Optimizing the Growth, Health, Reproductive Performance, and Gonadal Histology of Broodstock Fantail Goldfish (Carassius auratus, L.) by Dietary Cacao Bean Meal
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Fish and Rearing Condition
2.2. Preparation of Cacao Bean Meal, Diet Preparation, and Experimental Design
2.3. Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Cacao Bean Meal Extract
2.4. Economic Efficiency
2.5. Blood Sampling
2.6. Reproductive Performance
2.7. Histological Features
2.8. Statistical Analysis
3. Results
3.1. Growth Performance:
3.2. Economic Efficiency
3.3. Serum Biochemical Parameters
3.4. Reproductive Performance
3.5. Histological Features
3.5.1. Ovaries
3.5.2. Testes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Simmons, D.; McCallum, E.; Balshine, S.; Chandramouli, B.; Cosgrove, J.; Sherry, J. Reduced anxiety is associated with the accumulation of six serotonin reuptake inhibitors in wastewater treatment effluent exposed goldfish Carassius aurat us. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Mangiamele, L.A.; Gomez, J.R.; Curtis, N.J.; Thompson, R.R. GPER/GPR30, a membrane estrogen receptor, is expressed in the brain and retina of a social fish (Carassius auratus) and colocalizes with isotocin. J. Comp. Neurol. 2017, 525, 252–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sorensen, P.W.; Appelt, C.; Stacey, N.E.; Goetz, F.W.; Brash, A.R. High levels of circulating prostaglandin F2α associated with ovulation stimulate female sexual receptivity and spawning behavior in the goldfish (Carassius auratus). Gen. Comp. Endocrinol. 2018, 267, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.A.; Hill, J.E.; Pouder, D.B. Species Profile: Koi and Goldfish; Southern Regional Aquaculture Center, SRAC Publication: Stoneville, MS, USA, 2004; No. 7201. [Google Scholar]
- Amer, S.A.; Metwally, A.E.; Ahmed, S.A. The influence of dietary supplementation of cinnamaldehyde and thymol on the growth performance, immunity and antioxidant status of monosex Nile tilapia fingerlings (Oreochromis niloticus). Egypt. J. Aquat. Res. 2018, 44, 251–256. [Google Scholar] [CrossRef]
- Amer, S.A.; Ahmed, S.A.; Ibrahim, R.E.; Al-Gabri, N.A.; Osman, A.; Sitohy, M. Impact of partial substitution of fish meal by methylated soy protein isolates on the nutritional, immunological, and health aspects of Nile tilapia, Oreochromis niloticus fingerlings. Aquaculture 2020, 518, 734871. [Google Scholar] [CrossRef]
- Gopalakannan, A.; Arul, V. Immunomodulatory effects of dietary intake of chitin, chitosan and levamisole on the immune system of Cyprinus carpio and control of Aeromonas hydrophila infection in ponds. Aquaculture 2006, 255, 179–187. [Google Scholar] [CrossRef]
- Al-Khalaifah, H.; Khalil, A.A.; Amer, S.A.; Shalaby, S.I.; Badr, H.A.; Farag, M.F.; Altohamy, D.E.; Abdel Rahman, A.N. Effects of Dietary Doum Palm Fruit Powder on Growth, Antioxidant Capacity, Immune Response, and Disease Resistance of African Catfish, Clarias gariepinus (B.). Animals 2020, 10, 1407. [Google Scholar] [CrossRef]
- Craig, W.J. Health-promoting properties of common herbs. Am. J. Clin. Nutr. 1999, 70, 491s–499s. [Google Scholar] [CrossRef]
- Şahin, F.; Güllüce, M.; Daferera, D.; Sökmen, A.; Sökmen, M.; Polissiou, M.; Agar, G.; Özer, H. Biological activities of the essential oils and methanol extract of Origanum vulgare ssp. vulgare in the Eastern Anatolia region of Turkey. Food Control 2004, 15, 549–557. [Google Scholar] [CrossRef]
- Oonmetta-aree, J.; Suzuki, T.; Gasaluck, P.; Eumkeb, G. Antimicrobial properties and action of galangal (Alpinia galanga Linn.) on Staphylococcus aureus. Lwt-Food Sci. Technol. 2006, 39, 1214–1220. [Google Scholar] [CrossRef]
- Reza, A.; Rakhi, S.; Hossen, M.; Takahashi, K.; Hossain, Z. Enhancement of reproductive performances of Gangetic leaffish, Nandus nandus through up regulation of serum Ca 2+ concentration, improved morphological alteration of liver and ovary with dietary polyunsaturated fatty acids. Fish Physiol. Biochem. 2013, 39, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Babu, M.M. Developing Bioencapsulated Ayurvedic Product for Maturation and Quality Larval Production in Penaeus Monodon. Ph.D. Thesis, Manomaniam Sundaranar University, Tirunelveli, India, 1999. [Google Scholar]
