I.; García-Vaquero, M.; López-Alonso, M. Influence of breed on blood and tissue copper status in growing and finishing steers fed diets supplemented with copper. Arch. Anim. Nutr. 2010, 64, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Pereira, V.; Carbajales, P.; López-Alonso, M.; Miranda, M. Trace Element Concentrations in Beef Cattle Related to the Breed Aptitude. Biol. Trace Elem. Res. 2018, 186, 135–142. [Google Scholar] [CrossRef]
- Hunter, A.G.; Suttle, N.; Martineau, H.M.; Spence, M.A.; Thomson, J.R.; MacRae, A.I.; Brown, S. Mortality, hepatopathy and liver copper concentrations in artificially reared Jersey calves before and after reductions in copper supplementation. Vet. Rec. 2013, 172, 46. [Google Scholar] [CrossRef] [PubMed]
- Knowles, S.O.; Grace, N.D. A recent assessment of the elemental composition of New Zealand pastures in relation to meeting the dietary requirements of grazing livestock1. J. Anim. Sci. 2014, 92, 303–310. [Google Scholar] [CrossRef]
- Kromm, V.; Cardoso, D. Copper in ruminants: Beware of going from deficiency to toxicity. Int. Dairy Top. 2020, 19, 1–2. [Google Scholar]
- Clarkson, A.H.; Paine, S.; Martín-Tereso, J.; Kendall, N.R. Copper physiology in ruminants: Trafficking of systemic copper, adaptations to variation in nutritional supply and thiomolybdate challenge. Nutr. Res. Rev. 2020, 33, 43–49. [Google Scholar] [CrossRef] [PubMed]
- López-Alonso, M. Trace Minerals and Livestock: Not Too Much Not Too Little. ISRN Vet. Sci. 2012, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Alonso, M.; Miranda, M. Implications of excessive livestock mineral supplementation on environmental pollution and human health. In Trace Elements: Environmental Sources, Geochemistry and Human Health; De Leon, D.A., Aragon, P.R., Eds.; Nova Science Publishers, Inc.: New York, NY, USA, 2012; pp. 75–92. ISBN 9781620813768. [Google Scholar]
- Nevitt, T.; Öhrvik, H.; Thiele, D.J. Charting the travels of copper in eukaryotes from yeast to mammals. Biochim. Biophys. Acta—Mol. Cell Res. 2012, 1823, 1580–1593. [Google Scholar] [CrossRef] [Green Version]
- Huffman, D.L.; O’Halloran, T.V. Function, Structure, and Mechanism of Intracellular Copper Trafficking Proteins. Annu. Rev. Biochem. 2001, 70, 677–701. [Google Scholar] [CrossRef]
- Lutsenko, S. Human copper homeostasis: A network of interconnected pathways. Curr. Opin. Chem. Biol. 2010, 14, 211–217. [Google Scholar] [CrossRef]
- Goff, J.P. Invited review: Mineral absorption mechanisms, mineral interactions that affect acid–base and antioxidant status, and diet considerations to improve mineral status. J. Dairy Sci. 2018, 101, 2763–2813. [Google Scholar] [CrossRef]
- Dias, R.S.; López, S.; Montanholi, Y.R.; Smith, B.; Haas, L.S.; Miller, S.P.; France, J. A meta-analysis of the effects of dietary copper, molybdenum, and sulfur on plasma and liver copper, weight gain, and feed conversion in growing-finishing cattle. J. Anim. Sci. 2013, 91, 5714–5723. [Google Scholar] [CrossRef]
- Spears, J.W. Trace Mineral Bioavailability in Ruminants. J. Nutr. 2003, 133, 1506S–1509S. [Google Scholar] [CrossRef] [Green Version]
- Van den Top, A. Reviews on the Mineral. Provision in Ruminants (IX): Copper Metabolism and Requirements in Ruminants; CVB documentatierapport nr. 41; Centraal Veevoederbureau: Lelystad, The Netherland, 2005. [Google Scholar]
- Gould, L.; Kendall, N.R. Role of the rumen in copper and thiomolybdate absorption. Nutr. Res. Rev. 2011, 24, 176–182. [Google Scholar] [CrossRef]
