Impact of Nutrients on the Hoof Health in Cattle
Abstract
:Simple Summary
Abstract
1. Introduction
2. Prevalence of Lameness
3. Factors Influencing the Occurrence of Lameness
Nutrition
4. Lesions Causing Lameness
5. Laminitis
6. Sole Ulcers and Hemorrhages
7. Immune System Reactions
8. Effect of Nutrition on Lameness and Laminitis
8.1. Carbohydrates
8.2. Fats
8.3. Proteins and Amino Acids
Cysteine a Methionine
8.4. Endotoxins and Histamine
8.5. Minerals
8.5.1. Trace Elements
Zinc
Copper
Manganese
Selenium
Iodine
8.5.2. Macroelements
Calcium
Phosphorus and Magnesium
8.6. Vitamins
8.6.1. Vitamins A, C, D, and E
8.6.2. Biotin
8.7. Mycotoxins, Poor Feed Quality and Toxicity
8.8. Pasture
8.9. Yeast
9. Oxidative Stress
10. Prevention
11. Conclusions
Funding
Conflicts of Interest
References
- van Marle-Köster, E.; Pretorius, S.J.; Webb, E.C. Morphological and physiological characteristics of claw quality in Sounth African Bonsmara cattle. S. Afr. J. Anim. Sci. 2019, 49, 964–974. [Google Scholar] [CrossRef] [Green Version]
- Šlosárková, S. Péče o pohybový aparát. In Produkční a Preventivní Medicína v Chovech Mléčného Skotu; Hofírek, B., Ed.; University of Veterinary and Pharmaceutical Sciences Brno: Brno, Czech Republic, 2004. [Google Scholar]
- Costa, J.H.C.; Burnett, T.A.; von Keyserlingk, M.A.G.; Hötzel, M.J. Prevalence of lameness and leg lesions of lactating dairy cows housed in southern Brazil: Effects of housing systems. J. Dairy Sci. 2017, 101, 2395–2405. [Google Scholar] [CrossRef] [PubMed]
- Novotna, I.; Langova, L.; Havlicek, Z. Risk factors and detection of lameness using infrared thermography in dairy cows—A review. Ann. Anim. Sci. 2019, 19, 563–578. [Google Scholar] [CrossRef] [Green Version]
- Solano, L.; Barkema, H.W.; Pajor, E.A.; Mason, S.; LeBlanc, S.J.; Zaffino Heyerhoff, J.C.; Nash, C.G.R.; Haley, D.B.; Vasseur, E.; Pellerin, D.; et al. Prevalence of lameness and associated risk factors in Canadian Holstein-Friesian cows housed in freestall barns. J. Dairy Sci. 2015, 98, 6978–6991. [Google Scholar] [CrossRef] [Green Version]
- Ranjbar, S.; Rabiee, A.R.; Gunn, A.; House, J.K. Identifying risk factors associated with lameness in pasture-based dairy herds. J. Dairy Sci. 2016, 99, 7495–7505. [Google Scholar] [CrossRef] [Green Version]
- Moreira, T.F.; Nicolino, R.R.; Meneses, R.M.; Fonseca, G.V.; Rodrigues, L.M.; Filho, E.J.F.; Carvalho, A.U. Risk factors associated with lameness and hoof lesions in pasture-based dairy cattle systems in southeast Brazil. J. Dairy Sci. 2019, 102, 10369–10378. [Google Scholar] [CrossRef]
- Swalve, H.H.; Floren, C.; Wensch-Dorendorf, M.; Schöpke, K.; Pijl, R.; Wimmers, K.; Brenig, B. A study based on records taken at time of hoof trimming reveals a strong association between the IQ motif-containing GTPase-activating protein 1 (IQGAP1) gene and sole hemorehage in Holstein cattle. J. Dairy Sci. 2014, 97, 507–519. [Google Scholar] [CrossRef] [Green Version]
- Alvergnas, M.; Strabel, T.; Rzewuska, K.; Sell-Kubiak, E. Claw disorders in dairy cattle: Effects on production, welfare and farm economics with possible prevention methods. Livest. Sci. 2019, 222, 54–64. [Google Scholar] [CrossRef]
- Sun, D.; Li, C.; Gu, C.; Chen, J.; Q, Y.; Wang, X.; Gao, J.; Wei, S.; Wang, J.; Wu, R.; et al. Analysis of mineral elements, metabolism, and inflammation indexes in the plasma of dairy cows suffering from different degrees of lameness. Biol. Trace Elem. Res. 2015, 168, 372–379. [Google Scholar] [CrossRef] [PubMed]
- Daros, R.R.; Eriksson, H.K.; Weary, D.M.; Von Keyserlingk, M.A.G. Lameness during the dry period: Epidemiology and associated factors. J. Dairy Sci. 2019, 102, 11414–11427. [Google Scholar] [CrossRef] [PubMed]
- Mineur, A.; Hammami, H.; Grelet, C.; Egger-danner, C.; Sölkner, J.; Gengler, N. Short communication: Investigation of the temporal relationships between milk mid-infrared predicted biomarkers and lameness events in later lactation. J. Dairy Sci. 2020, 103, 4475–4482. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sadiq, M.B.; Ramanoon, S.Z.; Mansor, R.; Syed-hussain, S.S.; Shaik Mossadeq, W.M. Prevalence of lameness, claw lesions, and associated risk factors in dairy farms in Selangor, Malaysia. Trop. Anim. Health Prod. 2017, 49, 1741–1748. [Google Scholar] [CrossRef] [PubMed]
- Krpálková, L.; Cabrera, V.E.; Zavadilová, L.; Štípková, M. The importance of hoof health in dairy production. Czech J. Anim. Sci. 2019, 64, 107–117. [Google Scholar] [CrossRef]
