Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant: An Update
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cobalt and Vitamin B12 Essential Functions
2.1. Forms of Vitamin B12
2.2. Participation in Biochemical Reactions
3. Cobalt Metabolism: Absorption, Storage and Excretion
3.1. Factors that Modify the Production of Vitamin B12
3.2. Absorption of Cobalt and Vitamin B12
3.3. Transport and Site of Performance
3.4. Storage
3.5. Distribution Throughout the Body
3.6. Elimination and Excretion
4. Interactions with other Nutrients
5. Requirements in Ruminants
5.1. General Considerations
5.2. Requirements in Dairy Cattle
5.2.1. Milk Production and Reproductive Parameters
5.2.2. Joint Supplementation of Vitamin B12 and Folates
5.2.3. With other Substances
5.3. Requirements in Feedlot Cattle
5.4. Requirements in Sheep
6. Cobalt Deficiency
6.1. Epidemiology
6.2. Clinical Signs
7. Cobalt Toxicosis
8. Diagnostic
8.1. General Considerations
8.2. Cobalt and Vitamin B12 in Blood
8.3. Assessment of MMA in Serum and Urine
8.4. Homocysteine in Blood
8.5. Holotranscobalamin in Blood (HoloTC or Active B-12)
8.6. Cobalt and Vitamin B12 Levels in the Liver
8.7. Cobalt and Vitamin B12 in Milk
8.8. Other Analyses
9. Prevention and Treatment
9.1. Basic Premises
9.2. Alternatives to Provide Cobalt/Vitamin B12
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADF | acid detergent fiber |
CBL | cyanocobalamin |
Co | cobalt |
DM | dry matter |
EU | European Union |
GIF | cobalamin-gastric intrinsic factor |
HC | haptocorrin |
HCT | homocysteine |
holoHC | holohaptocorrin |
holoTC | holotranscobalamin or active B-12 |
IF | intrinsic factor |
MMA | methylmalonic acid |
NDF | neutral detergent fiber |
NRC | National Research Council |
TC | transcobalamin |
UMMA | urinary methylmalonic acid |
VFA | volatile fatty acids |
5,6-DMB | 5,6-dimethylbenzimidazole |
References
- Brewer, K.; Maylin, G.A.; Fenger, C.K.; Tobin, T. Cobalt use and regulation in horseracing: A review. Comp. Exerc. Physiol. 2016, 12, 1–10. [Google Scholar] [CrossRef]
- Miller, J.; Wentworth, J.; McCullough, M.E. Effects of Various Factors on Vitamin B12 Content of Cows’ Milk. Available online: https://pubs.acs.org/doi/pdf/10.1021/jf60145a006 (accessed on 18 June 2020).
- Viglierchio, M.C. Aportes de la Bioquímica a la Interpretación del Metabolismo del Cobalto; Anuario 2000 Facultad de Ciencias Veterinarias; Universidad Nacional de la Pampa: La Pampa, Argentina, 2000; pp. 22–28. [Google Scholar]
- Herdt, T.H.; Hoff, B. The use of blood analysis to evaluate trace mineral status in ruminant livestock. Vet. Clin. N. Am. Food A 2011, 27, 255–283. [Google Scholar] [CrossRef]
- Weiss, W.P. Recommendations for Trace Minerals for Dairy Cows. Available online: https://ecommons.cornell.edu/handle/1813/48026 (accessed on 18 June 2020).
- Underwood, E.J.; Suttle, N.F. Los Minerales en la Alimentación del Ganado, 3rd. version; Acribia: Zaragoza, Spain, 2002. [Google Scholar]
- Rizzo, G.; Laganà, A.S. A review of vitamin B12. In Molecular Nutrition; Elsevier: Amsterdam, The Netherlands, 2020; pp. 105–129. [Google Scholar]
- Smith, A.D.; Warren, M.J.; Refsum, H. Vitamin B12. Adv. Food Nutr. Res. 2018, 83, 215–279. [Google Scholar] [PubMed]
- Dubeski, P.L. B-Vitamins for Cattle: Availability, Plasma Levels, and Immunity. Ph.D. Thesis, Oklahoma State University, Stillwater, OK, USA, 1992. [Google Scholar]
- Forrellat Barrios, M.; Gómis Hernández, I.; Gautier du Défaix Gómez, H. Vitamina B12: Metabolismo y aspectos clínicos de su deficiencia. Rev. Cuba. Hematol. Inmunol. Hemoter. 1999, 15, 159–174. [Google Scholar]
- Girard, C.L.; Santschi, D.E.; Stabler, S.P.; Allen, R.H. Apparent ruminal synthesis and intestinal disappearance of vitamin B12 and its analogs in dairy cows. J. Dairy Sci. 2009, 92, 4524–4529. [Google Scholar] [CrossRef]