- Van Paemel, M.; Dierick, N.; Janssens, G.; Fievez, V.; De Smet, S. Selected trace and ultratrace elements: Biological role, content in feed and requirements in animal nutrition—Elements for risk assessment. EFSA Support. Publ. 2010, 7, 68E. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Dairy Cattle: Seventh Revised Edition; The National Academies Press: Washington, DC, USA, 2001; ISBN 978-0-309-06997-7. [Google Scholar]
- Spears, J.W.; Lloyd, K.E.; Fry, R.S. Tolerance of cattle to increased dietary sulfur and effect of dietary cation-anion balance. J. Anim. Sci. 2011, 89, 2502–2509. [Google Scholar] [CrossRef] [Green Version]
- Pogge, D.J.; Drewnoski, M.E.; Hansen, S.L. High dietary sulfur decreases the retention of copper, manganese, and zinc in steers. J. Anim. Sci. 2014, 92, 2182–2191. [Google Scholar] [CrossRef]
- Underwood, E.J.; Suttle, N.F. The Mineral Nutrition of Livestock, 3rd ed.; CABI Publishing: Wallingford, UK, 1999; ISBN 9780851991283. [Google Scholar]
- Miranda, M.; Méndez, L.; Pereira, V.; Minervino, A.H.H.; López-Alonso, M. Iron loading and secondary multi-trace element deficiency in a dairy herd fed silage grass grown on land fertilized with sewage sludge. Environ. Sci. Pollut. Res. 2019, 26, 36978–36984. [Google Scholar] [CrossRef] [PubMed]
- Bremner, I. Manifestations of copper excess. Am. J. Clin. Nutr. 1998, 67, 1069S–1073S. [Google Scholar] [CrossRef] [PubMed]
- Dameron, C.T.; Harrison, M.D. Mechanisms for protection against copper toxicity. Am. J. Clin. Nutr. 1998, 67, 1091S–1097S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haywood, S.; Müller, T.; Müller, W.; Heinz-Erian, P.; Tanner, M.S.; Ross, G. Copper-associated liver disease in North Ronaldsay sheep: A possible animal model for non-Wilsonian hepatic copper toxicosis of infancy and childhood. J. Pathol. 2001, 195, 264–269. [Google Scholar] [CrossRef] [PubMed]
- Saylor, W.W.; Leach, R.M. Intracellular distribution of copper and zinc in sheep: Effect of age and dietary levels of the metals. J. Nutr. 1980, 110, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Corbett, W.S.; Saylor, W.W.; Long, T.A.; Leach, R.M., Jr. Intracellular Distribution of Hepatic Cooper in Normal and Copper-Loaded Sheep. J. Anim. Sci. 1978, 47, 1174–1179. [Google Scholar] [CrossRef] [Green Version]
- Gooneratne, S.R.; Howell Mc, J.J. Intracellular distribution of copper in the liver of normal and copper loaded sheep. Res. Vet. Sci. 1979, 27, 30–37. [Google Scholar] [CrossRef]
- Gooneratne, S.R.; Howell, J.M.; Cook, R.D. An ultrastructural and morphometric study of the liver of normal and copper-poisoned sheep. Am. J. Pathol. 1980, 99, 429–450. [Google Scholar] [PubMed]
- Kumaratilake, J.S.; Howell, J.M. Histochemical study of the accumulation of copper in the liver of sheep. Res. Vet. Sci. 1987, 42, 73–81. [Google Scholar] [CrossRef]
- Kumaratilake, J.S.; Howell, J.M. Intracellular distribution of copper in the liver of copper-loaded sheep—A subcellular fractionation study. J. Comp. Pathol. 1989, 101, 161–176. [Google Scholar] [CrossRef]
- Bremner, I. Nutritional and physiologic significance of metallothionein. Methods Enzymol. 1991, 205, 25–35. [Google Scholar]
- Cisternas, F.A.; Tapia, G.; Arredondo, M.; Cartier-Ugarte, D.; Romanque, P.; Sierralta, W.D.; Vial, M.T.; Videla, L.A.; Araya, M. Early Histological and Functional Effects of Chronic Copper Exposure in Rat Liver. Biometals 2005, 18, 541–551. [Google Scholar] [CrossRef]