- Griffiths, B.E.; Grove White, D.; Oikonomou, G. A Cross-Sectional Study into the Prevalence of Dairy Cattle Lameness and Associated Herd-Level Risk Factors in England and Wales. Front. Vet. Sci. 2018, 5, 65. [Google Scholar] [CrossRef] [Green Version]
- Ristevski, M.; Toholj, B.; Cincović, M.; Trojačanec, P.; Starič, J.; Smolec, O. Milk production, body condition score and metabolic parameters at the peak of lactation as risk factors for chronic lameness in dairy cows. Kafkas Üniversitesi Veteriner Fakültesi Dergisi. 2017, 23, 721–727. [Google Scholar] [CrossRef]
- Buch, L.H.; Sørensen, A.C.; Lassen, J.; Berg, P.; Eriksson, J.-Å.; Jakobsen, J.H.; Sørensen, M.K. Hygiene-related and feed-related hoof diseases show different patterns of genetic correlations to clinical mastitis and female fertility. J. Dairy Sci. 2011, 94, 1540–1551. [Google Scholar] [CrossRef] [Green Version]
- Randhawa, S.S.; Dua, K.; Randhawa, C.S.; Randhawa, S.S.; Munshi, S.K. Effect of biotin supplementation on hoof health and ceramide composition in dairy cattle. Vet. Res. Commun. 2008, 32, 599–608. [Google Scholar] [CrossRef]
- Singh, A.; Randhawa, S.S.; Singh, R.S. The effect of biotin and zinc supplementation on dairy cow hoof health and milk quality. Vet. Arch. 2019, 89, 799–820. [Google Scholar] [CrossRef]
- O’Connor, A.H.; Bokkers, E.A.M.; De Boer, I.J.M.; Hogeveen, H.; Sayers, R.; Byrne, N.; Ruelle, E.; Shalloo, L. Associating cow characteristics with mobility scores in pasture-based dairy cows. J. Dairy Sci. 2019, 102, 8332–8342. [Google Scholar] [CrossRef]
- Jewell, M.T.; Cameron, M.; Spears, J.; McKenna, S.L.; Cockram, M.S.; Sanchez, J.; Keefe, G.P. Prevalence of hock, knee, and neck skin lesions and associated risk factors in dairy herds in the Maritime Provinces of Canada. J. Dairy Sci. 2019, 102, 3376–3391. [Google Scholar] [CrossRef] [Green Version]
- Oehm, A.W.; Knubben-schweizer, G.; Rieger, A.; Stoll, A.; Hartnack, S. A systematic review and meta-analyses of risk factors associated with lameness in dairy cows. BMC Vet. Res. 2019, 15, 346. [Google Scholar] [CrossRef] [PubMed]
- Bran, J.A.; Daros, R.R.; von Keyserlingk, M.A.G.; Leblanc, S.J.; Hötzel, M.J. Cow and herd-level factors associated with lameness in small-scale grazing dairy herds in Brazil. Prev. Vet. Med. 2018, 151, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Holzhauer, M.; Brummelman, B.; Frankena, K.; Lam, T.J.G.M. A longitudinal study into the effect of grazing on claw disorders in female calves and young dairy cows. Vet. J. 2012, 193, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, K.; Fall, N.; Blanco-Penedo, I.; Duval, J.E.; Krieger, M.; Emanuelson, U. Lameness prevalence and risk factors in organic dairy herds in four European countries. Livest. Sci. 2018, 208, 44–50. [Google Scholar] [CrossRef]
- Burger, M. Nutritional factors affecting the occurrence of laminitis in dairy cows: A review: Elsenburg journal. Agriprobe 2017, 14, 58–64. [Google Scholar]
- Zhao, X.J.; Wang, X.Y.; Wang, J.H.; Wang, Z.Y.; Wang, L.; Wang, Z.H. Oxidative stress and imbalance of mineral metabolism contribute to lameness in dairy cows. Biol. Trace Elem. Res. 2015, 164, 43–49. [Google Scholar] [CrossRef]
- Charfeddine, N.; Pérez-cabal, M.A. Effect of claw disorders on milk production, fertility, and longevity, and their economic impact in Spanish Holstein cows. J. Dairy Sci. 2017, 100, 653–665. [Google Scholar] [CrossRef]
- Bruno, R.G.S.; Rutigliano, H.; Cerri, R.L.; Robinson, P.H.; Santos, J.E.P. Effect of feeding yeast culture on reproduction and lameness in dairy cows under heat stress. Anim. Rep. Sci. 2009, 113, 11–21. [Google Scholar] [CrossRef]
- Hedges, J.; Blowey, R.W.; Packington, A.J.; O’Callaghan, C.J.; Green, L.E. A Longitudinal Field Trial of the Effect of Biotin on Lameness in Dairy Cows. J. Dairy Sci. 2001, 84, 1969–1975. [Google Scholar] [CrossRef]
- Barbosa, A.A.; De Araújo, M.C.N.; Krusser, R.H.; Martin, C.F.; Schmitt, E.; Rabassa, V.R.; Del Pino, F.A.B.; Brauner, C.C.; Corrêa, M.N. Prepartum lameness on subsequent lactation in Holstein dairy cows. Ciênc. Rural 2020, 50. [Google Scholar] [CrossRef]
- Coetzee, J.F.; Shearer, J.K.; Stock, M.L.; Kleinhenz, M.D.; van Amstel, S.R. An update on the assessment and management of pain associated with lameness in cattle. Vet. Clin. Food Anim. Pract. 2017, 33, 389–411. [Google Scholar] [CrossRef] [PubMed]