- Tizkar, B. The Effects of Dietary Supplementation of Astaxanthin and Β-caroten on the Reproductive Performance and Egg Quality of Female Goldfish (Carassius auratus). Caspian. J. Environ. Sci. 2013, 11, 217–231. [Google Scholar]
- Tizkar, B.; Kazemi, R.; Alipour, A.; Seidavi, A.; Naseralavi, G.; Ponce-Palafox, J.T. Effects of dietary supplementation with astaxanthin and β-carotene on the semen quality of goldfish (Carassius auratus). Theriogenology 2015, 84, 1111–1117. [Google Scholar] [CrossRef] [PubMed]
- Tizkar, B.; Soudagar, M.; Bahmani, M.; Hosseini, S.A.; Chamani, M.; Seidavi, A.; Sühnel, S.; Ponce-Palafox, J.T. Effects of dietary astaxanthin and β-carotene on gonadosomatic and hepatosomatic indices, gonad and liver composition in goldfish Carassius auratus (Linnaeus, 1758) broodstocks. Lat. Am. J. Aquat. Res. 2016, 44, 363–370. [Google Scholar] [CrossRef]
- Kavitha, P.; Ramesh, R.; Subramanian, P. Histopathological changes in Poecilia latipinna male gonad due to Tribulus terrestris administration. Vitr. Cell. Dev. Biol. Anim. 2012, 48, 306–312. [Google Scholar] [CrossRef] [PubMed]
- Kapinga, I.B.; Limbu, S.M.; Madalla, N.A.; Kimaro, W.H.; Mabiki, F.P.; Lamtane, H.A.; Tamatamah, R.A. Dietary Aspilia mossambicensis and Azadirachta indica supplementation alter gonadal characteristics and histology of juvenile Nile tilapia (Oreochromis niloticus). Aquac. Res. 2019, 50, 573–580. [Google Scholar] [CrossRef]
- Kareem, Z.H.; Abdelhadi, Y.M.; Christianus, A.; Karim, M.; Romano, N. Effects of some dietary crude plant extracts on the growth and gonadal maturity of Nile tilapia (Oreochromis niloticus) and their resistance to Streptococcus agalactiae infection. Fish Physiol. Biochem. 2016, 42, 757–769. [Google Scholar] [CrossRef]
- Katz, D.L.; Doughty, K.; Ali, A. Cocoa and chocolate in human health and disease. Antioxid. Redox Signal. 2011, 15, 2779–2811. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Sánchez, A.V.; Leal-Tassias, A.; Rodriguez-Sanchez, N.; Piquer-Gil, M.; Martorell, P.; Genovés, S.; Acosta, C.; Burks, D.; Ramon, D.; Mullor, J.L. Use of Medaka Fish as Vertebrate Model to Study the Effect of Cocoa Polyphenols in the Resistance to Oxidative Stress and Life Span Extension. Rejuvenation Res. 2018, 21, 323–332. [Google Scholar] [CrossRef]
- Grassi, D.; Necozione, S.; Lippi, C.; Croce, G.; Valeri, L.; Pasqualetti, P.; Desideri, G.; Blumberg, J.B.; Ferri, C. Cocoa reduces blood pressure and insulin resistance and improves endothelium-dependent vasodilation in hypertensives. Hypertension 2005, 46, 398–405. [Google Scholar] [CrossRef] [Green Version]
- Murphy, K.J.; Chronopoulos, A.K.; Singh, I.; Francis, M.A.; Moriarty, H.; Pike, M.J.; Turner, A.H.; Mann, N.J.; Sinclair, A.J. Dietary flavanols and procyanidin oligomers from cocoa (Theobroma cacao) inhibit platelet function. Am. J. Clin. Nutr. 2003, 77, 1466–1473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carvalho, J.S.O.; Azevedo, R.V.d.; Ramos, A.P.d.S.; Braga, L.G.T. Agroindustrial byproducts in diets for Nile tilapia juveniles. Rev. Bras. De Zootec. 2012, 41, 479–484. [Google Scholar] [CrossRef] [Green Version]
- CCAC. Canadian Council on Animal Care Guidelines on: The Care and Use of Fish in Research, Teaching and Testing; Canadian Council on Animal Care: Ottawa, ON, Canada, 2005. [Google Scholar]
- APHA. Water Environment Federation 1998. Standard Methods for the Examination of Water and Wastewater; American Public Health Association: Washington, DC, USA, 1998. [Google Scholar]
- AOAC. Official Methods of Analysis of AOAC International; AOAC: Rockville, MD, USA, 2000. [Google Scholar]
- Gowsalya, T.; Kumar, J.S.S. Cost-benefit analysis of protein ingredients in the maturation diets of goldfish, Carassius auratus (Linnaeus, 1758). J. Entomol. Zool. Stud. 2018, 6, 330–334. [Google Scholar]
- Santiago, C.B.; Bañes-Aldaba, M.; Laron, M.A. Dietary crude protein requirement of Tilapia nilotica fry. Kalikasan: J. Philipp. Biol. 1982, 11, 255–265. Available online: http://hdl.handle.net/10862/1048 (accessed on 24 August 2012).