- Howell, J.M.; Gooneratne, R. The pathology of copper toxicity in animals. In Copper in Animals and Man; CRC Press: Boca Raton, FL, USA, 1987; Volume 2, pp. 53–78. [Google Scholar]
- Pinchuk, I.; Lichtenberg, D. Copper-induced LDL peroxidation: Interrelated dependencies of the kinetics on the concentrations of copper, hydroperoxides and tocopherol. FEBS Lett. 1999, 450, 186–190. [Google Scholar] [CrossRef] [Green Version]
- García-Vaquero, M.; Benedito, J.L.; López-Alonso, M.; Miranda, M. Histochemistry evaluation of the oxidative stress and the antioxidant status in Cu-supplemented cattle. Animal 2012, 6, 1435–1443. [Google Scholar] [CrossRef] [Green Version]
- Strickland, J.M.; Lyman, D.; Sordillo, L.M.; Herdt, T.H.; Buchweitz, J.P. Effects of Super Nutritional Hepatic Copper Accumulation on Hepatocyte Health and Oxidative Stress in Dairy Cows. Vet. Med. Int. 2019, 2019, 3642954. [Google Scholar] [CrossRef]
- López-Alonso, M.; Prieto, F.; Miranda, M.; Castillo, C.; Hernández, J.; Benedito, J.L. The role of metallothionein and zinc in hepatic copper accumulation in cattle. Vet. J. 2005, 169, 262–267. [Google Scholar] [CrossRef]
- López-Alonso, M.; Prieto, F.; Miranda, M.; Castillo, C.; Hernández, J.R.; Benedito, J.L. Intracellular distribution of copper and zinc in the liver of copper-exposed cattle from northwest Spain. Vet. J. 2005, 170, 332–338. [Google Scholar] [CrossRef]
- López-Alonso, M.; Carbajales, P.; Miranda, M.; Pereira, V. Subcellular distribution of hepatic copper in beef cattle receiving high copper supplementation. J. Trace Elem. Med. Biol. 2017, 42, 111–116. [Google Scholar] [CrossRef] [PubMed]
- Lal, S.; Sourkes, T.L. Intracellular distribution of copper in the liver during chronic administration of copper sulfate to the rat. Toxicol. Appl. Pharmacol. 1971, 18, 562–572. [Google Scholar] [CrossRef]
- Laven, R.A.; Livesey, C.T.; Offer, N.W.; Fountain, D. Apparent subclinical hepatopathy due to excess copper intake in lactating Holstein cattle. Vet. Rec. 2004, 155, 120–121. [Google Scholar] [CrossRef]
- Suttle, N.F. Copper deficiency in ruminants; recent developments. Vet. Rec. 1986, 119, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Suttle, N.F.; Lewis, R.M.; Small, J.N.W. Effects of breed and family on rate of copper accretion in the liver of purebred Charollais, Suffolk and Texel lambs. Anim. Sci. 2002, 75, 295–302. [Google Scholar] [CrossRef] [Green Version]
- Ward, J.D.; Spears, J.W.; Gengelbach, G.P. Differences in copper status and copper metabolism among Angus, Simmental, and Charolais cattle. J. Anim. Sci. 1995, 73, 571–577. [Google Scholar] [CrossRef] [Green Version]
- Fry, R.S.; Spears, J.W.; Lloyd, K.E.; O’Nan, A.T.; Ashwell, M.S. Effect of dietary copper and breed on gene products involved in copper acquisition, distribution, and use in Angus and Simmental cows and fetuses. J. Anim. Sci. 2013, 91, 861–871. [Google Scholar] [CrossRef] [Green Version]
- Engle, T.E.; Spears, J.W. Performance, carcass characteristics, and lipid metabolism in growing and finishing Simmental steers fed varying concentrations of copper. J. Anim. Sci. 2001, 79, 2920–2925. [Google Scholar] [CrossRef]
- Littledike, E.T.; Wittum, T.E.; Jenkins, T.G. Effect of breed, intake, and carcass composition on the status of several macro and trace minerals of adult beef cattle. J. Anim. Sci. 1995, 73, 2113–2119. [Google Scholar] [CrossRef]