- Beggs, D.S.; Jongman, E.C.; Hemsworth, P.H.; Fisher, A.D. Lame cows on Australian dairy farms: A comparison of farmer-identified lameness and formal lameness scoring, and the position of lame cows within the milking order. J. Dairy Sci. 2019, 102, 1522–1529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, A.J.; Weary, D.M.; Bran, J.A.; Daros, R.R.; Hötzel, M.J.; von Keyserlingk, M.A.G. Lameness and lying behavior in grazing dairy cows. J. Dairy Sci. 2019, 102, 6373–6382. [Google Scholar] [CrossRef] [PubMed]
- Westwood, C.T.; Bramley, E.; Lean, I.J. Review of the relationship between nutrition and lameness in pasture-fed dairy cattle. N. Z. Vet. J. 2003, 51, 208–218. [Google Scholar] [CrossRef]
- Dendani-chadi, Z.; Saidani, K.; Dib, L.; Zeroual, F.; Sammar, F.; Benakhla, A. Univariate associations between housing, management, and facility design factors and the prevalence of lameness lesions in fourteen small-scale dairy farms in Northeastern Algeria. Vet. World 2020, 13, 570–578. [Google Scholar] [CrossRef]
- Sepúveda-Varas, P.; Lomb, J.; Von Keyserlingk, M.A.G.; Held, R.; Bustamante, H.; Tadich, N. Claw horn lesions in mid-lactation primiparous dairy cows under pasture-based systems: Association with behavioral and metabolic changes around calving. J. Dairy Sci. 2018, 101, 9439–9450. [Google Scholar] [CrossRef] [Green Version]
- Ebling, R.C.; Krummenauer, A.; Machado, G.; Zeni, D.; Carazzo, L.P.; Leal, M. Prevalence and distribution of feet lesions in dairy cows raised in the freestall. Semin. Ciênc. Agrár. 2019, 40, 239–248. [Google Scholar] [CrossRef] [Green Version]
- Kaniyamattam, K.; Hertl, J.; Lhermie, G.; Taschu, U.; Dyer, R.; Gröhn, Y.T. Cost benefit analysis of automatic lameness detection systems in dairy herds: A dynamic programming approach. Prev. Vet. Med. 2020. [Google Scholar] [CrossRef]
- Shearer, J.K. Nutritional and animal welfare implications to lameness. In Proceedings of the 19th Annual Tri-State Dairy Nutrition Conference, Fort Wayne, IN, USA, 20–21 April 2010; pp. 57–67. [Google Scholar]
- Midla, L.T.; Hoblet, K.H.; Weiss, W.P.; Moeschberger, M.L. Supplemental dietary biotin for prevention of lesions associated with aseptic subclinical laminitis (pododermatitis aseptica diffusa) in primiparous cows. Am. J. Vet. Res. 1998, 59, 733–738. [Google Scholar]
- Noori, G.R.; Amanlou, H.; Mahjoubi, E.; Zahmatkesh, D.; Mousavi, S.S.; Shahrami, E. Top-dressing of the different feed additives is effective to prevent lameness and to increase feedlot cattle performance during a short-term period. J. Appl. Anim. Res. 2013, 41, 263–268. [Google Scholar] [CrossRef] [Green Version]
- Guard, C. Investigating Herds with Lameness Problems. Vet. Clin. N. Am. Food Anim. Pract. 2001, 17, 175–187. [Google Scholar] [CrossRef]
- von Keyserlingk, M.A.G.; Barrientos, A.; Ito, K.; Galo, E.; Weary, D.M. Benchmarking cow comfort on North American freestall dairies: Lameness, leg injuries, lying time, facility design, and management for high-producing Holstein dairy cows. J. Dairy Sci. 2012, 95, 7399–7408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cartwright, S.L.; Malchiodi, F.; Thompson-crispi, K.; Miglior, F.; Mallard, B.A. Short communication: Prevalence of digital dermatitis in Canadian dairy cattle classified as high, average, or low antibody-and cell-mediated immune responders. J. Dairy Sci. 2017, 100, 8409–8413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hund, A.; Logroño, J.C.; Ollhoff, R.D.; Kofler, J. Aspects of lameness in pasture based dairy systems. Vet. J. 2019, 244, 83–90. [Google Scholar] [CrossRef] [PubMed]
- Gitau, T.; McDermott, J.J.; Mbiuki, S.M. Prevalence, incidence, and risk factors for lameness in dairy cattle in small-scale farms in Kikuyu Divison, Kenya. Prev. Vet. Med. 1996, 28, 101–115. [Google Scholar] [CrossRef]
- Ouared, K.; Zidane, H.; Aggad, A.; Niar, A. Impact of clinical lameness on the milk yield of dairy cows. J. Anim. Vet. Adv. 2015, 14, 10–12. [Google Scholar]
- Barker, Z.E.; Leach, K.A.; Whay, H.R.; Bell, N.J.; Main, D.C.J. Assessment of lameness prevalence and associated risk factors in dairy herds in England and Wales. J. Dairy Sci. 2010, 93, 932–941. [Google Scholar] [CrossRef]
- Dippel, S.; Dolezal, M.; Brenninkmeyer, C.; Brinkmann, J.; March, S.; Knierim, U.; Winckler, C. Risk factors for lameness in freestall-housed dairy cows across two breeds, farming systems, and countries. J. Dairy Sci. 2009, 92, 5476–5486. [Google Scholar] [CrossRef] [Green Version]
- Krieger, M.; Sjöström, K.; Blanco-Penedo, I.; Madouasse, A.; Duval, J.E.; Bareille, N.; Fourichon, C.; Sundrum, A.; Emanuelson, U. Prevalence of production disease related indicators in organic dairy herds in four European countries. Livest. Sci. 2017, 198, 104–108. [Google Scholar] [CrossRef]