- El-Telbany, M.; Atallah, S. Some culture factors affecting the productive and economic efficiency of Mugil capito nursing in earthen pond system 9 th Scientific Cingrees. Fac. Vet. Med. Assiut. Univ. 2000, 46, 19–20. [Google Scholar] [CrossRef] [Green Version]
- Dunning, R.; Daniels, H. Hybrid Striped Bass Production in Ponds: Enterprise Budget; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2001. [Google Scholar]
- Neiffer, D.L.; Stamper, M.A. Fish sedation, anesthesia, analgesia, and euthanasia: Considerations, methods, and types of drugs. Ilar. J. 2009, 50, 343–360. [Google Scholar] [CrossRef] [Green Version]
- Zhu, H.; Liu, Z.; Gao, F.; Lu, M.; Liu, Y.; Su, H.; Ma, D.; Ke, X.; Wang, M.; Cao, J. Characterization and expression of Na+/K+-ATPase in gills and kidneys of the Teleost fish Oreochromis mossambicus, Oreochromis urolepis hornorum and their hybrids in response to salinity challenge. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2018, 224, 1–10. [Google Scholar] [CrossRef]
- Doumas, B.T.; Bayse, D.D.; Carter, R.J.; Peters, T.; Schaffer, R. A candidate reference method for determination of total protein in serum. I. Dev. Valid. Clin. Chem. 1981, 27, 1642–1650. [Google Scholar] [CrossRef]
- Kaplan, A.; Savory, J. Evaluation of a cellulose-acetate electrophoresis system for serum protein fractionation. Clin. Chem. 1965, 11, 937–942. [Google Scholar] [CrossRef]
- McGowan, M.; Artiss, J.D.; Strandbergh, D.R.; Zak, B. A peroxidase-coupled method for the colorimetric determination of serum triglycerides. Clin. Chem. 1983, 29, 538–542. [Google Scholar] [CrossRef]
- Boonyaratpalin, M. Nutritional Requirements of Grouper Epinephelus. The Proceedings of Grouper Culture; National Institute of Coastal Aquaculture. Department of Fisheries: Songkhla, Thailand, 1993; pp. 50–55.
- Suvarna, S.; Layton, C.; Bancroft, J. The Hematoxylins and Eosin. Bancroft’s Theory and Practice of Histological Techniques, 7th ed.; Churchill Livingstone: London, UK, 2013; pp. 172–186. [Google Scholar]
- Uzochukwu, I.E. Growth, Gonadal Development, and Blood Profile. In African Catfish (Clarias Gariepinus, Burchell 1822) Fed Diets Containing Cocoa Bean MealTheses and Dissertations (Animal Science). 2017. Available online: http://hdl.handle.net/123456789/4280 (accessed on 3 March 2017).
- Ren, T.; Koshio, S.; Ishikawa, M.; Yokoyama, S.; Micheal, F.R.; Uyan, O.; Tung, H.T. Influence of dietary vitamin C and bovine lactoferrin on blood chemistry and non-specific immune responses of Japanese eel, Anguilla japonica. Aquaculture 2007, 267, 31–37. [Google Scholar] [CrossRef]
- Ai, Q.; Mai, K.; Tan, B.; Xu, W.; Zhang, W.; Ma, H.; Liufu, Z. Effects of dietary vitamin C on survival, growth, and immunity of large yellow croaker, Pseudosciaena crocea. Aquaculture 2006, 261, 327–336. [Google Scholar] [CrossRef]
- Adeebayo, O.; Fawole, F. Growth and reproductive performance of African giant catfish, Heterobranchus longifilis Valenciennes 1840 broodstock on ascorbic acid supplementation. Indian J. Fish 2012, 59, 135–140. [Google Scholar]
- El-Sayed, A.-F.M.; Kawanna, M. Effects of dietary protein and energy levels on spawning performance of Nile tilapia (Oreochromis niloticus) broodstock in a recycling system. Aquaculture 2008, 280, 179–184. [Google Scholar] [CrossRef]
- Wu, Y.V.; Tudor, K.W.; Brown, P.B.; Rosati, R.R. Substitution of plant proteins or meat and bone meal for fish meal in diets of Nile tilapia. N. Am. J. Aquac. 1999, 61, 58–63. [Google Scholar] [CrossRef]