- McDowell, L.R. Vitamin B12. In Vitamins in Animal and Human Nutrition; Iowa State University Press: Ames, IA, USA, 2012; pp. 523–563. [Google Scholar]
- Brito, A.; Hertrampf, E.; Olivares, M.; Gaitán, D.; Sánchez, H.; Allen, L.H.; Uauy, R. Folatos y vitamina B12 en la salud humana. Rev. Méd. Chile 2012, 140, 1464–1475. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, L. The metabolic processes of folic acid and Vitamin B12 deficiency. J. Health Res. Rev. 2014, 1, 5–9. [Google Scholar] [CrossRef]
- Martens, J.-H.; Barg, H.; Warren, M.; Jahn, D. Microbial production of vitamin B 12. Appl. Microbiol. Biotechnol. 2002, 58, 275–285. [Google Scholar] [CrossRef]
- Stemme, K.; Meyer, U.; Lebzien, P.; Flachowsky, G.; Scholz, H. Cobalt and Vitamin B12 Requirement of Dairy Cows; Taylor & Francis: Braunschweig, Germany, 2003; Volume 9, pp. 24–25. [Google Scholar]
- Brito, A.; Chiquette, J.; Stabler, S.P.; Allen, R.H.; Girard, C.L. Supplementing lactating dairy cows with a vitamin B 12 precursor, 5, 6-dimethylbenzimidazole, increases the apparent ruminal synthesis of vitamin B 12. Animal 2015, 9, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Stemme, K.; Meyer, U.; Flachowsky, G.; Scholz, H. The influence of an increased cobalt supply to dairy cows on the vitamin B12 status of their calves. J. Anim. Physiol. Anim. Nutr. 2006, 90, 173–176. [Google Scholar] [CrossRef]
- Goff, J.P. Determining the mineral requirement of dairy cattle. In Proceedings of the 11th Annual Florida Ruminant Nutrition Symposium, University of Florida, Gainesville, FL, USA, 13–14 January 2000; pp. 106–132. [Google Scholar]
- Stemme, K.; Lebzien, P.; Flachowsky, G.; Scholz, H. The influence of an increased cobalt supply on ruminal parameters and microbial vitamin B12 synthesis in the rumen of dairy cows. Arch. Anim. Nutr. 2008, 62, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Dryden, L.P.; Hartman, A.M. Variations in the amount and relative distribution of vitamin B12 and its analog in the bovine rumen. J. Dairy Sci. 1971, 54, 235–246. [Google Scholar] [CrossRef]
- Girard, C.L.; Lapierre, H.; Desrochers, A.; Benchaar, C.; Matte, J.J.; Rémond, D. Net flux of folates and vitamin B 12 through the gastrointestinal tract and the liver of lactating dairy cows. Br. J. Nutr. 2001, 86, 707–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zinn, R.A.; Owens, F.N.; Stuart, R.L.; Dunbar, J.R.; Norman, B.B. B-vitamin supplementation of diets for feedlot calves. J. Anim. Sci. 1987, 65, 267–277. [Google Scholar] [CrossRef]
- National Research Council (NRC). Nutrient Requirements of Beef Cattle, 7th ed.; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Paterson, J.; Engle, T.E. Trace Mineral Nutrition in Beef Cattle; University of Tennessee: Knoxville, TN, USA, 2005; p. 22. [Google Scholar]
- Paterson, J.E.; Macpherson, A. A comparison of serum vitamin B12 and serum methylmalonic acid as diagnostic measures of cobalt status in cattle. Vet. Rec. 1990, 126, 329–332. [Google Scholar] [PubMed]
- Girard, C.L.; Berthiaume, R.; Faucitano, L.; Lafrenière, C. Influence of beef production system on vitamin B12 concentrations in plasma and muscle. Can. J. Anim. Sci. 2007, 87, 277–280. [Google Scholar] [CrossRef]
- Girard, C.L.; Matte, J.J. Impact of B-vitamin supply on major metabolic pathways of lactating dairy cows. Can. J. Anim. Sci. 2006, 86, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Gruner, T.M. Studies of Vitamin B₁₂ Metabolism in Sheep. Ph.D. Thesis, Lincoln University, Philadelphia, PA, USA, 2001. [Google Scholar]
- Graulet, B.; Matte, J.J.; Desrochers, A.; Doepel, L.; Palin, M.-F.; Girard, C.L. Effects of dietary supplements of folic acid and vitamin B12 on metabolism of dairy cows in early lactation. J. Dairy Sci. 2007, 90, 3442–3455. [Google Scholar] [CrossRef] [Green Version]