- Pérez-Cabal, M.A.; Alenda, R. Clinical lameness and risk factors in a Spanish Holstein population. Livest. Sci. 2014, 164, 168–174. [Google Scholar] [CrossRef]
- Becker, J.; Steiner, A.; Kohler, S.; Koller-Bahler, A.; Wuthrich, M.; Reist, M. Lameness and foot lesions in Swiss dairy cows: I. Prevalence. Schweiz. Arch. Tierheilkd. 2014, 156, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Asit, C.; Pankaj, K. Incidences of foot diseases of cattle in Bihar, Indian. Int. J. Agric. Sci. Res. 2016, 6, 267–272. [Google Scholar]
- Sharma, A.; Phillips, C.J.C. Lameness in Sheltered Cows and Its Association with Cow and Shelter Attributes. Animals 2019, 9, 360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rahman, M.A.; Imtiaz, M.A.; Ahaduzzaman, M.; Ghosh, K.K.; Masud, A.A.; Chowdhury, S.; Sikder, S. Effects of flooring and rearing system on hoof health of dairy cows in some selected areas of Bangladesh. Bangladesh J. Anim. Sci. 2014, 43, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Chapinal, N.; Liang, Y.; Weary, D.M.; Wang, Y.; von Keyserlingk, M.A.G. Risk factors for lameness and hock injuries in Holstein herds in China. J. Dairy Sci. 2014, 97, 4309–4316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richert, R.M.; Cicconi, K.M.; Gamroth, M.J.; Schukken, Y.H.; Stiglbauer, K.E.; Ruegg, P.L. Perceptions and risk factors for lameness on organic and small conventional dairy farms. J. Dairy Sci. 2013, 96, 5018–5026. [Google Scholar] [CrossRef] [PubMed]
- Abuelo, A.; Gandy, J.C.; Neuder, L.; Brester, J.; Sordillo, L.M. Short communication: Markers of oxidant status and inflammation relative to the development of claw lesions associated with lameness in early lactation cows. J. Dairy Sci. 2016, 99, 5640–5648. [Google Scholar] [CrossRef] [PubMed]
- Pinedo, P.; Velez, J.; Manriquez, D.; Bothe, H. Treatment Options for Lameness Disorders in Organic Dairies. Vet. Clin. Food Anim. 2017, 33, 377–387. [Google Scholar] [CrossRef]
- Higuchi, H.; Nagahata, H. Relationship between serum biotin concentration and moisture content of the sole horn in cows with clinical laminitis or sound hooves. Vet. Rec. 2001, 148, 209–210. [Google Scholar] [CrossRef]
- Sun, H.Z.; Plastow, G.; Guan, L.L. Invited review: Advances and challenges in application of feedomics to improve dairy cow production and health. J. Dairy Sci. 2019, 102, 5853–5870. [Google Scholar] [CrossRef]
- Sadiq, M.B.; Ramanoon, S.; Shaik Mossadeq, W.; Mansor, R.; Syed Hussain, S. Dairy Farmers’ Perceptions of and Actions in Relation to Lameness Management. Animals 2019, 9, 270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bicalho, R.C.; Oikonomou, G. Control and prevention of lameness associated with claw lesions in dairy cows. Livest. Sci. 2013, 156, 96–105. [Google Scholar] [CrossRef]
- Gomez, A.; Bernardoni, N.; Rieman, J.; Dusick, A.; Hartshorn, R.; Read, D.H.; Socha, M.T.; Cook, N.B.; Döpfer, D. A randomized trial to evaluate the effect of a trace mineral premix on the incidence of active digital dermatitis lesions in cattle. J. Dairy Sci. 2014, 97, 6211–6222. [Google Scholar] [CrossRef] [PubMed]
- Galbraith, H.; Scaife, J.R. Lameness in dairy cows: Influence of nutrition on claw composition and health. In Recent Advances in Animal Nutrition; Garnswothy, P.C., Wiseman, J., Eds.; Nottingham University Press: Nottingham, UK, 2007; pp. 91–126. [Google Scholar]
- Lischer, C.J.; Koller, U.; Geyer, H.; Mülling, C.H.; Schulze, J.; Ossent, P. Effect of therapeutic dietary biotin on the healing of uncomplicated sole ulcers in dairy cattle–a double blinded controlled study. Vet. J. 2002, 163, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Somers, J.R.; Huxley, J.N.; Doherty, M.L.; O’grady, L.E. Routine Herd Health Data as Cow-Based Risk Factors Associated with Lameness in Pasture-Based, Spring Calving Irish Dairy Cows. Animals 2019, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Mattiello, S.; Battini, M.; De Rosa, G.; Napolitano, F.; Dwyer, C. How Can We Assess Positive Welfare in Ruminants? Animals 2019, 9, 758. [Google Scholar] [CrossRef] [Green Version]
- Jensen, K.C.; Frömke, C.; Schneider, B.; Do Duc, P.; Gundling, F.; Birnstiel, K.; Schönherr, F.; Scheu, T.; Kaiser-Wichern, A.; Woudstra, S.; et al. Case-control study on factors associated with a decreased milk yield and a depressed health status of dairy herds in northern Germany. BMC Vet. Res. 2019, 15, 442. [Google Scholar] [CrossRef] [Green Version]
- Vermunt, J.J.; Parkinson, T.J. Claw lameness in dairy cattle: New Zealand-based research. N. Z. Vet. J. 2002, 50, 88–89. [Google Scholar] [CrossRef]