- Maina, J.G.; Beames, R.M.; Higgs, D.; Mbugua, P.N.; Iwama, G.; Kisia, S.M. Digestibility and feeding value of some feed ingredients fed to tilapia Oreochromis niloticus (L.). Aquac. Res. 2002, 33, 853–862. [Google Scholar] [CrossRef]
- Amer, S.A.; Osman, A.; Al-Gabri, N.A.; Elsayed, S.A.; Abd El-Rahman, G.I.; Elabbasy, M.T.; Ahmed, S.A.; Ibrahim, R.E. The Effect of Dietary Replacement of Fish Meal with Whey Protein Concentrate on the Growth Performance, Fish Health, and Immune Status of Nile Tilapia Fingerlings, Oreochromis niloticus. Animals 2019, 9, 1003. [Google Scholar] [CrossRef] [Green Version]
- El-Araby, D.A.; Amer, S.A.; Khalil, A.A. Effect of different feeding regimes on the growth performance, antioxidant activity, and health of Nile tilapia, Oreochromis niloticus. Aquaculture 2020, 735572. [Google Scholar] [CrossRef]
- Asadi, M.; Mirvaghefei, A.; Nematollahi, M.; Banaee, M.; Ahmadi, K. Effects of Watercress (Nasturtium nasturtium) extract on selected immunological parameters of rainbow trout (Oncorhynchus mykiss). Open Vet. J. 2012, 2, 32–39. [Google Scholar]
- Shahkar, E.; Yun, H.; Kim, D.-J.; Kim, S.-K.; Lee, B.I.; Bai, S.C. Effects of dietary vitamin C levels on tissue ascorbic acid concentration, hematology, non-specific immune response and gonad histology in broodstock Japanese eel, Anguilla japonica. Aquaculture 2015, 438, 115–121. [Google Scholar] [CrossRef]
- Lecumberri, E.; Goya, L.; Mateos, R.; Alía, M.; Ramos, S.; Izquierdo-Pulido, M.; Bravo, L. A diet rich in dietary fiber from cocoa improves lipid profile and reduces malondialdehyde in hypercholesterolemic rats. Nutrition 2007, 23, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Saglam, D.; Atli, G.; Dogan, Z.; Baysoy, E.; Gurler, C.; Eroglu, A.; Canli, M. Response of the antioxidant system of freshwater fish (Oreochromis niloticus) exposed to metals (Cd, Cu) in differing hardness. Turk. J. Fish. Aquat. Sci. 2014, 14, 43–52. [Google Scholar] [CrossRef]
- Radi, A.; Matkovics, B. Effects of metal ions on the antioxidant enzyme activities, protein contents and lipid peroxidation of carp tissues. Comp. Biochem. Physiol. C Comp. Pharmacol. Toxicol. 1988, 90, 69–72. [Google Scholar] [CrossRef]
- Martínez-Álvarez, R.M.; Morales, A.E.; Sanz, A. Antioxidant defenses in fish: Biotic and abiotic factors. Rev. Fish Biol. Fish. 2005, 15, 75–88. [Google Scholar] [CrossRef]
- Pint, B. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect. Oxid. Met. 1996, 45, 1–37. [Google Scholar] [CrossRef]
- Tripathi, B.; Mehta, S.; Amar, A.; Gaur, J. Oxidative stress in Scenedesmus sp. during short-and long-term exposure to Cu2+ and Zn2+. Chemosphere 2006, 62, 538–544. [Google Scholar] [CrossRef]
- Tobler, M.; Sandell, M.I. Sex-specific effects of prenatal testosterone on nestling plasma antioxidant capacity in the zebra finch. J. Exp. Biol. 2009, 212, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Hooper, L.; Kroon, P.A.; Rimm, E.B.; Cohn, J.S.; Harvey, I.; Le Cornu, K.A.; Ryder, J.J.; Hall, W.L.; Cassidy, A. Flavonoids, flavonoid-rich foods, and cardiovascular risk: A meta-analysis of randomized controlled trials. Am. J. Clin. Nutr. 2008, 88, 38–50. [Google Scholar] [CrossRef]
- Al-Rubaye, A.F.; Kaizal, A.F.; Hameed, I.H. Phytochemical screening of methanolic leaves extract of Malva sylvestris. Int. J. Pharmacogn. Phytochem. Res. 2017, 9, 537–552. [Google Scholar] [CrossRef] [Green Version]
- Krishnaveni, M. Docking, Simulation Studies of Desulphosinigrin–Cyclin Dependent Kinase 2, an Anticancer Drug Target. Int. J. Pharm. Sci. Rev. Res. 2015, 30, 115–118. [Google Scholar]