- Du, Z.; Hemken, R.W.; Harmon, R.J. Copper Metabolism of Holstein and Jersey Cows and Heifers Fed Diets High in Cupric Sulfate or Copper Proteinate. J. Dairy Sci. 1996, 79, 1873–1880. [Google Scholar] [CrossRef]
- Gooneratne, S.R.; Christensen, D.A.; Bailey, J.V.; Symonds, H.W. Effects of dietary copper, molybdenum and sulfur on biliary copper and zinc excretion in Simmental and Angus cattle. Can. J. Anim. Sci. 1994, 74, 315–325. [Google Scholar] [CrossRef]
- Morgan, P.; Grace, N.; Lilley, D. Using sodium molybdate to treat chronic copper toxicity in dairy cows: A practical approach. N. Z. Vet. J. 2014, 62, 167–170. [Google Scholar] [CrossRef]
- Johnston, H.; Beasley, L.; MacPherson, N. Copper toxicity in a New Zealand dairy herd. Ir. Vet. J. 2014, 67, 20. [Google Scholar] [CrossRef] [Green Version]
- Morales, M.S.; Palmquist, D.L.; Weiss, W.P. Milk fat composition of Holstein and Jersey cows with control or depleted copper status and fed whole soybeans or tallow. J. Dairy Sci. 2000, 83, 2112–2119. [Google Scholar] [CrossRef]
- Zhao, C.; Smith, E.C.; Whiteheart, S.W. Requirements for the catalytic cycle of the N-ethylmaleimide-Sensitive Factor (NSF). Biochim. Biophys. Acta Mol. Cell Res. 2012, 1823, 159–171. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine. Nutrient Requirements of Beef Cattle: Eighth Revised Edition; The National Academies Press: Washington, DC, USA, 2016; ISBN 978-0-309-31702-3. [Google Scholar]
- Suttle, N.F.; McLauchlin, M. Predicting the effects of dietary molybdenum and sulphur on the availability of copper to ruminants. Proc. Nutr. Soc. 1976, 35, 22A–23A. [Google Scholar] [PubMed]
- Sinclair, L.A.; Atkins, N.E. Intake of selected minerals on commercial dairy herds in central and northern England in comparison with requirements. J. Agric. Sci. 2015, 153, 743–752. [Google Scholar] [CrossRef]
- Castillo, A.R.; St-Pierre, N.R.; del Rio, N.S.; Weiss, W.P. Mineral concentrations in diets, water, and milk and their value in estimating on-farm excretion of manure minerals in lactating dairy cows. J. Dairy Sci. 2013, 96, 3388–3398. [Google Scholar] [CrossRef] [Green Version]
- Puls, R. Mineral Levels in Animal Health, Second ed.; Sherpa International: Clearbrook, BC, Canada, 1994; ISBN 096934290X. [Google Scholar]
- Bidewell, C.A.; David, G.P.; Livesey, C.T. Copper toxicity in cattle. Vet. Rec. 2000, 147, 399–400. [Google Scholar]
- Vermunt, J.; West, D.M. Predicting copper status in beef cattle using serum copper concentrations. N. Z. Vet. J. 1994, 42, 194–195. [Google Scholar] [CrossRef]
- Auza, N.J.; Olson, W.G.; Murphy, M.J.; Linn, J.G. Diagnosis and treatment of copper toxicosis in ruminants. J. Am. Vet. Med. Assoc. 1999, 214, 1624–1628. [Google Scholar]
- Minatel, L.; Carfagnini, J.C. Evaluation of the diagnostic value of plasma copper levels in cattle. Prev. Vet. Med. 2002, 53, 1–5. [Google Scholar] [CrossRef]
- Laven, R.A.; Livesey, C.T. An evaluation of the effect of clotting and processing of blood samples on the recovery of copper from bovine blood. Vet. J. 2006, 171, 295–300. [Google Scholar] [CrossRef]
- Blakley, B.R.; Hamilton, D.L. Ceruloplasmin as an indicator of copper status in cattle and sheep. Can. J. Comp. Med. Rev. Can. Med. Comp. 1985, 49, 405–408. [Google Scholar]
- Tessman, R.K.; Lakritz, J.; Tyler, J.W.; Casteel, S.W.; Williams, J.E.; Dew, R.K. Sensitivity and specificity of serum copper determination for detection of copper deficiency in feeder calves. J. Am. Vet. Med. Assoc. 2001, 218, 756–760. [Google Scholar] [CrossRef] [PubMed]