- Al-Qudah, K.M.; Ismail, Z.B. The relationship between serum biotin and oxidant/antioxidant activities in bovine lameness. Vet. Sci. 2012, 92, 138–141. [Google Scholar] [CrossRef]
- Mulling, C.K.W.; Bragulla, H.H.; Reese, S.; Budras, K.-D.; Steinberg, W. How Structures in Bovine Hoof Epidermis are Influenced by Nutritional Factors. Anat. Histol. Embryol. 1999, 28, 103–108. [Google Scholar] [CrossRef]
- Tomlinson, D.J.; Mülling, C.H.; Fakler, T.M. Invited Review: Formation of Keratins in the Bovine Claw: Roles of Hormones, Minerals, and Vitamins in Functional Claw Integrity. J. Dairy Sci. 2004, 87, 797–809. [Google Scholar] [CrossRef] [Green Version]
- Osorio, J.S.; Batistel, F.; Garrett, E.F.; Elhanafy, M.M.; Tariq, M.R.; Socha, M.T.; Loor, J.J. Corium molecular biomarkers reveal a beneficial effect on hoof transcriptomics in peripartal dairy cows supplemented with zinc, manganese, and copper from amino acid complexes and cobalt from cobalt glucoheptonate. J. Dairy Sci. 2016, 99, 9974–9982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas, H.S. The Cattle Health Handbook; Storey Publishing: Mass MoCA Way, North Adams, MA, USA, 2009; p. 371. [Google Scholar]
- Blowey, R.; Chesterton, C. Effect of footbath width on faecal contamination by cattle: FIG 1. Vet. Rec. 2012, 170, 628. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.A.M.; Gates, C.; Müller, K.R.; Laven, R.A. Bayesian analysis of herd-level risk factors for bovine digital dermatitis in New Zealand dairy herds. BMC Vet. Res. 2019, 15, 125. [Google Scholar] [CrossRef]
- Magrin, L.; Brscic, M.; Armato, L.; Contiero, B.; Lotto, A.; Cozzi, G.; Gottardo, F. Risk factors for claw disorders in intensively finished Charolais beef cattle. Prev. Vet. Med. 2020, 175, 104864. [Google Scholar] [CrossRef]
- Jacobs, C.; Orsel, K.; Barkema, H.W. Prevalence of digital dermatitis in young stock in Alberta, Canada, using pen walks. J. Dairy Sci. 2017, 100, 9234–9244. [Google Scholar] [CrossRef] [Green Version]
- Bergsten, C.; Greenough, P.R.; Gay, J.M.; Seymour, W.M.; Gay, C.C. Effects of biotin supplementation on performance and claw lesions on a commercial dairy farm. J. Dairy Sci. 2003, 86, 3953–3962. [Google Scholar] [CrossRef]
- Thorup, V.M.; Nielsen, B.L.; Robert, P.E.; Giger-Reverdin, S.; Konka, J.; Michie, C.; Friggens, N.C. Lameness affects cow feeding but not rumination behavior as characterized from sensor data. Front. Vet. Sci. 2016, 3, 37. [Google Scholar] [CrossRef] [Green Version]
- Havlíček, Z. Zdravotní Bezpečnost Krmiv, Stájové Prostředí a VÝSKYT Mastitid; Mendelova Univerzita v Brně: Brno, Černá Pole, Czech Republic, 2014. [Google Scholar]
- Urban, F. Chov Dojeného Skotu: Reprodukce, Odchov, Management, Technologie, Výživa; Praha: Apros, Prague, Chezh Republic, 1997; ISBN 80-901100-7-x/9788090110076. [Google Scholar]
- Biscarini, F.; Palazzo, F.; Castellani, F.; Masetti, G.; Grotta, L.; Cichelli, A.; Martino, G.; Loor, J.J. Rumen microbiome in dairy calves fed copper and grape-pomace dietary supplementations: Composition and predicted functional profile. PLoS ONE 2018, 13, e0205670. [Google Scholar] [CrossRef]
- Zhang, R.Y.; Jin, W.; Feng, P.F.; Liu, J.H.; Mao, S.Y. High-grain diet feeding altered the composition and functions of the rumen bacterial community and caused the damage to the laminar tissues of goats. Animal 2018, 12, 2511–2520. [Google Scholar] [CrossRef]
- Tavares, N.C.; Barbosa, A.A.; Bermudes, R.F.; Rechsteiner, S.M.E.F.; Cruz, L.A.X.; Bruhn, F.R.P.; Silva, P.M.; Martins, C.F. Impact of high-energy diets on the rumen environment and digital cushion in confined cattle. Pesqui. Vet. Bras. 2019, 39, 970–977. [Google Scholar] [CrossRef] [Green Version]
- Coombe, J.E.; Pyman, M.F.; Mansell, P.D.; Auldist, M.J.; Anderson, G.A.; Wales, W.J.; Malmo, J.; Conley, M.J.; Fisher, A.D. The effects on claw health of supplement feeding grazing dairy cows on feed pads. Vet. J. 2013, 198, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Belge, F.; Bildik, A.; Belge, A.; Kilicalp, D.; Atasoy, N. Possible association between chronic laminitis and some biochemical parameters in dairy cattle. Aus. Vet. J. 2004, 82, 556–557. [Google Scholar] [CrossRef] [PubMed]
- Hulsen, J. Cow Signals: A Practical Guide for Dairy Farm Management; Roodbont Publishers: Zutphen, The Netherlands, 2005. [Google Scholar]
- Nocek, J.E. Bovine acidosis: Implications on laminitis. J. Dairy Sci. 1997, 80, 1005–1028. [Google Scholar] [CrossRef]