- Hussein, H.M. Analysis of trace heavy metals and volatile chemical compounds of Lepidium sativum using atomic absorption spectroscopy, gas chromatography-mass spectrometric and fourier-transform infrared spectroscopy. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 2529–2555. [Google Scholar]
- Kobayashi, M.; Morita, T.; Ikeguchi, K.; Yoshizaki, G.; Suzuki, T.; Watabe, S. In vivo biological activity of recombinant goldfish gonadotropins produced by baculovirus in silkworm larvae. Aquaculture 2006, 256, 433–442. [Google Scholar] [CrossRef]
- Yaron, Z.; Gur, G.; Melamed, P.; Rosenfeld, H.; Elizur, A.; Levavi-Sivan, B. Regulation of fish gonadotropins. Int. Rev. Cytol. 2003, 225, 131–185. [Google Scholar] [CrossRef]
- Rehfeldt, C.; Kalbe, C.; Nürnberg, G.; Mau, M. Dose-dependent effects of genistein and daidzein on protein metabolism in porcine myotube cultures. J. Agric. Food Chem. 2009, 57, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Lubzens, E.; Young, G.; Bobe, J.; Cerdà, J. Oogenesis in teleosts: How fish eggs are formed. Gen. Comp. Endocrinol. 2010, 165, 367–389. [Google Scholar] [CrossRef] [PubMed]
- Harvey, B.J.; Hoar, W.S. Theory and Practice of Induced Breeding in Fish; IDRC: Ottawa, ON, Canada, 1979. [Google Scholar]
- Cavalli, R.O.; Batista, F.M.; Lavens, P.; Sorgeloos, P.; Nelis, H.J.; De Leenheer, A.P. Effect of dietary supplementation of vitamins C and E on maternal performance and larval quality of the prawn Macrobrachium rosenbergii. Aquaculture 2003, 227, 131–146. [Google Scholar] [CrossRef]
- Dabrowski, K.; Ciereszko, A. Ascorbic acid and reproduction in fish: Endocrine regulation and gamete quality. Aquac. Res. 2001, 32, 623–638. [Google Scholar] [CrossRef]
- Rodríguez, M.; Specker, J.L. In vitro effects of arginine vasotocin on testosterone production by testes of rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 1991, 83, 249–257. [Google Scholar] [CrossRef]
- Linard, B.; Bennani, S.; Saligaut, C. Involvement of estradiol in a catecholamine inhibitory tone of gonadotropin release in the rainbow trout (Oncorhynchus mykiss). Gen. Comp. Endocrinol. 1995, 99, 192–196. [Google Scholar] [CrossRef]
- Seymour, E. The effects of powdered carp pituitary on ovarian development, ovarian ascorbic acid and ovulation in Carassius carassius L. exposed to various photoperiod and temperature regimes. J. Fish Biol. 1981, 19, 675–682. [Google Scholar] [CrossRef]
- Yeung, W.; Chan, S. The plasma sex steroid profiles in the freshwater, sex-reversing teleost fish, Monopterus albus (Zuiew). Gen. Comp. Endocrinol. 1987, 65, 233–242. [Google Scholar] [CrossRef]
- Eskelinen, P. Effects of different diets on egg production and egg quality of Atlantic salmon (Salmo salar L.). Aquaculture 1989, 79, 275–281. [Google Scholar] [CrossRef]
- Carrillo, M.; Zanuy, S.; Oyen, F.; Cerdá, J.; Navas, J.; Ramos, J. Some criteria of the quality of the progeny as indicators of physiological broodstock fitness. In Recent Advances in Mediterranean Aquaculture Finfish Species Diversification; CIHEAM: Zaragoza, Spain, 2000; pp. 61–73. [Google Scholar]
- Shepherd, C.; Bromage, N. Intensive Fish Farming; BSP Professional Oxford: Boston, MS, USA, 1988. [Google Scholar]
- Springate, J. The effects of different rations on fecundity and egg quality in the rainbow trout (Salmo gairdneri). Nutr. Feed. Fish 1985, 40, 371–393. [Google Scholar]
- Knox, D.; Bromage, N.; Cowey, C.; Springate, J. The effect of broodstock ration size on the composition of rainbow trout eggs (Salmo gairdneri). Aquaculture 1988, 69, 93–104. [Google Scholar] [CrossRef]