- Girard, C.L.; Matte, J.J. Effects of intramuscular injections of vitamin B12 on lactation performance of dairy cows fed dietary supplements of folic acid and rumen-protected methionine. J. Dairy Sci. 2005, 88, 671–676. [Google Scholar] [CrossRef]
- Kather, S.; Gruetzner, N.; Kook, P.H.; Dengler, F.; Heilmann, R.M. Review of cobalamin status and disorders of cobalamin metabolism in dogs. J. Vet. Intern. Med. 2020, 34, 13–28. [Google Scholar] [CrossRef]
- Watanabe, F.; Bito, T. Vitamin B12 sources and microbial interaction. Exp. Biol. Med. Maywood 2018, 243, 148–158. [Google Scholar] [CrossRef] [PubMed]
- MacPherson, A.; Fisher, A.; Paterson, J.E. Trace elements in man and animals. In Trace Elements in Man and Animals 6; Rucker, R.B., Bo, L., Hurley, L.S., Keen, C.L., Eds.; Springer Science & Business Media: Pacific Grove, CA, USA, 1998; pp. 397–398. [Google Scholar]
- MacPherson, A.; Gray, D.; Mitchell, G.B.B.; Taylor, C.N. Ostertagia infection and neutrophil function in cobalt-deficient and cobalt-supplemented cattle. Br. Vet. J. 1987, 143, 348–353. [Google Scholar] [CrossRef]
- Shelley, C.L.; Marchetti, K.; Salazar, A.L.; Tracey, L.N.; Schmitz, L.; Scholljegerdes, E.J.; Lodge-Ivey, S.L.; Larson, C.K. Effect of Cobalt Supplementation on Rumen Fermentation and Blood Metabolites. In Proceedings of the Sheep Symposium. Integrating Advanced Concepts into Traditional Practices; Western Section American Society of Animal Science: Bozeman, MT, USA, 2013; Volume 64, pp. 107–111. [Google Scholar]
- Franco-Lopez, J.; Duplessis, M.; Bui, A.; Reymond, C.; Poisson, W.; Blais, L.; Chong, J.; Gervais, R.; Rico, D.E.; Cue, R.I. Correlations between the Composition of the Bovine Microbiota and Vitamin B12 Abundance. mSystems 2020, 5, e00107-20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akins, M.S.; Bertics, S.J.; Socha, M.T.; Shaver, R.D. Effects of cobalt supplementation and vitamin B12 injections on lactation performance and metabolism of Holstein dairy cows. J. Dairy Sci. 2013, 96, 1755–1768. [Google Scholar] [CrossRef] [Green Version]
- Beaudet, V.; Gervais, R.; Graulet, B.; Nozière, P.; Doreau, M.; Fanchone, A.; Castagnino, D.D.S.; Girard, C.L. Effects of dietary nitrogen levels and carbohydrate sources on apparent ruminal synthesis of some B vitamins in dairy cows. J. Dairy Sci. 2016, 99, 2730–2739. [Google Scholar] [CrossRef] [Green Version]
- Duplessis, M.; Pellerin, D.; Cue, R.I.; Girard, C.L. Factors affecting vitamin B12 concentration in milk of commercial dairy herds: An exploratory study. J. Dairy Sci. 2016, 99, 4886–4892. [Google Scholar] [CrossRef] [Green Version]
- Rutten, M.J.M.; Bouwman, A.C.; Sprong, R.C.; van Arendonk, J.A.M.; Visker, M.H.P.W. Genetic variation in vitamin B-12 content of bovine milk and its association with SNP along the bovine genome. PLoS ONE 2013, 8, e62382. [Google Scholar] [CrossRef] [Green Version]
- Duplessis, M.; Girard, C.L.; Santschi, D.E.; Lefebvre, D.M.; Pellerin, D. Milk production and composition, and body measurements of dairy cows receiving intramuscular injections of folic acid and vitamin B-12 in commercial dairy herds. Livest. Sci. 2014, 167, 186–194. [Google Scholar] [CrossRef]
- Degnan, P.H.; Taga, M.E.; Goodman, A.L. Vitamin B12 as a modulator of gut microbial ecology. Cell Metab. 2014, 20, 769–778. [Google Scholar] [CrossRef] [Green Version]
- Gray, M.J.; Escalante-Semerena, J.C. The cobinamide amidohydrolase (cobyric acid-forming) CbiZ enzyme: A critical activity of the cobamide remodelling system of Rhodobacter sphaeroides. Mol. Microbiol. 2009, 74, 1198–1210. [Google Scholar] [CrossRef] [Green Version]
- Duplessis, M.; Pellerin, D.; Robichaud, R.; Fadul-Pacheco, L.; Girard, C.L. Impact of diet management and composition on vitamin B₁₂ concentration in milk of Holstein cows. J. Dairy Sci. 2019, 101, 8559–8565. [Google Scholar] [CrossRef] [PubMed]