- Manson, F.J. A Study of Lameness in Dairy Cows with Reference to Nutrition and Hoof Shape. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 1986. [Google Scholar]
- Lean, I.J.; Westwood, C.T.; Golder, H.M.; Vermunt, J.J. Impact of nutrition on lameness and claw health in cattle. Livest. Sci. 2013, 156, 71–87. [Google Scholar] [CrossRef]
- Collard, B.L.; Boettcher, P.J.; Dekkers, J.C.M.; Petitclerc, D.; Schaeffer, L.R. Relationships Between Energy Balance and Health Traits of Dairy Cattle in Early Lactation. J. Dairy Sci. 2000, 83, 2683–2690. [Google Scholar] [CrossRef]
- Henley, P.A.; Podico, G.; Garrett, E.; Kaplan, C.; Meteer, W.T.; Mccann, J.C.; Canisso, I.; Shike, D.W. Influence of distillers grains with solubles on bull growth and reproductive traits1. Transl. Anim. Sci. 2020, 4, 229–241. [Google Scholar] [CrossRef]
- Hausmann, J.; Deiner, C.; Patra, A.K.; Immig, I.; Starke, A.; Aschenbach, J.R.; Loor, J.J. Effects of a combination of plant bioactive lipid compounds and biotin compared with monensin on body condition, energy metabolism and milk performance in transition dairy cows. PLoS ONE 2018, 13, e0193685. [Google Scholar] [CrossRef]
- Manske, T.; Hultgren, J.; Bergsten, C. Prevalence and interrelationships of hoof lesions and lameness in Swedish dairy cows. Prev. Vet. Med. 2002, 54, 247–263. [Google Scholar] [CrossRef]
- Peterse, D.J. Foot lameness. In Bovine Medicine; Andrews, A.H., Ed.; Oxford: Blackwell, UK, 1992; pp. 353–364. [Google Scholar]
- Christmann, U.; Belknap, E.B.; Lin, H.C.; Belknap, J.K. Evaluation of hemodynamics in the normal and laminitic bovine digit. In Proceedings of the 12th International Sympposium on Lameness in Ruminants, Orlando, FL, USA, 9–13 January 2002; pp. 165–166. [Google Scholar]
- Özsoy, S.; Altunatmaz, K.; Kaya, H.H.; Kaşicki, G.; Alkan, S.; Bilal, T. The relationship between lameness, fertility and aflatoxin in a dairy cattle herd. Turk. J. Vet. Anim. Sci. 2005, 29, 981–986. [Google Scholar]
- Amory, J.R.; Kloosterman, P.; Barker, Z.E.; Wright, J.L.; Blowey, R.W.; Green, L.E. Risk Factors for Reduced Locomotion in Dairy Cattle on Nineteen Farms in The Netherlands. J. Dairy Sci. 2006, 89, 1509–1515. [Google Scholar] [CrossRef]
- Faye, B.; Lescourret, F. Environmental factors associated with lameness in dairy cattle. Prev. Vet. Med. 1989, 7, 267–287. [Google Scholar] [CrossRef]
- Abel, H.J.; Immig, I.; Gomez, C.D.C.; Steinberg, W. Effect of increasing dietary concentrate levels on microbial biotin metabolism in the artificial rumen simulation system (RUSITEC). Arch. Anim. Nutr. 2001, 55, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Räber, M.; Scheeder, M.R.L.; Ossent, P.; Lischer, C.J.; Geyer, H. The content and composition of lipids in the digital cushion of the bovine claw with respect to age and location—A preliminary report. Vet. J. 2006, 172, 173–177. [Google Scholar] [CrossRef]
- Gelasakis, A.I.; Kalogianni, A.I.; Bossis, I. Aetiology, Risk Factors, Diagnosis and Control of Foot-Related Lameness in Dairy Sheep. Animals 2019, 9, 509. [Google Scholar] [CrossRef] [Green Version]
- Stefańska, B.; Komisarek, J.; Nowak, W. Noninvasive indicators associated with subacute ruminal acidosis in dairy cows. Ann. Anim. Sci. 2020, 1. [Google Scholar] [CrossRef]
- Chen, B.; Wang, C.; Liu, J.X. Effects of dietary biotin supplementation on performance and hoof quality of Chinese Holstein dairy cows. Livest. Sci. 2012, 148, 168–173. [Google Scholar] [CrossRef]
- Clark, A.K.; Rakes, A.H. Effect of methionine hydroxy analog supplementation on dairy cattle hoof growth and composition. J. Dairy Sci. 1982, 65, 1493–1502. [Google Scholar] [CrossRef]
- Weiss, W.P. A 100-Year Review: From ascorbic acid to zinc—Mineral and vitamin nutrition of dairy cows. J. Dairy Sci. 2017, 100, 10045–10060. [Google Scholar] [CrossRef]
- Motta, A.C.V.; Araujo, E.M.; Broadley, M.R.; Young, S.; Barbosa, J.Z.; Prior, S.A.; Schmidt, P. Minerals and potentially toxic elements in corn silage from tropical and subtropical Brazil. Rev. Bras. Zootec. 2020, 49. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Dairy Cattle, 7th ed.; National Research Council: Washington, DC, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Mudgal, V.; Saxena, N.; Kumar, K.; Dahiya, S.S.; Punia, B.S.; Sharma, M.L. Sources and Levels of Trace Elements Influence Some Blood Parameters in Murrah Buffalo (Bubalus bubalis) Calves. Biol. Trace Elem. Res. 2019, 188, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Ballantine, H.T.; Socha, M.T.; Acan, D.; Tomlinson, D.J.; Johnson, A.B.; Fielding, A.S.; Shearer, J.K.; Van Amstel, S.R. Effects of feeding complexed zinc, manganese, copper, and cobalt to late gestation and lactating dairy cows on claw integrity, reproduction, and lactation performance. Prof. Anim. Sci. 2002, 18, 211–218. [Google Scholar] [CrossRef]