- Ling, S.; Kuah, M.-K.; Muhammad, T.S.T.; Kolkovski, S.; Shu-Chien, A.C. Effect of dietary HUFA on reproductive performance, tissue fatty acid profile and desaturase and elongase mRNAs in female swordtail Xiphophorus helleri. Aquaculture 2006, 261, 204–214. [Google Scholar] [CrossRef]
- Kolb, A.; Hildebrandt, F.; Lawrence, C. Effects of diet and social housing on reproductive success in adult zebrafish, Danio Rerio. Zebrafish 2018, 15, 445–453. [Google Scholar] [CrossRef]
- Cho, C.; Kaushik, S. Nutritional energetics in fish: Energy and protein utilization in rainbow trout (Salmo gairdneri). In Aspects of Food Production, Consumption and Energy Values; Bourne, G.H., Ed.; Aspects of Food Production, Consumption and Energy Values, World Rev Nutr Diet; Karger: Basel, Switzerland, 1990; Volume 61, pp. 132–172. [Google Scholar] [CrossRef]
- Silva, S.D.; Anderson, T.; Sargent, J. Fish nutrition in aquaculture. Rev. Fish Biol. Fish. 1995, 5, 472–473. [Google Scholar]
- Miura, T.; Yamauchi, K.; Takahashi, H.; Nagahama, Y. Hormonal induction of all stages of spermatogenesis in vitro in the male Japanese eel (Anguilla japonica). Proc. Natl. Acad. Sci. USA 1991, 88, 5774–5778. [Google Scholar] [CrossRef] [Green Version]
- Swanson, P.; Suzuki, K.; Kawauchi, H.; Dickhoff, W.W. Isolation and characterization of two coho salmon gonadotropins, GTH I and GTH II. Biol. Reprod. 1991, 44, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Thomas, P. Ovarian cycle, teleost fish. Encycl. Reprod. 1999, 3, 552–564. [Google Scholar]
- Kline, R.J.; Khan, I.A.; Soyano, K.; Takushima, M. Role of follicle-stimulating hormone and androgens on the sexual inversion of sevenband grouper Epinephelus septemfasciatus. North Am. J. Aquac. 2008, 70, 266–272. [Google Scholar] [CrossRef] [Green Version]
- Moncaut, N.; Nostro, F.L.; Maggese, M.C. Vitellogenin detection in surface mucus of the South American cichlid fish Cichlasoma dimerus (Heckel, 1840) induced by estradiol-17β. Effects on liver and gonads. Aquat. Toxicol. 2003, 63, 127–137. [Google Scholar] [CrossRef]
- Dammann, A.; Shappell, N.; Bartell, S.; Schoenfuss, H. Comparing biological effects and potencies of estrone and 17β-estradiol in mature fathead minnows, Pimephales promelas. Aquat. Toxicol. 2011, 105, 559–568. [Google Scholar] [CrossRef] [PubMed]
- Brion, F.; Tyler, C.; Palazzi, X.; Laillet, B.; Porcher, J.-M.; Garric, J.; Flammarion, P. Impacts of 17β-estradiol, including environmentally relevant concentrations, on reproduction after exposure during embryo-larval-, juvenile-and adult-life stages in zebrafish (Danio rerio). Aquat. Toxicol. 2004, 68, 193–217. [Google Scholar] [CrossRef]
Item | CBM0 | CBM5 | CBM10 |
---|---|---|---|
Fish meal 65% CP | 100 | 100 | 100 |
Soybean meal 44% CP | 431 | 431 | 431 |
Ground corn | 163.1 | 163.1 | 163.1 |
Wheat bran | 192.1 | 192.1 | 192.1 |
Wheat flour | 40 | 35 | 30 |
Cacao bean meal | 0 | 5 | 10 |
Fish oil | 22.3 | 22.3 | 22.3 |
Corn oil | 16.5 | 16.5 | 16.5 |
Methionine | 5 | 5 | 5 |
Vitamins premix A | 10 | 10 | 10 |
Minerals Premix B | 20 | 20 | 20 |
Proximate chemical analysis (g kg−1) | |||
Dry matter | 916.80 | 914.60 | 915.30 |
Crude protein | 301.00 | 301.40 | 301.90 |
Crude fat | 59.70 | 60.00 | 60.40 |
Ash | 8.13 | 8.33 | 8.17 |
Crude fiber | 58.02 | 57.60 | 57.50 |
Nitrogen free extract | 489.95 | 487.27 | 487.33 |
Lysine | 18.60 | 18.50 | 18.40 |
Methionine | 9.82 | 9.81 | 9.80 |
DE (Kcal/kg) * | 2553 | 2556 | 2558 |
Item | IBW(g/Fish) | FBW(g/Fish) | BWG (g/Fish) | FCR |
---|---|---|---|---|
CBM level (g kg−1 diet) | ||||
0 | 56.50 ± 2.25 | 105.17 ± 1.56 b | 48.67 ± 4.25 b | 3.01 ± 0.04 a |
5 | 57.25 ± 3.35 | 110.21 ± 2.65 b | 52.96 ± 3.65 b | 2.83 ± 0.03 ab |