- Garnier, F.; Braun, P.; Médaille, C. Methods of biochemical exploration of chronic malassimilations in dogs. Rec. Med. Vet. 1993, 169, 939–945. [Google Scholar]
- Huemer, M.; Baumgartner, M.R. The clinical presentation of cobalamin-related disorders: From acquired deficiencies to inborn errors of absorption and intracellular pathways. J. Inherit. Metab. Dis. 2019, 42, 686–705. [Google Scholar] [CrossRef] [PubMed]
- Greibe, E. Nutritional and biochemical aspects of cobalamin throughout life. In Vitamin B12: Advances and Insights; CRC Press: Boca Raton, FL, USA, 2017; pp. 30–45. [Google Scholar]
- Carmel, R. How I treat cobalamin (vitamin B12) deficiency. Blood 2008, 112, 2214–2221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Girard, C.L.; Remond, D. Net flux of folates and vitamin B12 through the gastrointestinal tract of sheep. Can. J. Anim. Sci. 2003, 83, 273–278. [Google Scholar] [CrossRef]
- Santschi, D.E.; Berthiaume, R.; Matte, J.J.; Mustafa, A.F.; Girard, C.L. Fate of supplementary B-vitamins in the gastrointestinal tract of dairy cows. J. Dairy Sci. 2005, 88, 2043–2054. [Google Scholar] [CrossRef]
- Nielsen, M.J.; Rasmussen, M.R.; Andersen, C.B.; Nexø, E.; Moestrup, S.K. Vitamin B 12 transport from food to the body’s cells—A sophisticated, multistep pathway. Nat. Rev. Gastroenterol. Hepatol. 2012, 9, 345–354. [Google Scholar] [CrossRef]
- Quadros, E.V.; Nakayama, Y.; Sequeira, J.M. The protein and the gene encoding the receptor for the cellular uptake of transcobalamin-bound cobalamin. Blood 2009, 113, 186–192. [Google Scholar] [CrossRef] [Green Version]
- Beedholm-Ebsen, R.; van de Wetering, K.; Hardlei, T.; Nexø, E.; Borst, P.; Moestrup, S.K. Identification of multidrug resistance protein 1 (MRP1/ABCC1) as a molecular gate for cellular export of cobalamin. Blood 2010, 115, 1632–1639. [Google Scholar] [CrossRef] [Green Version]
- Peeters, G.; Vermeulen, A.; de Schrijver, G.; Houvenaghel, A.; Burvenich, C. Balance between uptake by the udder and secretion in the milk for vitamin B12 in the cow. J. Anim. Physiol. Anim. Nutr. 1985, 54, 152–156. [Google Scholar] [CrossRef]
- Hunt, A.; Harrington, D.; Robinson, S. Vitamin B12 deficiency. BMJ 2014, 349, g5226. [Google Scholar] [CrossRef] [PubMed]
- Mørkbak, A.L.; Hvas, A.-M.; Lloyd-Wright, Z.; Sanders, T.A.; Bleie, Ø.; Refsum, H.; Nygaard, O.K.; Nexø, E. Effect of vitamin B12 treatment on haptocorrin. Clin. Chem. 2006, 52, 1104–1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duplessis, M.; Lapierre, H.; Ouattara, B.; Bissonnette, N.; Pellerin, D.; Laforest, J.P.; Girard, C.L. Whole-body propionate and glucose metabolism of multiparous dairy cows receiving folic acid and vitamin B-12 supplements. J. Dairy Sci. 2017, 100, 8578–8589. [Google Scholar] [CrossRef] [PubMed]
- Preynat, A.; Lapierre, H.; Thivierge, M.C.; Palin, M.F.; Matte, J.J.; Desrochers, A.; Girard, C.L. Effects of supplements of folic acid, vitamin B12, and rumen-protected methionine on whole body metabolism of methionine and glucose in lactating dairy cows. J. Dairy Sci. 2009, 92, 677–689. [Google Scholar] [CrossRef]
- Barceloux, D.G.; Barceloux, D. Cobalt. J. Toxicol. Clin. Toxicol. 1999, 37, 201–216. [Google Scholar] [CrossRef]
- Simonsen, L.O.; Harbak, H.; Bennekou, P. Cobalt metabolism and toxicology. A brief update. Sci. Total. Environ. 2012, 432, 210–215. [Google Scholar] [CrossRef]
- López-Alonso, M. Trace minerals and livestock: Not too much not too little. Int. Sch. Res. Not. 2012, 2012, 704825. [Google Scholar]
- Allen, R.H.; Stabler, S.P. Identification and quantitation of cobalamin and cobalamin analogues in human feces. Am. J. Clin. Nutr. 2008, 87, 1324–1335. [Google Scholar] [CrossRef] [Green Version]