- Speisky, H.; Navarro, P.; Cherian, M.G.; Jiménez, I. Copper-binding proteins in human erythrocytes: Searching for potential biomarkers of copper over-exposure. Biometals 2003, 16, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Eife, R.; Weiss, M.; Barros, V.; Sigmund, B.; Goriup, U.; Komb, D.; Wolf, W.; Kittel, J.; Schramel, P.; Reiter, K. Chronic poisoning by copper in tap water: I. Copper intoxications with predominantly gastointestinal symptoms. Eur. J. Med. Res. 1999, 4, 219–223. [Google Scholar] [PubMed]
- Araya, M.; Olivares, M.; Pizarro, F.; González, M.; Speisky, H.; Uauy, R. Copper exposure and potential biomarkers of copper metabolism. Biometals 2003, 16, 199–204. [Google Scholar] [CrossRef] [PubMed]
- López-Alonso, M.; Crespo, A.; Miranda, M.; Castillo, C.; Hernández, J.; Benedito, J.L. Assessment of Some Blood Parameters as Potential Markers of Hepatic Copper Accumulation in Cattle. J. Vet. Diagn. Investig. 2006, 18, 71–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humann-Ziehank, E.; Coenen, M.; Ganter, M.; Bickhardt, K. Long-Term Observation of Subclinical Chronic Copper Poisoning in Two Sheep Breeds. J. Vet. Med. Ser. A 2001, 48, 429–439. [Google Scholar] [CrossRef]
- Weaver, D.M.; Tyler, J.W.; Marion, R.S.; Casteel, S.W.; Loiacono, C.M.; Turk, J.R. Subclinical copper accumulation in llamas. Can. Vet. J. Rev. Vet. Can. 1999, 40, 422–424. [Google Scholar]
- Sutherland, R.J.; Deol, H.S.; Hood, P.J. Changes in Plasma Bile Acids, Plasma Amino Acids, and Hepatic Enzyme Pools as Indices of Functional Impairment in Liver-Damaged Sheep. Vet. Clin. Pathol. 1992, 21, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Ortolani, E.L.; Machado, C.H.; Sucupira, M.C.A. Assessment of some clinical and laboratory variables for early diagnosis of cumulative copper poisoning in sheep. Vet. Hum. Toxicol. 2003, 45, 289–293. [Google Scholar] [PubMed]
- Grace, N.D.; Knowles, S.O.; West, D.M.; Smith, S.L. The role of liver Cu kinetics in the depletion of reserves of Cu in dairy cows fed a Cu-deficient diet. N. Z. Vet. J. 2012, 60, 142–145. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.R.; Coffey, E.; Hamar, D. Diagnostic accuracy of Wright-Giemsa and rhodanine stain protocols for detection and semi-quantitative grading of copper in canine liver aspirates. Vet. Clin. Pathol. 2016, 45, 689–697. [Google Scholar] [CrossRef]
- Miranda, M.; Benedito, J.L.; Gutiérrez, B.; García-Vaquero, M.; Blanco-Penedo, I.; López-Alonso, M. The interlobular distribution of copper in the liver of beef calves on a high-copper diet. J. Vet. Diagn. Investig. 2010, 22, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Grace, N.D.; Knowles, S.O.; Hittmann, A.R. High and variable copper status identified among dairy herds in the waikato region by concentrations of cu in liver sourced from biopsies and cull cows. N. Z. Vet. J. 2010, 58, 130–136. [Google Scholar] [CrossRef]
- Suttle, N.F. Rates of change in liver copper concentration in cattle given a copper-deficient diet, with or without pre-treatment with tetrathiomolybdate, for evaluation of two parenteral copper supplements. N. Z. Vet. J. 2013, 61, 154–158. [Google Scholar] [CrossRef]