10 | 56.39 ± 4.65 | 119.57 ± 5.26 a | 63.17 ± 2.24 a | 2.46 ± 0.07 b |
p-Value | 0.94 | 0.00 | 0.00 | 0.01 |
Sex | ||||
Male | 54.83 ± 3.24 | 125.70 ± 2.25 a | 70.86 ± 3.26 a | 1.97 ± 0.01 b |
Female | 58.59 ± 6.35 | 97.60 ± 2.36 b | 39.01 ± 1.25 b | 3.56 ± 0.04 a |
p-Value | 0.16 | 0.00 | 0.00 | 0.00 |
Interaction | ||||
CBM0 × Male | 55.00 ± 4.24 | 116.67 ± 1.51 | 61.67 ± 2.72 b | 2.21 ± 0.06 |
CBM5 × Male | 55.50 ± 3.53 | 123.47 ± 2.08 | 67.97 ± 1.45 b | 2.03 ± 0.04 |
CBM10 × Male | 54.00 ± 4.24 | 136.97 ± 0.59 | 82.97 ± 3.64 a | 1.69 ± 0.07 |
CBM0 × Female | 58.00 ± 4.35 | 93.68 ± 6.18 | 35.68 ± 1.93 c | 3.81 ± 0.15 |
CBM5 × Female | 59.00 ± 4.24 | 96.97 ± 0.81 | 37.97 ± 3.42 c | 3.65 ± 0.40 |
CBM10 × Female | 58.79 ± 3.93 | 102.17 ± 4.26 | 43.39 ± 0.32 c | 3.23 ± 0.01 |
p-Value | 0.95 | 0.10 | 0.02 | 0.94 |
Item | Feed Costs (USD) | Total Costs (USD) | Relative Feed Cost (USD/kg WG) |
---|---|---|---|
CBM0 | 0.53 ± 0.007 b | 1.16 ± 0.007 b | 1.98 ± 0.04 a |
CBM5 | 0.54 ± 0.02 b | 1.17 ± 0.02 b | 1.88 ± 0.07 ab |
CBM10 | 0.57 ± 0.002 a | 1.21 ± 0.002 a | 1.69 ± 0.03 b |
p-Value | 0.02 | 0.02 | 0.02 |
Item | TG (g/dL) | TP (g/dL) | Albumin (g/dL) | α1 Globulin (g/dL) | α2 Globulin (g/dL) | β Globulin (g/dL) | γ Globulin (g/dL) |
---|---|---|---|---|---|---|---|
CBM level (g kg−1 diet) | |||||||
0 | 2.81 ± 0.04 | 7.34 ± 0.08 ab | 4.52 ± 0.12 | 1.3 ± 0.07 | 0.5 ± 0.02 | 0.61 ± 0.19 | 0.4 ± 0.01 |
5 | 2.59 ± 0.03 | 7.28 ± 0.06 b | 4.67 ± 0.16 | 1.02 ± 0.06 | 0.46 ± 0.01 | 0.6 ± 0.11 | 0.53 ± 0.05 |
10 | 2.67 ± 0.01 | 7.45 ± 0.03 a | 4.78 ± 0.09 | 1.3 ± 0.08 | 0.48 ± 0.03 | 0.62 ± 0.09 | 0.28 ± 0.03 |
p-Value | 0.88 | 0.02 | 0.86 | 0.49 | 0.81 | 0.97 | 0.15 |
Sex | |||||||
Male | 3.13 ± 0.08 | 7.53 ± 0.01 a | 4.39 ± 0.13 | 1.35 ± 0.002 | 0.57 ± 0.01 a | 0.76 ± 0.23 a | 0.46 ± 0.11 |
Female | 2.25 ± 0.06 | 7.19 ± 0.03 b | 4.92 ± 0.08 | 1.06 ± 0.03 | 0.39 ± 0.02 b | 0.46 ± 0.12 b | 0.34 ± 0.15 |
p-Value | 0.05 | 0.00 | 0.21 | 0.22 | 0.01 | 0.01 | 0.23 |
Interaction | |||||||
CBM0 × Male | 3.49 ± 0.51 a | 7.60 ± 0.08 a | 4.11 ± 0.43 | 1.55 ± 0.21 | 0.62 ± 0.02 a | 0.87 ± 0.05 a | 0.45 ± 0.33 |
CBM5 × Male | 3.71 ± 0.12 a | 7.58 ± 0.07 a | 3.86 ± 0.04 | 1.44 ± 0.07 | 0.65 ± 0.02 a | 0.86 ± 0.01 a | 0.76 ± 0.01 |
CBM10 × Male | 2.19 ± 0.96 ab | 7.42 ± 0.09 a | 5.22 ± 0.06 | 1.06 ± 0.8 | 0.45 ± 0.15 ab | 0.55 ± 0.35 ab | 0.18 ± 0.01 |
CBM0 × Female | 2.14 ± 0.06 ab | 7.00 ± 0.02 b | 5.48 ± 0.09 | 1.05 ± 0.07 | 0.38 ± 0.02 ab | 0.35 ± 0.05 b | 0.35 ± 0.08 |
CBM5 × Female | 1.48 ± 0.04 c | 6.99 ± 0.01 b | 5.56 ± 0.11 | 0.60 ± 0.007 | 0.29 ± 0.02 b | 0.34 ± 0.05 b | 0.31 ± 0.06 |
CBM10 × Female | 3.15 ± 0.05 a | 7.50 ± 0.03 a | 4.34 ± 0.10 | 1.55 ± 0.77 | 0.51 ± 0.12 ab | 0.70 ± 0.15 ab | 0.39 ± 0.11 |
p-Value | 0.03 | 0.00 | 0.08 | 0.09 | 0.02 | 0.04 | 0.05 |
Item | CAT (U/L) | SOD (U/mL) | GSH (mmol/L) | MPO (U/L) | NO (μmol/L) | Lysozyme (U/L) |
---|---|---|---|---|---|---|
CBM level (g kg−1 diet) | ||||||
0 | 112.75 ± 7.25 | 3.35 ± 0.26 b | 1.15 ± 0.01 | 5.74 ± 0.12 | 20.00 ± 3.25 | 22.25 ± 3.20 |
5 | 101.50 ± 9.25 | 3.87 ± 0.45 b | 0.95 ± 0.03 | 6.01 ± 0.13 | 11.75 ± 2.45 | 21.5 ± 4.56 |
10 | 138.25 ± 10.35 | 6.06 ± 0.25 a | 1.64 ± 0.04 | 5.96 ± 0.23 | 19.75 ± 4.12 | 30.00 ± 2.25 |
p-Value | 0.10 | 0.00 | 0.17 | 0.93 | 0.28 | 0.05 |
Sex | ||||||
Male | 126 ± 3.26 | 4.53 ± 0.13 | 1.68 ± 0.02 a | 6.03 ± 0.26 | 17.50 ± 4.56 | 27.16 ± 1.23 |
Female | 109 ± 2.55 | 4.33 ± 0.26 | 0.82 ± 0.05 b | 5.77 ± 0.12 | 16.83 ± 3.35 | 22 ± 3.25 |
p-Value | 0.20 | 0.65 | 0.01 | 0.70 | 0.88 | 0.07 |
Interaction | ||||||