- Castagnino, D.S.; Kammes, K.L.; Allen, M.S.; Gervais, R.; Chouinard, P.Y.; Girard, C.L. High-concentrate diets based on forages harvested at different maturity stages affect ruminal synthesis of B vitamins in lactating dairy cows. Animal 2017, 11, 608–615. [Google Scholar] [CrossRef] [Green Version]
- Castagnino, D.S.; Ying, Y.; Allen, M.S.; Gervais, R.; Chouinard, P.Y.; Girard, C.L. Apparent ruminal synthesis of B vitamins in lactating dairy cows fed Saccharomyces cerevisiae fermentation product. J. Dairy Sci. 2017, 100, 8161–8164. [Google Scholar] [CrossRef] [Green Version]
- Ferlay, A.; Graulet, B.; Chilliard, Y. Maîtrise par l’alimentation des teneurs en acides gras et en composés vitaminiques du lait de vache. INRA Prod. Anim. 2013, 26, 177–192. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, J.J.; Harvey, W.J.; Bruss, M.L. Clinical Biochemistry of Domestic Animals, 6th ed.; Elsevier Academic Press: San Diego, CA, USA, 2008; ISBN 978-0-12-370491-7. [Google Scholar]
- Suttle, N.F. Mineral Nutrition of Livestock, 4th ed.; CABI Head Office: Wallingford, Oxfordshire, UK, 2010; ISBN 978-1-84593-472-9. [Google Scholar]
- Zimmer, G. The Albrecht approach rationale, ratios and rewards. In The Three-Up Tour Nutrition Farming Explained; Workshop Manual; Zimmer, G., Brunetti, J., Sait, G., Eds.; Soil Therapy Pty Ltd.: Yandina, Queensland, Australia, 2003. [Google Scholar]
- Schwalfenberg, G.K.; Genuis, S.J. Vitamin D, Essential Minerals, and Toxic Elements: Exploring Interactions Between Nutrients and Toxicants in Clinical Medicine. Available online: https://www.hindawi.com/journals/tswj/2015/318595/ (accessed on 18 June 2020).
- Obeid, R.; Solé-Navais, P.; Murphy, M.M. Vitamin B12 after birth and during early life. In Vitamin B12: Advances and Insights; CRC Press: Boca Raton, FL, USA, 2017; pp. 265–295. [Google Scholar]
- Dhonukshe-Rutten, R.A.; van Dusseldorp, M.; Schneede, J.; de Groot, L.; van Staveren, W.A. Low bone mineral density and bone mineral content are associated with low cobalamin status in adolescents. Eur. J. Clin. Nutr. 2005, 44, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Spears, J.W. Overview of Mineral Nutrition in Cattle: The Dairy and Beef; NRC: Gainesville, FL, USA, 2002; pp. 113–1126. [Google Scholar]
- Kincaid, R.L.; Socha, M.T. Effect of cobalt supplementation during late gestation and early lactation on milk and serum measures. J. Dairy Sci. 2007, 90, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Tiffany, M.E.; Fellner, V.; Spears, J.W. Influence of cobalt concentration on vitamin B-12 production and fermentation of mixed ruminal microorganisms grown in continuous culture flow-through fermentors. J. Anim. Sci. 2006, 84, 635–640. [Google Scholar] [CrossRef] [PubMed]
- Tiffany, M.E.; Spears, J.W.; Xi, L.; Horton, J. Influence of dietary cobalt source and concentration on performance, vitamin B-12 status, and ruminal and plasma metabolites in growing and finishing steers. J. Anim. Sci. 2003, 81, 3151–3159. [Google Scholar] [CrossRef]
- Tiffany, M.E.; Spears, J.W. Differential responses to dietary cobalt in finishing steers fed corn-versus barley-based diets. J. Anim. Sci. 2005, 83, 2580–2589. [Google Scholar] [CrossRef]
- Rollin, F.; Guyot, H. Trace minerals management in cattle. In Proceedings of the XVIII Congreso Internacional ANEMBE de Medicina Bovina, Lérida, Spain, 24–26 April 2013; pp. 154–159. [Google Scholar]
- Kincaid, R.L.; Lefebvre, L.E.; Cronrath, J.D.; Socha, M.T.; Johnson, A.B. Effect of dietary cobalt supplementation on cobalt metabolism and performance of dairy cattle. J. Dairy Sci. 2003, 86, 1405–1414. [Google Scholar] [CrossRef]
- Stangl, G.I.; Schwarz, F.J.; Müller, H.; Kirchgessner, M. Evaluation of the cobalt requirement of beef cattle based on vitamin B12, folate, homocysteine and methylmalonic acid. Br. J. Nutr. 2000, 84, 645–653. [Google Scholar] [CrossRef] [Green Version]