- Minervino, A.; López-Alonso, M.; Barrêto Júnior, R.; Rodrigues, F.; Araújo, C.; Sousa, R.; Mori, C.; Miranda, M.; Oliveira, F.; Antonelli, A.; et al. Dietary Zinc Supplementation to Prevent Chronic Copper Poisoning in Sheep. Animals 2018, 8, 227. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, C.S.; Schilsky, M.L. Clinical practice guidelines in Wilson disease. Ann. Transl. Med. 2019, 7, S65. [Google Scholar] [CrossRef]
- Dirksen, K.; Fieten, H. Canine Copper-Associated Hepatitis. Vet. Clin. N. Am. Small Anim. Pract. 2017, 47, 631–644. [Google Scholar] [CrossRef]
- Webster, C.R.L.; Center, S.A.; Cullen, J.M.; Penninck, D.G.; Richter, K.P.; Twedt, D.C.; Watson, P.J. ACVIM consensus statement on the diagnosis and treatment of chronic hepatitis in dogs. J. Vet. Intern. Med. 2019, 33, 1173–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perrin, D.J.; Schiefer, H.B.; Blakley, B.R. Chronic copper toxicity in a dairy herd. Can. Vet. J. Rev. Vet. Can. 1990, 31, 629–632. [Google Scholar]
- Barel, S.; Cuneah, O.; Sharir, B.; Koren, U.; Edery, N.; Shimshoni, J.A. First Case of Chronic Copper Toxicosis in Dairy Cows in Israel. Isr. J. Vet. Med. 2019, 74, 1. [Google Scholar]
- Wong, A.; Wilson-Frank, C.R.; Hooser, S.B.; Burcham, G.N. Chronic copper toxicosis in a crossbred heifer calf. J. Vet. Diagn. Investig. 2020, 32, 458–462. [Google Scholar] [CrossRef]
- Suttle, N.F. Cattle nutrition: Reducing the risk of copper toxicity in dairy cattle. Vet. Rec. 2016, 178, 195. [Google Scholar] [CrossRef]
- Cuttance, E.L.; Laven, R.A.; Watts, A. Effect of sodium molybdate supplementation on high concentrations of Cu in liver of yearling bulls. N. Z. Vet. J. 2018, 66, 194–198. [Google Scholar] [CrossRef]
- Haywood, S.; Dincer, Z.; Jasani, B.; Loughran, M.J. Molybdenum-associated pituitary endocrinopathy in sheep treated with ammonium tetrathiomolybdate. J. Comp. Pathol. 2004, 130, 21–31. [Google Scholar] [CrossRef]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press, Ed.; The National Academies Press: Washington, DC, USA, 2007; ISBN 978-0-309-47323-1. [Google Scholar]
- Zhang, W.; Wang, R.; Kleemann, D.O.; Lu, D.; Zhu, X.; Zhang, C.; Jia, Z. Effects of dietary copper on nutrient digestibility, growth performance and plasma copper status in cashmere goats. Small Rumin. Res. 2008, 74, 188–193. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, R.; Kleemann, D.O.; Gao, M.; Xu, J.; Jia, Z. Effects of dietary copper on growth performance, nutrient digestibility and fiber characteristics in cashmere goats during the cashmere slow-growing period. Small Rumin. Res. 2009, 85, 58–62. [Google Scholar] [CrossRef]
- Mondal, M.K.; Biswas, P.; Roy, B.; Mazumdar, D. Effect of copper sources and levels on serum lipid profiles in Black Bengal (Capra hircus) kids. Small Rumin. Res. 2007, 67, 28–35. [Google Scholar] [CrossRef]
- Commission Implementing Regulation (EU) 2018/1039 of 23 July 2018 Concerning the Authorisation of Copper(II) Diacetate Monohydrate, Copper(II) Carbonate Dihydroxy Monohydrate, Copper(II) Chloride Dihydrate, Copper(II) Oxide, Copper(II) Sulphate Pentahydrate, Copper(II) Chelate of Amino Acids Hydrate, Copper(II) Chelate of Protein Hydrolysates, Copper(II) Chelate of Glycine Hydrate (Solid) and Copper(II) Chelate of Glycine Hydrate (Liquid) as Feed Additives for all Animal Species and Amending Regulations (EC) No 1334/2003, (EC) No 479/2006 and (EU) No 349/2010 and Implementing Regulations (EU) No 269/2012, (EU) No 1230/2014 and (EU) 2016/2261 (Text with EEA Relevance). Off. J. Eur. Union 2018, 3–24. Available online: https://eur-lex.europa.eu/eli/reg_impl/2018/1039/oj (accessed on 21 September 2020).