CBM0 × Male | 104.00 ± 5.65 | 3.22 ± 0.19 | 1.51 ± 0.01 | 5.82 ± 0.95 | 18.50 ± 3.53 | 21.00 ± 5.65 |
CBM5 × Male | 127.00 ± 6.66 | 4.00 ± 0.141 | 1.63 ± 0.78 | 7.02 ± 0.16 | 16.00 ± 4.24 | 25.00 ± 4.24 |
CBM10 × Male | 147.00 ± 14.14 | 6.365 ± 1.025 | 1.90 ± 0.35 | 5.26 ± 1.66 | 18.00 ± 2.82 | 35.50 ± 4.95 |
CBM0 × Female | 121.50 ± 10.6 | 3.49 ± 0.83 | 0.80 ± 0.17 | 5.66 ± 1.89 | 21.50 ± 10.60 | 23.50 ± 3.53 |
CBM5 × Female | 76.00 ± 5.65 | 3.76 ± 1.05 | 0.28 ± 0.03 | 5.00 ± 0.02 | 7.50 ± 3.56 | 18.00 ± 2.82 |
CBM10 × Female | 129.50 ± 6.36 | 5.76 ± 0.46 | 1.39 ± 0.70 | 6.67 ± 0.24 | 21.50 ± 13.43 | 24.50 ± 3.53 |
p-Value | 0.14 | 0.70 | 0.44 | 0.17 | 0.49 | 0.14 |
Item | FSH (mIU/mL) | LH (mIU/mL) | TES (ng/mL) | E2 (pg/mL) |
---|---|---|---|---|
CBM level (g kg−1 diet) | ||||
0 | 0.16 ± 0.02 b | 1.34 ± 0.02 | 0.54 ± 0.04 | 1147.75 ± 15.04 a |
5 | 0.23 ± 0.01 ab | 1.14 ± 0.01 | 0.58 ± 0.03 | 946.7 ± 20.04 b |
10 | 0.36 ± 0.03 a | 1.54 ± 0.03 | 0.61 ± 0.01 | 939.85 ± 8.02 b |
p-Value | 0.01 | 0.36 | 0.09 | 0.01 |
Sex | ||||
Male | 0.27 ± 0.01 | 1.51 ± 0.01 | 0.83 ± 0.03 a | 1232.23 ± 17.25 a |
Female | 0.22 ± 0.02 | 1.17 ± 0.02 | 0.33 ± 0.01 b | 790.63 ± 3.5 b |
p-Value | 0.24 | 0.16 | 0.00 | 0.00 |
Interaction | ||||
CBM0 × Male | 0.19 ± 0.01 | 1.47 ± 0.04 | 0.75 ± 0.06 b | 1152.20 ± 6.77 b |
CBM5 × Male | 0.25 ± 0.09 | 1.51 ± 0.12 | 0.83 ± 0.02 ab | 1183.80 ± 15.77 ab |
CBM10 × Male | 0.37 ± 0.10 | 1.56 ± 0.05 | 0.91 ± 0.02 a | 1360.60 ± 8.98 a |
CBM0 × Female | 0.13 ± 0.04 | 1.22 ± 0.02 | 0.34 ± 0.01 c | 1143.30 ± 7.94 c |
CBM5 × Female | 0.21 ± 0.01 | 1.41 ± 0.89 | 0.33 ± 0.02 c | 709.55 ± 1.34 c |
CBM10 × Female | 0.34 ± 0.03 | 1.54 ± 0.04 | 0.32 ± 0.02 c | 519.05 ± 3.60 c |
p-Value | 0.94 | 0.43 | 0.03 | 0.00 |
Item | Average Egg Wt. (g) | Average Fry Wt. (g) | Eggs/Spawning | Fries/Spawning | Hatching Rate% | Embryonic Development |
---|---|---|---|---|---|---|
CBM0 | 22.50 ± 2.16 b | 5.83 ± 0.32 b | 3281.17 ± 390.06 b | 2383.67 ± 242.52 b | 72.83 ± 5.03 b | 5.17 ± 0.40 b |
CBM5 | 34.50 ± 3.78 a | 9.00 ± 0.63 a | 5210.67 ± 514.07 a | 4327.83 ± 546.96 a | 83.00 ± 5.17 a | 5.83 ± 0.42 a |
CBM10 | 35.00 ± 3.22 a | 8.83 ± 0.75 a | 5321.33 ± 484.61 a | 4257.67 ± 315.97 a | 80.33 ± 6.91 ab | 6.00 ± 0.20 a |
p-Value | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Khalaifah, H.S.; Amer, S.A.; Al-Sadek, D.M.M.; Khalil, A.A.; Zaki, E.M.; El-Araby, D.A. Optimizing the Growth, Health, Reproductive Performance, and Gonadal Histology of Broodstock Fantail Goldfish (Carassius auratus, L.) by Dietary Cacao Bean Meal. Animals 2020, 10, 1808. https://doi.org/10.3390/ani10101808
Al-Khalaifah HS, Amer SA, Al-Sadek DMM, Khalil AA, Zaki EM, El-Araby DA. Optimizing the Growth, Health, Reproductive Performance, and Gonadal Histology of Broodstock Fantail Goldfish (Carassius auratus, L.) by Dietary Cacao Bean Meal. Animals. 2020; 10(10):1808. https://doi.org/10.3390/ani10101808
Chicago/Turabian StyleAl-Khalaifah, Hanan. S., Shimaa A. Amer, Dina M. M. Al-Sadek, Alshimaa A. Khalil, Eman M. Zaki, and Doaa A. El-Araby. 2020. "Optimizing the Growth, Health, Reproductive Performance, and Gonadal Histology of Broodstock Fantail Goldfish (Carassius auratus, L.) by Dietary Cacao Bean Meal" Animals 10, no. 10: 1808. https://doi.org/10.3390/ani10101808
APA StyleAl-Khalaifah, H. S., Amer, S. A., Al-Sadek, D. M. M., Khalil, A. A., Zaki, E. M., & El-Araby, D. A. (2020). Optimizing the Growth, Health, Reproductive Performance, and Gonadal Histology of Broodstock Fantail Goldfish (Carassius auratus, L.) by Dietary Cacao Bean Meal. Animals, 10(10), 1808. https://doi.org/10.3390/ani10101808