- Schwab, E.C.; Schwab, C.G.; Shaver, R.D.; Girard, C.L.; Putnam, D.E.; Whitehouse, N.L. Dietary forage and nonfiber carbohydrate contents influence B-vitamin intake, duodenal flow, and apparent ruminal synthesis in lactating dairy cows. J. Dairy Sci. 2006, 89, 174–187. [Google Scholar] [CrossRef]
- Cannizzo, C.; Gianesella, M.; Casella, S.; Giudice, E.; Stefani, A.; Coppola, L.M.; Morgante, M. Vitamin B12 and homocysteine levels in blood of dairy cows during subacute ruminal acidosis. Arc. Anim. Breed. 2012, 55, 219–225. [Google Scholar] [CrossRef]
- Abdou, M.M.; Abd El Tawab, A.M. The relationship between nutritional strategies and ruminants disorders: A review. Int. Res. J. Anim. Vet. 2020, 2, 1–7. [Google Scholar]
- National Research Council (NRC). Nutrient Requirements of Dairy Cattle, 7th rev.; National Academy Press: Washington, DC, USA, 2001. [Google Scholar]
- Hackbart, K.S.; Ferreira, R.M.; Dietsche, A.A.; Socha, M.T.; Shaver, R.D.; Wiltbank, M.C.; Fricke, P.M. Effect of dietary organic zinc, manganese, copper, and cobalt supplementation on milk production, follicular growth, embryo quality, and tissue mineral concentrations in dairy cows. J. Anim. Sci. 2010, 88, 3856–3870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, J.G.; Green, M.J. Milk production in early lactation in a dairy herd following supplementation with iodine, selenium and cobalt. Vet. Rec. 2010, 167, 788–789. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, F.J.; Kirchgessner, M.; Stangl, G.I. Cobalt requirement of beef cattle-feed intake and growth at different levels of cobalt supply. J. Anim. Physiol. Anim. Nutr. 2000, 83, 121–131. [Google Scholar] [CrossRef]
- Stangl, G.I.; Schwarz, F.J.; Jahn, B.; Kirchgessner, M. Cobalt deficiency induced hyperhomocysteinaemia and oxidative status of cattle. Br. J. Nutr. 2000, 83, 3–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagabhushana, V.; Sharma, K.; Pattanaik, A.K.; Dutta, N. Effect of cobalt supplementation on performance of growing calves. Vet. World 2008, 1, 299–302. [Google Scholar]
- Smith, S.E.; Loosli, J.K. Cobalt and vitamin 12 in ruminant nutrition: A review. J. Dairy Sci. 1957, 40, 1215–1227. [Google Scholar] [CrossRef]
- Kincaid, R.L. Assessment of trace mineral status of ruminants: A review. J. Anim. Sci. 2000, 77, 1. [Google Scholar] [CrossRef]
- Church, D.C. El Rumiante: Fisiologia Digestiva y Nutricion; Acribia: Zaragoza, Spain, 1993; ISBN 84-200-0739-0. [Google Scholar]
- Johnson, E.H.; Al-Habsi, K.; Al-Busaidy, R.; Khalaf, S.K. The effect of low levels of dietary cobalt on the chemiluminescence response of polymorphonuclear leukocytes of goats. Res. Vet. Sci. 2010, 88, 61–63. [Google Scholar] [CrossRef]
- Radostits, O.M.; Gay, C.C.; Hinchcliff, K.W.; Constable, P.D. Veterinary Medicine. A Textbook of the Diseases of Cattle, Horses, Sheep, Pigs and Goats, 10th ed.; Saunders Ltd.: New York, NY, USA, 2006; ISBN 9780702027772. [Google Scholar]
- Simões, J.; Gutiérrez, C. Nutritional and Metabolic Disorders in Dairy Goats. In Sustainable Goat Production in Adverse Environments; Springer: Berlin, Germany, 2017; Volume 1, pp. 177–194. [Google Scholar]
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans. Inorganic and Organic Lead Compounds; International Agency for Research on Cancer, (WHO/IARC: World Health Organization/International Agency for Research on Cancer): Lyon, France, 2006; Volume 87. [Google Scholar]
- IARC. List of Classifications, Agents Classified by the IARC Monographs; (WHO/IARC: World Health Organization/International Agency for Research on Cancer): Lyon, France, 2017; Available online: http://monographs.iarc.fr/ENG/Classification/latest_classif.php (accessed on 8 June 2020).