- Faulkner, M.J.; Wenner, B.A.; Solden, L.M.; Weiss, W.P. Source of supplemental dietary copper, zinc, and manganese affects fecal microbial relative abundance in lactating dairy cows. J. Dairy Sci. 2017, 100, 1037–1044. [Google Scholar] [CrossRef] [PubMed]
- Bakhshizadeh, S.; Aghjehgheshlagh, F.M.; Taghizadeh, A.; Seifdavati, J.; Navidshad, B. Effect of zinc sources on milk yield, milk composition and plasma concentration of metabolites in dairy cows. S. Afr. J. Anim. Sci. 2019, 49, 884–891. [Google Scholar] [CrossRef] [Green Version]
- Döepfer, D.; Loe, E.R.; Larson, C.K.; Branine, M.E. Effects of Feeding a Novel Amino Acid-Complexed Trace Mineral Supplement on Productivity and Digital Dermatitis Mitigation in Growing-Finishing Feedlot Heifers. J. Anim. Sci. 2018, 96, 231. [Google Scholar] [CrossRef]
- Cope, C.M.; Mackenzie, A.M.; Wilde, D.; Sinclair, L.A. Effects of level and formo of dietary zinc on dairy cow performance and health. J. Dairy Sci. 2009, 92, 2128–2135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhadauria, P.; Lathwal, S.S.; Jadoun, Y.S.; Gupta, R.; Devi, I. Variations in plasma biotin and mineral concentrations due to zinc-biotin supplementation in lame Karan Fries cows during peri-parturient period. Indian J. Anim Res. 2015, 49, 783–787. [Google Scholar] [CrossRef] [Green Version]
- Bhadauria, P.; Lathwal, S.S.; Jadoun, Y.S.; Ruhil, A.P.; Devi, I.; Gupta, R. Effect of transition diet fortification on lameness and blood metabolites in pre-and post-partum lame Karan Fries cows. Indian J. Anim. Sci. 2015, 85, 1006–1011. [Google Scholar]
- Richelle, M.; Sabatier, M.; Steiling, H.; Williamson, G. Skin bioavailability of dietary vitamin E, carotenoids, polyphenols, vitamin C, zinc and selenium. Br. J. Nutr. 2006, 96, 227–238. [Google Scholar] [CrossRef]
- Kulow, M.; Merkatoris, P.; Anklam, K.S.; Rieman, J.; Larson, C.; Branine, M.; Döpfer, D. Evaluation of the prevalence of digital dermatitis and the effects on performance in beef feedlot cattle under organic trace mineral supplementation1. J. Anim. Sci. 2017, 95, 3435–3444. [Google Scholar] [CrossRef]
- Weiss, W.P.; Wyatt, D.J.; Kleinschmit, D.H.; Socha, M.T. Effect of including canola meal and supplemental iodine in diets of dairy cows on short-term changes in iodine concentrations in milk. J. Dairy Sci. 2015, 98, 4841–4849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martens, H.; Leonhard-Marek, S.; Röntgen, M.; Stumpff, F. Magnesium homeostasis in cattle: Absorption and excretion. Nutr. Res. Rev. 2018, 31, 114. [Google Scholar] [CrossRef] [PubMed]
- Martens, H.; Stumpff, F. Assessment of magnesium intake according to requirement in dairy cows. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1023–1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oberson, J.L.; Probst, S.; Schlegel, P. Magnesium absorption as influenced by the rumen passage kinetics in lactating dairy cows fed modified levels of fibre and protein. Animal 2019, 13, 1412–1420. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jelinski, M.; Waldner, C.; Penner, G. Case-control study of mineral concentrations of hoof horn tissue derived from feedlot cattle with toe tip necrosis syndrome (toe necrosis). Can. Vet. J. 2018, 59, 254. [Google Scholar]
- Sayiner, S.; Fidanci, U.R.; Kucukersan, S.; Kismali, G.; Meral, O.; Sehirli, A.O.; Sel, T.; Karagul, H. Vitamin A, calcium, phosphorus and magnesium status of heifers grazing in Northern Cyprus. Trop. Anim. Health Prod. 2020, 52, 1869–1874. [Google Scholar] [CrossRef]
- Lean, I.J.; Rabiee, A.R. Effect of feeding biotin on milk production and hoof health in lactating dairy cows: A quantitative assessment. J. Dairy Sci. 2011, 94, 1465–1476. [Google Scholar] [CrossRef]
- Riveron-Negrete, L.; Fernandez-Mejla, C. Pharmacological Effects of Biotin in Animals. Mini Rev. Med. Chem. 2017, 17, 529–540. [Google Scholar] [CrossRef]
- Ferreira, G.; Brown, A.N.; Teets, C.L. Effect of biotin and pantothenic acid on performance and concentrations of avidin-binding substances in blood and milk of lactating dairy cows. J. Dairy Sci. 2015, 98, 6449–6454. [Google Scholar] [CrossRef]
- Queiroz, P.J.B.; Assis, B.M.; Silva, D.C.; Filho, A.D.F.N.; Alexandre, P.; Rogério, E.R.; Naida, C.B.; Valcinir, A.S.V.; Luiz Antônio, F.d.S. Mineral composition and microstructure of the abaxial hoof wall in dairy heifers after biotin supplementation. Anat. Histol. Embryol. 2020. [Google Scholar] [CrossRef]