- Huang, Y.L.; Wang, Y.; Spears, J.W.; Lin, X.; Guo, C.H. Effect of copper on performance, carcass characteristics, and muscle fatty acid composition of meat goat kids. J. Anim. Sci. 2013, 91, 5004–5010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zervas, G.; Nikolaou, E.; Mantzios, A. Comparative study of chronic copper poisoning in lambs and young goats. Anim. Prod. 1990, 50, 497–506. [Google Scholar] [CrossRef]
- Falke, H.; Anke, M. The reaction of goats to molybdenum loads. In Proceedings of the Macro-and Trace Element Seminar, Leipzig, Germany, 14–17 July 1986; University Leipzig-Jena: Leipzig, Germany, 1987; pp. 21–22. [Google Scholar]
- Grace, N.D.; Wilson, P.R. Trace element metabolism, dietary requirements, diagnosis and prevention of deficiencies in deer. N. Z. Vet. J. 2002, 50, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Grace, N.D.; Castillo-Alcala, F.; Wilson, P.R. Amounts and distribution of mineral elements associated with liveweight gains of grazing red deer (Cervus elaphus). N. Z. J. Agric. Res. 2008, 51, 439–449. [Google Scholar] [CrossRef]
- Mason, J.; Williams, S.; Harrington, R.; Sheahan, B. Some preliminary studies of the metabolism of 99Mo-labelled compounds in deer. Ir. Vet. J. 1984, 38, 171–175. [Google Scholar]
- Bartoskewitz, M.L.; Hewitt, D.G.; Laurenz, J.C.; Pitts, J.S.; Bryant, F.C. Effect of dietary copper and zinc concentrations on white-tailed deer antler growth, body size, and immune system function. Small Rumin. Res. 2007, 73, 87–94. [Google Scholar] [CrossRef]
Parameter | Diet Based on | Marginal Bands | Interpretive Limit |
---|---|---|---|
Cu/Mo | Herbage | 1.0–3.0 | Diet S ˃2 g/kg DM 1 |
Forage | 0.5–2.0 | Diet Mo <15 mg/kg DM | |
Fe/Cu | Herbage | 50–100 | |
Cu | Herbage | 6–8 | Diet Mo <1.5 mg/kg DM |
Forage | 4–6 |
Organization | Calves Pre-Rumination | Beef | Dairy |
---|---|---|---|
NRC 1 | 10 | 10 | 10–18 |
GfE 2 | − | 8–10 | 10 |
CVB 3 | 10 | 11–13 | 7–17 |
INRA 4 | − | 10 | 10 |
Maximum authorized EU 5 | 15 | 30 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Alonso, M.; Miranda, M. Copper Supplementation, A Challenge in Cattle. Animals 2020, 10, 1890. https://doi.org/10.3390/ani10101890
López-Alonso M, Miranda M. Copper Supplementation, A Challenge in Cattle. Animals. 2020; 10(10):1890. https://doi.org/10.3390/ani10101890
Chicago/Turabian StyleLópez-Alonso, Marta, and Marta Miranda. 2020. "Copper Supplementation, A Challenge in Cattle" Animals 10, no. 10: 1890. https://doi.org/10.3390/ani10101890
APA StyleLópez-Alonso, M., & Miranda, M. (2020). Copper Supplementation, A Challenge in Cattle. Animals, 10(10), 1890. https://doi.org/10.3390/ani10101890