- Dickson, J.; Bond, M.P. Cobalt toxicity in cattle. Aust. Vet. J. 1974, 50, 236. [Google Scholar] [CrossRef]
- Furlong, J.; Sedcole, J.; Sykes, A. An evaluation of plasma homocysteine in the assessment of vitamin B 12 status of pasture-fed sheep. N. Z. Vet. J. 2010, 58, 11–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitken, I.D. Diseases of Sheep, 4th ed.; Blackwell Publishing Professional: Ames, IA, USA, 2007; ISBN 9781405134149. [Google Scholar]
- Fisher, G.E.J.; MacPherson, A. Serum vitamin B12 and methylmalonic acid determinations in the diagnosis of cobalt deficiency in pregnant ewes. Br. Vet. J. 1990, 146, 120–128. [Google Scholar] [CrossRef]
- Allen, L.H. How common is vitamin B-12 deficiency? Am. J. Clin. Nutr. 2009, 89, 693S–696S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Alonso, M.; Prieto-Montaña, F.; Miranda, M.; Castillo, C.; Hernández, J.; Benedito, J.L. Interactions between toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements in the tissues of cattle from NW Spain. Biometals 2004, 17, 389–397. [Google Scholar] [CrossRef] [PubMed]
- Mitsioulis, A.; Bansemer, P.C.; Koh, T.S. Relationship between vitamin B12 and cobalt concentrations in bovine liver. Aust. Vet. J. 1995, 72, 70. [Google Scholar] [CrossRef]
- Rashed, M.N. Determination of trace elements in milk of some animals from Aswan (Egypt). Int. J. Environ. Anal. Chem. 1992, 48, 41–50. [Google Scholar] [CrossRef]
- Sun, W.; Luo, Y.; Ma, H. Preliminary study of metal in yak (Bos grunniens) milk from Qilian of the Qinghai Plateau. Bull. Environ. Contam. Toxicol. 2011, 86, 653–656. [Google Scholar] [CrossRef]
- Coni, E.; Bocca, A.; Ianni, D.; Caroli, S. Preliminary evaluation of the factors influencing the trace-element content of milk and dairy-products. Food Chem. 1995, 52, 123–130. [Google Scholar] [CrossRef]
- Rey-Crespo, F.; Miranda, M.; Lopez-Alonso, M. Essential trace and toxic element concentrations in organic and conventional milk in NW Spain. Food Chem. Toxicol. 2013, 55, 513–518. [Google Scholar] [CrossRef]
- Miedico, O.; Tarallo, M.; Pompa, C.; Chiaravalle, A.E. Trace elements in sheep and goat milk samples from Apulia and Basilicata regions (Italy): Valuation by multivariate data analysis. Small Rumin. Res. 2016, 135, 60–65. [Google Scholar] [CrossRef]
- Nohr, D.; Biesalski, H.K. Vitamins in milk and dairy products: B-group vitamins. In Advanced Dairy Chemistry; Springer: Berlin, Germany, 2009; pp. 591–630. [Google Scholar]
- Nohr, D.; Biesalski, H.K. Vitamin B12. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; ISBN 978-0-08-100596-5. [Google Scholar]
- Duplessis, M.; Mann, S.; Nydam, D.V.; Girard, C.L.; Pellerin, D.; Overton, T.R. Folates and vitamin B12 in colostrum and milk from dairy cows fed different energy levels during the dry period. J. Dairy Sci. 2015, 98, 5454–5459. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matte, J.J.; Guay, F.; Girard, C.L. Bioavailability of vitamin B-12 in cows’ milk. Br. J. Nutr. 2012, 107, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Bueno Dalto, D.; Audet, I.; Girard, C.L.; Matte, J.-J. Bioavailability of vitamin B12 from dairy products using a pig model. Nutrients 2018, 10, 1134. [Google Scholar] [CrossRef] [Green Version]
- National Research Council (NRC). Recommended dietary allowances. Food Nutr. Board 1989, 284. Available online: https://www.ncbi.nlm.nih.gov/books/NBK234924/#ddd0000148 (accessed on 18 March 2020).
- Kawashima, T.; Henry, P.R.; Bates, D.G.; Ammerman, C.B.; Littell, R.C.; Price, J. Bioavailability of cobalt sources for ruminants. 3. In vitro ruminal production of vitamin B12 and total corrinoids in response to different cobalt sources and concentrations. Nutr. Res. 1997, 17, 975–987. [Google Scholar] [CrossRef]
- Allen, M.S.; Ying, Y. Effects of Saccharomyces cerevisiae fermentation product on ruminal starch digestion are dependent upon dry matter intake for lactating cows. J. Dairy Sci. 2012, 95, 6591–6605. [Google Scholar] [CrossRef]
- Mullins, C.R.; Mamedova, L.K.; Carpenter, A.J.; Ying, Y.; Allen, M.S.; Yoon, I.; Bradford, B.J. Analysis of rumen microbial populations in lactating dairy cattle fed diets varying in carbohydrate profiles and Saccharomyces cerevisiae fermentation product. J. Dairy Sci. 2013, 96, 5872–5881. [Google Scholar] [CrossRef]
Action | Levels | Animals | Effect | References |
---|---|---|---|---|
Current cobalt requirements in ruminants | 0.1 to 0.2 mg/kg | Dairy cattle | Non-available | [24] |
Vitamin B12 supplementation | 0.34 and 0.68 µg/kg BW | Dairy cattle | Non-available | [84] |