- Schwab, E.C.; Schwab, C.G.; Shaver, R.D.; Girard, C.L.; Putnam, D.E.; Whitehouse, N.L. Dietary forage and nonfiber carbohydrate contents influence B-vitamin intake, duodenal flow, and apparent ruminal synthesis in lactating dairy cows. J. Dairy Sci. 2006, 89, 174–187. [Google Scholar] [CrossRef]
- Hulsen, J. Cow signals: Jak rozumět řeči krav. In Praktický Průvodce Pro Chovatele Dojnic; Profi Press: Praha, Czech Republic, 2007. [Google Scholar]
- Yang, C.; Rooke, J.A.; Cabeza, I.; Wallace, R.J. Nitrate and inhibition of ruminal methanogenesis: Microbial ecology, obstacles, and opportunities for lowering methane emissions from ruminant livestock. Front. Microbiol. 2016, 7, 132. [Google Scholar] [CrossRef] [PubMed]
- Gontijo, D.A.; Borges, A.A.; Wouters, F. Nitrate/nitrite poisoning in dairy cattle from the Midwestern Minas Gerais, Brazil. Ciênc. Rural 2017, 47. [Google Scholar] [CrossRef] [Green Version]
- Marczuk, J.; Ziętek, J.; Michalak, K.; Winiarczyk, S.; Lutnicki, K.; Brodzki, P.; Adaszek, Ł. Ergovaline poisoning in a herd of dairy cows-a case report. Med. Weter. 2019, 75, 635–639. [Google Scholar] [CrossRef]
- Canty, M.J.; Fogarty, U.; Sheridan, M.K.; Ensley, S.M.; Schrunk, D.E.; More, S.J. Ergot alkaloid intoxication in perennial ryegrass (Lolium perenne): An emerging animal health concern in Ireland? Ir. Vet. J. 2014, 67, 21. [Google Scholar] [CrossRef] [Green Version]
- Meller, R.A.; Wenner, B.A.; Ashworth, J.; Gehman, A.M.; Lakritz, J.; Firkins, J.L. Potential roles of nitrate and live yeast culture in suppressing methane emission and influencing ruminal fermentation, digestibility, and milk production in lactating Jersey cows. J. Dairy Sci. 2019, 102, 6144–6156. [Google Scholar] [CrossRef]
- Welty, C.M.; Wenner, B.A.; Wagner, B.K.; Roman-garcia, Y.; Plank, J.E.; Meller, R.A.; Gehman, A.M.; Firkins, J.L. Rumen microbial responses to supplemental nitrate. II. Potential interactions with live yeast culture on the prokaryotic community and methanogenesis in continuous culture. J. Dairy Sci. 2019, 102, 2217–2231. [Google Scholar] [CrossRef] [Green Version]
- Dogra, S.; Singh, R.; Ravinder, S.; Tikoo, A. Effect of claw disorders on haemato-biochemical parameters and acute phase protein levels in crossbred cattle. Indian J. Anim. Res. 2019. [Google Scholar] [CrossRef]
- Šlosárková, S. Onemocnění Končetin—Příčiny, Léčba a Prevence; Profi Press: Praha, Czech Republic, 2016; ISBN 0027–8068. [Google Scholar]
State | Prevalence (%) | Reference |
---|---|---|
America | ||
North America | 2–55 | [11] |
55 | [44] | |
Minnesota (USA) | 24.6 (3.3–57.3) | [25] |
Canada | 20–35 | [45] |
Brazil | 35 | [23] |
Australia and New Zealand | ||
Australia | 7.5 | [35] |
18.9 | [6] | |
New Zealand | 14 | [35] |
Africa | ||
Kenya | 23 | [46] |
11.7 | [47] | |
Algeria | 12.7 | [48] |
Europe | ||
England and Wales | 36.8 (0–79.2) | [49] |
France | 25 (0–51) | [25] |
Germany | 20 (0–79) | [25] |
Austria and Germany | 34 | [50] |
Sweden | 5 (0–25) | [25] |
14.2 | [51] | |
Spain | 10 (0–27) | [25] |
13.8 | [52] | |
Switzerland | 14.8 | [53] |
Asia | ||
Malaysia | 19.1 (10.0–33.3) | [13] |
India | 17.2 | [54] |
8.1–30.5 | [55] | |
Thailand | 21.98 | [56] |
China | 31 | [57] |
Minerals | Growing and Finishing Cattle | Gestating | Early Lactation |
---|---|---|---|
Zinc, mg/kg | 30 | 30 | 30 |
Copper, mg/kg | 10 | 10 | 10 |
Manganese, mg/kg | 20 | 40 | 40 |
Selenium, mg/kg | 0.10 | 0.10 | 0.10 |
Iodine, mg/kg | 0.50 | 0.50 | 0.50 |
Magnesium, % | 0.10 | 0.12 | 0.20 |
Sulphur, % | 0.15 | 0.15 | 0.15 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langova, L.; Novotna, I.; Nemcova, P.; Machacek, M.; Havlicek, Z.; Zemanova, M.; Chrast, V. Impact of Nutrients on the Hoof Health in Cattle. Animals 2020, 10, 1824. https://doi.org/10.3390/ani10101824
Langova L, Novotna I, Nemcova P, Machacek M, Havlicek Z, Zemanova M, Chrast V. Impact of Nutrients on the Hoof Health in Cattle. Animals. 2020; 10(10):1824. https://doi.org/10.3390/ani10101824
Chicago/Turabian StyleLangova, Lucie, Ivana Novotna, Petra Nemcova, Miroslav Machacek, Zdenek Havlicek, Monika Zemanova, and Vladimir Chrast. 2020. "Impact of Nutrients on the Hoof Health in Cattle" Animals 10, no. 10: 1824. https://doi.org/10.3390/ani10101824
APA StyleLangova, L., Novotna, I., Nemcova, P., Machacek, M., Havlicek, Z., Zemanova, M., & Chrast, V. (2020). Impact of Nutrients on the Hoof Health in Cattle. Animals, 10(10), 1824. https://doi.org/10.3390/ani10101824