Cobalt supplementation (Co-glucoheptanate) | 2.1 mg/kg (dry period) and 1.1 mg/kg (lactation) | Dairy cattle | Increase milk production, weight loss and BCS; no effect on reproductive rates | [85] |
Ration supplemented with Co (Co glucoheptonate) | 3.6 ppm (mg/kg) | Dairy cattle | Increase hepatic concentrations of B12 | [38] |
Supplementation with Co | Increased 0 to 1 ppm (mg/kg) | Multiparous vs. primiparous cows | Increase milk production; no benefit for health of cows; no effect in first lactation | [5] |
Ration supplemented with Co (Co-sulphate) | Extra supply Co (0.29-mg vs. 0.17-mg/kg DM) | Lactating dairy cows | No influence on ruminal parameters, nor characteristics of milk produced | [20] |
Extra supplementation with cobalt | Oral, 0.13-mg vs. 0.27-mg Co/kg DM | Pregnant dairy cows | Slightly higher serum CBL concentrations | [18] |
Supplementation dietary with Co | 0.15, 0.89 or 1.71 mg/kg of Co, DM | Cows, antepartum period | Increase ruminal synthesis of vitamin B12 in colostrum and milk; no effect on intake of DM, production milk and milk components; no affect on hepatic or serum Co; increase Co in milk | [74] |
Supplementation folic acid + vitamin B12 | Injections, weekly | Dairy herds, different production levels | Better energy state: increased BCS and decreased fat and protein in early lactation; joint supplementation increases the effects | [30,42] |
Supplementation folic acid + vitamin B12 | Intramuscularly, weekly, 3 to 16 wk after calving | Multiparous cows in early lactation | Milk production increased 12% | [59] |
Supplementation vitamin B12 (even adequate dietary Co-supply) | Intramuscular, weekly, 10 mg vitamin B12 | Primiparous cows | Increases blood hemoglobin, B12 in milk and milk yield; decreases MMA serum | [30] |
Supplements folic acid and vitamin B12 (combined) | Orally or parenterally | Multiparous cows, early lactation | increases production milk and milk components by improving the energy metabolism | [11,30,59] |
Supplementation folic acid and vitamin B12 (alone or joint) | Intramuscular injections, weekly from 3 weeks | until 9 weeks after parturition | Increase folate and vitamin B12 in milk and liver; DM intake not affected; milk and lactose tended lower | [58] |
Slow-release boluses (I, Se and Co) | Application intraruminal | Herd with a marginal iodine status | Milk production significantly higher (224 kg more milk) | [86] |
Action | Levels | Animals | Effect | References |
---|---|---|---|---|
Current cobalt requirements | 0.10 y 0.11 mg/kg | Beef cattle | Non-available | [24,84] |
Current cobalt requirements | 0.15 y 0.25 mg/kg | Beef cattle | Non-available | [28,74,76,80] |
Ration supplemented vitamin B | × 10, for pigs | Cross calves, stressed during transport | Not influence the weight gain or feed conversion; reduce morbidity | [24] |
Co-deficient diet vs. Co-proper diet | Growing cattle | Co in plasma (108 vs. 271 pg/mL) | [80] | |
Diet supplemented with cobalt (Co sulphate) | 0.07 to 0.69 mg Co/kg; estimated Co needs: 0.15 and 0.25-mg/kg ration | Bulls | Lower concentrations of vitamin B12 in plasma and liver; dietary Co inversely correlated homocysteine and MMA in plasma | [80,88] |
Diet control vs. Co-supplemented | 0.07 mg/kg vs. Co supplementation (0.12, 0.16 and 0.18 mg/kg) | Bulls, slaughtered | Lower weight, feed consumption and carcass weights (0.07 mg/kg); maximum growth (0.12 mg/kg); maximum feed intake (0.16 to 0.18 mg/kg) | [87] |
Diet supplemented with cobalt (Co-chloride) | 1 ys. 6 ppm (mg/kg) | Growing calves | No significant effect (digestibility, production, etc.) | [89] |
Diets supplemented | 0.22 ppm (mg/kg) of Co | beef cattle, growing | High liver Co values | [5] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Montaña, J.-R.; Escalera-Valente, F.; Alonso, A.J.; Lomillos, J.M.; Robles, R.; Alonso, M.E. Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant: An Update. Animals 2020, 10, 1855. https://doi.org/10.3390/ani10101855
González-Montaña J-R, Escalera-Valente F, Alonso AJ, Lomillos JM, Robles R, Alonso ME. Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant: An Update. Animals. 2020; 10(10):1855. https://doi.org/10.3390/ani10101855
Chicago/Turabian StyleGonzález-Montaña, Jose-Ramiro, Francisco Escalera-Valente, Angel J. Alonso, Juan M. Lomillos, Roberto Robles, and Marta E. Alonso. 2020. "Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant: An Update" Animals 10, no. 10: 1855. https://doi.org/10.3390/ani10101855
APA StyleGonzález-Montaña, J.-R., Escalera-Valente, F., Alonso, A. J., Lomillos, J. M., Robles, R., & Alonso, M. E. (2020). Relationship between Vitamin B12 and Cobalt Metabolism in Domestic Ruminant: An Update. Animals, 10(10), 1855. https://doi.org/10.3390/ani10101855